Current Topics in Medicinal Chemistry

Author(s): Nan Liu*, Qiang Wan, Zhen Cheng and Yue Chen

DOI: 10.2174/1568026619666190201094952

Radionuclide-Labeled Peptides for Imaging and Treatment of CXCR4- Overexpressing Malignant Tumors

Page: [17 - 32] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Malignant tumors are a major cause of death. The lack of methods that provide an early diagnosis and adequate treatment of cancers is the main obstacle to precision medicine. The C-X-C chemokine receptor 4 (CXCR4) is overexpressed in various tumors and plays a key role in tumor pathogenesis. Therefore, CXCR4-targeted molecular imaging can quickly and accurately detect and quantify CXCR4 abnormalities in real time. The expression level and activation status of CXCR4 are very important for screening susceptible populations and providing an accurate diagnosis and optimal treatment. In view of the fact that radionuclide-labeled peptides have become widely used for the diagnosis and treatment of tumors, this manuscript reviews the potential of different radionuclide-labeled peptide inhibitors for the targeted imaging of CXCR4- positive tumors and targeted treatment. The article also discusses the specificity and in vivo distribution of radionuclide-labeled peptide inhibitors, and translation of these inhibitors to the clinic.

Keywords: Chemokine Receptor, CXCR4, Imgaing, Theranostics, Radionuclides, SPECT.

Graphical Abstract

[1]
Weissleder, R.; Mahmood, U. Molecular imaging. Radiology, 2001, 219(2), 316-333.
[http://dx.doi.org/10.1148/radiology.219.2. r01ma19316] [PMID: 11323453]
[2]
Velikyan, I. Molecular imaging and radiotherapy: Theranostics for personalized patient management. Theranostics, 2012, 2(5), 424-426.
[http://dx.doi.org/10.7150/thno.4428] [PMID: 22768022]
[3]
Patel, S.; Schmidt, K.; Hesterman, J.; Hoppin, J. Advancing drug discovery and development using molecular imaging (addmi): an interest group of the world molecular imaging society and an inaugural session on positron emission tomography (PET). Mol. Imaging Biol., 2017, 19(3), 348-356.
[http://dx.doi.org/10.1007/s11307-017-1085-7] [PMID: 28417265]
[4]
Wang, Y.; Cheng, Z.; Liu, S.; Shao, G. Molecular imaging in targeted therapeutics; Contrast Media Mol. Imaging. UNSP, 2018, p. 3236829.
[http://dx.doi.org/10.1155/2018/3236829]
[5]
Hutchins, G.D.; Miller, M.A.; Soon, V.C.; Receveur, T. Small animal PET imaging. ILAR J., 2008, 49(1), 54-65.
[http://dx.doi.org/dx.doi. org/10.1093/ilar.49.1.54] [PMID: 18172333]
[6]
Macías, M.T. Use of radionuclides in cancer research and treatment. Clin. Transl. Oncol., 2009, 11(3), 143-153.
[http://dx.doi.org/10.1007/S12094-009-0330-1] [PMID: 19293051]
[7]
Li, Z.; Conti, P.S. Radiopharmaceutical chemistry for positron emission tomography. Adv. Drug Deliv. Rev., 2010, 62(11), 1031-1051.
[http://dx.doi.org/10.1016/j.addr.2010.09.007] [PMID: 20854860]
[8]
Watanabe, Y. Molecular imaging-based early-phase and exploratory clinical research. Yakugaku Zasshi, 2013, 133(2), 187-195.
[http://dx.doi.org/10.1248/yakushi.12-00246-2] [PMID: 23370512]
[9]
Ueda, M. Development of radiolabeled molecular imaging probes for in vivo analysis of biological function. Yakugaku Zasshi, 2016, 136(4), 659-668.
[http://dx.doi.org/10.1248/yakushi.15-00279] [PMID: 27040347]
[10]
Hacker, M.; Hoermann, G.; Kenner, L. Molecular imaging and molecular diagnostics: Two sides of the same coin? Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(10), 1645-1648.
[http://dx.doi.org/10.1007/s00259-018-4060-x] [PMID: 29860534]
[11]
Deutsch, E.; Johnson, S.A.; Seegers, W.H. Differentiation of certain platelet factors related to blood coagulation. Circ. Res., 1955, 3(1), 110-115.
[http://dx.doi.org/10.1161/01.RES.3.1.110] [PMID: 13231284]
[12]
Balkwill, F. Chemokine biology in cancer. Semin. Immunol., 2003, 15(1), 49-55.
[http://dx.doi.org/10.1016/S1044-5323(02)00127-6] [PMID: 12495640]
[13]
Amaral, F.A.; Boff, D.; Teixeira, M.M. In vivo models to study chemokine biology. Methods Enzymol., 2016, 570, 261-280.
[http://dx.doi.org/10.1016/bs.mie.2015.09.015] [PMID: 26921950]
[14]
Rossi, D.; Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol., 2000, 18, 217-242.
[http://dx.doi.org/10.1146/annurev.immunol.18.1.217] [PMID: 10837058]
[15]
Marques, C.S.; Santos, A.R.; Gameiro, A.; Correia, J.; Ferreira, F. CXCR4 and its ligand CXCL12 display opposite expression profiles in feline mammary metastatic disease, with the exception of HER2-overexpressing tumors. BMC Cancer, 2018, 18(1), 741-753.
[http://dx.doi.org/10.1186/s12885-018-4650-9] [PMID: 30012106]
[16]
Wang, Y.; Xie, Y.; Oupický, D. Potential of CXCR4/CXCL12 chemokine axis in cancer drug delivery. Curr. Pharmacol. Rep., 2016, 2(1), 1-10.
[http://dx.doi.org/10.1007/s40495-015-0044-8] [PMID: 27088072]
[17]
Furusato, B.; Mohamed, A.; Uhlén, M.; Rhim, J.S. CXCR4 and cancer. Pathol. Int., 2010, 60(7), 497-505.
[http://dx.doi.org/10. 1111/j.1440-1827.2010.02548.x] [PMID: 20594270]
[18]
Duda, D.G.; Kozin, S.V.; Kirkpatrick, N.D.; Xu, L.; Fukumura, D.; Jain, R.K. CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin. Cancer Res., 2011, 17(8), 2074-2080.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2636] [PMID: 21349998]
[19]
Sakai, N.; Yoshidome, H.; Shida, T.; Kimura, F.; Shimizu, H.; Ohtsuka, M.; Takeuchi, D.; Sakakibara, M.; Miyazaki, M. CXCR4/CXCL12 expression profile is associated with tumor microenvironment and clinical outcome of liver metastases of colorectal cancer. Clin. Exp. Metastasis, 2012, 29(2), 101-110.
[http://dx.doi.org/10.1007/s10585-011-9433-5] [PMID: 22075627]
[20]
Chen, K.; Bao, Z.; Tang, P.; Gong, W.; Yoshimura, T.; Wang, J.M. Chemokines in homeostasis and diseases. Cell. Mol. Immunol., 2018, 15(4), 324-334.
[http://dx.doi.org/10.1038/cmi.2017.134] [PMID: 29375126]
[21]
Li, C.X.; Wu, D.P.; Wang, Y.D.; Yu, G.H.; Liu, J.M.; Zhuang, Y.M.; Yin, C.S.; Zhang, X.G. Expression of CXCR4 and its effect on the biological behavior of multiple myeloma cells. Zhonghua Xue Ye Xue Za Zhi, 2003, 24(3), 122-125.
[PMID: 12697121]
[22]
Bao, L.; Lai, Y.; Liu, Y.; Qin, Y.; Zhao, X.; Lu, X.; Jiang, Q.; Lu, J.; Huang, X. CXCR4 is a good survival prognostic indicator in multiple myeloma patients. Leuk. Res., 2013, 37(9), 1083-1088.
[http://dx.doi.org/10.1016/j.leukres.2013.06.002] [PMID: 23849988]
[23]
Xu, C.; Zhao, H.; Chen, H.; Yao, Q. CXCR4 in breast cancer: Oncogenic role and therapeutic targeting. Drug Des. Devel. Ther., 2015, 9, 4953-4964.
[PMID: 26356032]
[24]
Richardson, P.J. CXCR4 and Glioblastoma. Anticancer. Agents Med. Chem., 2016, 16(1), 59-74.
[http://dx.doi.org/10.2174/1871-520615666150824153032] [PMID: 26299663]
[25]
Wu, P.F.; Lu, Z.P.; Cai, B.B.; Tian, L.; Zou, C.; Jiang, K.R.; Miao, Y. Role of CXCL12/CXCR4 signaling axis in pancreatic cancer. Chin. Med. J. (Engl.), 2013, 126(17), 3371-3374.
[PMID: 24033967]
[26]
Zhang, S.; Qi, L.; Li, M.; Zhang, D.; Xu, S.; Wang, N.; Sun, B. Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer. J. Exp. Clin. Cancer Res., 2008, 27, 62-70.
[http://dx.doi.org/10.1186/1756-9966-27-62] [PMID: 18983683]
[27]
De Falco, V.; Guarino, V.; Avilla, E.; Castellone, M.D.; Salerno, P.; Salvatore, G.; Faviana, P.; Basolo, F.; Santoro, M.; Melillo, R.M. Biological role and potential therapeutic targeting of the chemokine receptor CXCR4 in undifferentiated thyroid cancer. Cancer Res., 2007, 67(24), 11821-11829.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0899] [PMID: 18089812]
[28]
Minamiguchi, H.; Kimura, T.; Urata, Y.; Miyazaki, H.; Bamba, T.; Abe, T.; Sonoda, Y. Simultaneous signalling through c-mpl, c-kit and CXCR4 enhances the proliferation and differentiation of human megakaryocyte progenitors: possible roles of the PI3-K, PKC and MAPK pathways. Br. J. Haematol., 2001, 115(1), 175-185.
[http://dx.doi.org/10.1046/j.1365-2141.2001.03068.x] [PMID: 11722431]
[29]
Goh, P.P.; Sze, D.M.; Roufogalis, B.D. Molecular and cellular regulators of cancer angiogenesis. Curr. Cancer Drug Targets, 2007, 7(8), 743-758.
[http://dx.doi.org/10.2174/156800907783220462] [PMID: 18220534]
[30]
Petit, I.; Jin, D.; Rafii, S. The SDF-1-CXCR4 signaling pathway: A molecular hub modulating neo-angiogenesis. Trends Immunol., 2007, 28(7), 299-307.
[http://dx.doi.org/10.1016/j.it.2007.05.007] [PMID: 17560169]
[31]
Hegner, B.; Lange, M.; Kusch, A.; Essin, K.; Sezer, O.; Schulze-Lohoff, E.; Luft, F.C.; Gollasch, M.; Dragun, D. mTOR regulates vascular smooth muscle cell differentiation from human bone marrow-derived mesenchymal progenitors. Arterioscler. Thromb. Vasc. Biol., 2009, 29(2), 232-238.
[http://dx.doi.org/10.1161/ATVBAHA.108.179457] [PMID: 19074484]
[32]
Liekens, S.; Schols, D.; Hatse, S. CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr. Pharm. Des., 2010, 16(35), 3903-3920.
[http://dx.doi.org/10.2174/138161210794455003] [PMID: 21158728]
[33]
Teicher, B.A.; Fricker, S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res., 2010, 16(11), 2927-2931.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2329] [PMID: 20484021]
[34]
Kremer, K.N.; Peterson, K.L.; Schneider, P.A.; Meng, X.W.; Dai, H.; Hess, A.D.; Smith, B.D.; Rodriguez-Ramirez, C.; Karp, J.E.; Kaufmann, S.H.; Hedin, K.E. CXCR4 chemokine receptor signaling induces apoptosis in acute myeloid leukemia cells via regulation of the Bcl-2 family members Bcl-XL, Noxa, and Bak. J. Biol. Chem., 2013, 288(32), 22899-22914.
[http://dx.doi.org/10.1074/jbc.M113.449926] [PMID: 23798675]
[35]
Liu, Z.; Ma, C.; Shen, J.; Wang, D.; Hao, J.; Hu, Z. SDF1/CXCR4 axis induces apoptosis of human degenerative nucleus pulposus cells via the NFκB pathway. Mol. Med. Rep., 2016, 14(1), 783-789.
[http://dx.doi.org/10.3892/mmr.2016.5341] [PMID: 27220474]
[36]
Ziegler, M.E.; Hatch, M.M.S.; Wu, N.; Muawad, S.A.; Hughes, C.C.W. mTORC2 mediates CXCL12-induced angiogenesis. Angiogenesis, 2016, 19(3), 359-371.
[http://dx.doi.org/10.1007/s10456-016-9509-6] [PMID: 27106789]
[37]
Wang, C.; Cheng, H.; Li, Y. Role of SDF-1 and CXCR4 in the proliferation, migration and invasion of cervical cancer. Pak. J. Pharm. Sci., 2016, 29, (6 Spec), 2151-2154..
[PMID: 28412671]
[38]
Zhang, H.; Jiang, C.; Li, M.; Wang, X.; Tian, F.; Fang, X.; Zhu, L.; Bian, Z. CXCR4 enhances invasion and proliferation of bone marrow stem cells via PI3K/AKT/NF-kappa B signaling pathway. Int. J. Clin. Exp. Pathol., 2017, 10, 9829-9836.
[39]
Wang, J.; Wang, H.; Cai, J.; Du, S.; Xin, B.; Wei, W.; Zhang, T.; Shen, X. Artemin regulates CXCR4 expression to induce migration and invasion in pancreatic cancer cells through activation of NF-κB signaling. Exp. Cell Res., 2018, 365(1), 12-23.
[http://dx.doi.org/10.1016/j.yexcr.2018.02.008] [PMID: 29453972]
[40]
Zhan, W.; Liang, Z.; Zhu, A.; Kurtkaya, S.; Shim, H.; Snyder, J.P.; Liotta, D.C. Discovery of small molecule CXCR4 antagonists. J. Med. Chem., 2007, 50(23), 5655-5664.
[http://dx.doi.org/10.1021/jm070679i] [PMID: 17958344]
[41]
Bodart, V.; Anastassov, V.; Darkes, M.C.; Idzan, S.R.; Labrecque, J.; Lau, G.; Mosi, R.M.; Neff, K.S.; Nelson, K.L.; Ruzek, M.C.; Patel, K.; Santucci, Z.; Scarborough, R.; Wong, R.S.Y.; Bridger, G.J.; Macfarland, R.T.; Fricker, S.P. Pharmacology of AMD3465: a small molecule antagonist of the chemokine receptor CXCR4. Biochem. Pharmacol., 2009, 78(8), 993-1000.
[http://dx.doi.org/10.1016/j.bcp.2009.06.010] [PMID: 19540208]
[42]
Mosi, R.M.; Anastassova, V.; Cox, J.; Darkes, M.C.; Idzan, S.R.; Labrecque, J.; Lau, G.; Nelson, K.L.; Patel, K.; Santucci, Z.; Wong, R.S.Y.; Skerlj, R.T.; Bridger, G.J.; Huskens, D.; Schols, D.; Fricker, S.P. The molecular pharmacology of AMD11070: An orally bioavailable CXCR4 HIV entry inhibitor. Biochem. Pharmacol., 2012, 83(4), 472-479.
[http://dx.doi.org/10.1016/j.bcp.2011.11.020] [PMID: 22146583]
[43]
Xu, D.; Li, R.; Wu, J.; Jiang, L.; Zhong, H.A. Drug design targeting the CXCR4/CXCR7/CXCL12 pathway. Curr. Top. Med. Chem., 2016, 16(13), 1441-1451.
[http://dx.doi.org/10.2174/1568026615666150915120218] [PMID: 26369824]
[44]
Tulotta, C.; Stefanescu, C.; Beletkaia, E.; Bussmann, J.; Tarbashevich, K.; Schmidt, T.; Snaar-Jagalska, B.E. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model. Dis. Model. Mech., 2016, 9(2), 141-153.
[http://dx.doi.org/10.1242/dmm.023275] [PMID: 26744352]
[45]
Abraham, M.; Biyder, K.; Begin, M.; Wald, H.; Weiss, I.D.; Galun, E.; Nagler, A.; Peled, A. Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4F-benzoyl-TN14003. Stem Cells, 2007, 25(9), 2158-2166.
[http://dx.doi.org/10.1634/stemcells.2007-0161] [PMID: 17525235]
[46]
Kobayashi, K.; Oishi, S.; Hayashi, R.; Tomita, K.; Kubo, T.; Tanahara, N.; Ohno, H.; Yoshikawa, Y.; Furuya, T.; Hoshino, M.; Fujii, N. Structure-activity relationship study of a CXC chemokine receptor type 4 antagonist, FC131, using a series of alkene dipeptide isosteres. J. Med. Chem., 2012, 55(6), 2746-2757.
[http://dx.doi.org/10.1021/jm2016914] [PMID: 22352868]
[47]
Peng, S.B.; Zhang, X.; Paul, D.; Kays, L.M.; Gough, W.; Stewart, J.; Uhlik, M.T.; Chen, Q.; Hui, Y.H.; Zamek-Gliszczynski, M.J.; Wijsman, J.A.; Credille, K.M.; Yan, L.Z. Identification of LY2510924, a novel cyclic peptide CXCR4 antagonist that exhibits antitumor activities in solid tumor and breast cancer metastatic models. Mol. Cancer Ther., 2015, 14(2), 480-490.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0850] [PMID: 25504752]
[48]
Peng, S.B.; Zhang, X.; Paul, D.; Kays, L.M.; Ye, M.; Vaillancourt, P.; Dowless, M.; Stancato, L.F.; Stewart, J.; Uhlik, M.T.; Long, H.; Chu, S.; Obungu, V.H. Inhibition of CXCR4 by LY2624587, A fully humanized anti-CXCR4 antibody induces apoptosis of hematologic malignancies. PLoS One, 2016, 11(3), e0150585.
[http://dx.doi.org/10.1371/journal.pone.0150585] [PMID: 26954567]
[49]
Kashyap, M.K.; Kumar, D.; Jones, H.; Amaya-Chanaga, C.I.; Choi, M.Y.; Melo-Cardenas, J.; Ale-Ali, A.; Kuhne, M.R.; Sabbatini, P.; Cohen, L.J.; Shelat, S.G.; Rassenti, L.Z.; Kipps, T.J.; Cardarelli, P.M.; Castro, J.E. Ulocuplumab (BMS-936564/MDX1338): a fully human anti-CXCR4 antibody induces cell death in chronic lymphocytic leukemia mediated through a reactive oxygen species-dependent pathway. Oncotarget, 2016, 7(3), 2809-2822.
[http://dx.doi.org/10.18632/oncotarget.6465] [PMID: 26646452]
[50]
De Clercq, E. E. AMD3100/CXCR4 inhibitor. Front. Immunol, 2015, 6, 276. fimmu. 2015, 00276.
[http://dx.doi.org/10.3389]
[51]
Kuil, J.; Buckle, T.; van Leeuwen, F.W.B. Imaging agents for the chemokine receptor 4 (CXCR4). Chem. Soc. Rev., 2012, 41(15), 5239-5261.
[http://dx.doi.org/10.1039/c2cs35085h] [PMID: 22743644]
[52]
Weiss, I.D.; Jacobson, O. Molecular imaging of chemokine receptor CXCR4. Theranostics, 2013, 3(1), 76-84.
[http://dx.doi.org/10.7150/thno.4835] [PMID: 23382787]
[53]
Nayak, T.R.; Hong, H.; Zhang, Y.; Cai, W. Multimodality imaging of CXCR4 in cancer: Current status towards clinical translation. Curr. Mol. Med., 2013, 13(10), 1538-1548.
[http://dx.doi.org/10.2174/1566524013666131111121325] [PMID: 24206137]
[54]
George, G.P.C.; Pisaneschi, F.; Nguyen, Q.D.; Aboagye, E.O. Positron emission tomographic imaging of CXCR4 in cancer: Challenges and promises. Mol. Imaging, 2014, 13(1), 1-19.
[PMID: 25341373]
[55]
Fakhari, A.; Aghanejad, A.; Jalilian, A.R.; Gharepapagh, E. Recent developments in targeted imaging of CXCR4-chemokine receptor. J. Radioanal. Nucl. Chem., 2018, 317, 1-14.
[http://dx.doi.org/10.1007/s10967-018-5910-5]
[56]
Jacobson, O.; Weiss, I.D.; Szajek, L.; Farber, J.M.; Kiesewetter, D.O. 64Cu-AMD3100--A novel imaging agent for targeting chemokine receptor CXCR4. Bioorg. Med. Chem., 2009, 17(4), 1486-1493.
[http://dx.doi.org/10.1016/j.bmc.2009.01.014] [PMID: 19188071]
[57]
Zhang, J.M.; Tian, J.H.; Li, T.R.; Guo, H.Y.; Shen, L. Tc-99m-AMD3100: A novel potential receptor-targeting radiopharmaceutical for tumor imaging. Chin. Chem. Lett., 2010, 21, 461-463.
[http://dx.doi.org/10.1016/j.cclet.2009.12.018]
[58]
De Silva, R.; Peyre, K.; Pullambhatla, M.; Fox, J.; Pomper, M.; Nimmagadda, S. Molecular imaging of CXCR4 expression with [Cu-64]AMD3465. J. Nucl. Med., 2011, 52, 986-993.
[http://dx.doi.org/10.2967/jnumed.110.085613] [PMID: 21622896]
[59]
Weiss, I.D.; Jacobson, O.; Kiesewetter, D.O.; Jacobus, J.P.; Szajek, L.P.; Chen, X.; Farber, J.M. Positron emission tomography imaging of tumors expressing the human chemokine receptor CXCR4 in mice with the use of 64Cu-AMD3100. Mol. Imaging Biol., 2012, 14(1), 106-114.
[http://dx.doi.org/10.1007/s11307-010-0466-y] [PMID: 21347799]
[60]
Hartimath, S.V.; Domanska, U.M.; Walenkamp, A.M.E.; Rudi, A.J.O. D.; de Vries, E.F.J. [99mTc]O2-AMD3100 as a SPECT tracer for CXCR4 receptor imaging. Nucl. Med. Biol., 2013, 40(4), 507-517.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.02.003] [PMID: 23522974]
[61]
Woodard, L.E.; De Silva, R.A.; Behnam Azad, B.; Lisok, A.; Pullambhatla, M.; Lesniak, G. W.; Mease, R.C.; Pomper, M.G.; Nimmagadda, S. Bridged cyclams as imaging agents for chemokine receptor 4 (CXCR4). Nucl. Med. Biol., 2014, 41(7), 552-561.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.04.081] [PMID: 25038987]
[62]
Zhang, X.; You, L.; Chen, S.; Gao, M.; Guo, Z.; Du, J.; Lu, J.; Zhang, X. Development of a novel 99m Tc-labeled small molecular antagonist for CXCR4 positive tumor imaging. J. Labelled Comp. Radiopharm., 2018, 61(5), 438-446.
[http://dx.doi.org/10.1002/jlcr.3608] [PMID: 29370457]
[63]
Hartimath, S.V.; Khayum, M.A.; van Waarde, A.; Dierckx, R.A.J.O.; de Vries, E.F.J. -[C- 11]Methyl-AMD3465 PET as a tool for In vivo measurement of chemokine receptor 4 (CXCR4) occupancy by therapeutic drugs. Mol. Imaging Biol., 2017, 19(4), 570-577.
[http://dx.doi.org/10.1007/s11307-016-1028-8] [PMID: 27896627]
[64]
Hartimath, S.V.; van Waarde, A.; Dierckx, R.A.J.O.; de Vries, E.F.J. Evaluation of N-[(11)C]methyl-AMD3465 as a PET tracer for imaging of CXCR4 receptor expression in a C6 glioma tumor model. Mol. Pharm., 2014, 11(11), 3810-3817.
[http://dx.doi.org/10.1021/mp500398r] [PMID: 25094028]
[65]
Amor-Coarasa, A.; Kelly, J.; Ponnala, S.; Vedvyas, Y.; Nikolopoulou, A., Jr Williams, C.; Jin, M.M.; Warren, J.D.; Babich, J.W. [F-18]RPS-544: a PET tracer for imaging the chemokine receptor CXCR4. Nucl. Med. Biol., 2018, 60, 37-44.
[http://dx.doi.org/10.1016/j.nucmedbio.2018.01.004] [PMID: 29544122]
[66]
Alberini, J.L.; Edeline, V.; Giraudet, A.L.; Champion, L.; Paulmier, B.; Madar, O.; Poinsignon, A.; Bellet, D.; Pecking, A.P. Single photon emission tomography/computed tomography (SPET/CT) and positron emission tomography/computed tomography (PET/CT) to image cancer. J. Surg. Oncol., 2011, 103(6), 602-606.
[http://dx.doi.org/10.1002/jso.21695] [PMID: 21480254]
[67]
Rangacharyulu, C.; Roh, C.K. Isotopes for combined PET/SPECT imaging. J. Radioanal. Nucl. Chem., 2015, 305, 87-92.
[http://dx.doi.org/10.1007/s10967-015-3945-4]
[68]
Wang, T.; Vineberg, J.G.; Honda, T.; Ojima, I. Design and synthesis of tumor-targeting theranostic drug conjugates for SPECT and PET imaging studies. Bioorg. Chem., 2018, 76, 458-467.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.018] [PMID: 29287255]
[69]
Hanaoka, H.; Mukai, T.; Tamamura, H.; Mori, T.; Ishino, S.; Ogawa, K.; Iida, Y.; Doi, R.; Fujii, N.; Saji, H. Development of a 111In-labeled peptide derivative targeting a chemokine receptor, CXCR4, for imaging tumors. Nucl. Med. Biol., 2006, 33(4), 489-494.
[http://dx.doi.org/10.1016/j.nucmedbio.2006.01.006] [PMID: 16720240]
[70]
Kuil, J.; Buckle, T.; Oldenburg, J.; Yuan, H.; Borowsky, A.D.; Josephson, L.; van Leeuwen, F.W.B. Hybrid peptide dendrimers for imaging of chemokine receptor 4 (CXCR4) expression. Mol. Pharm., 2011, 8(6), 2444-2453.
[http://dx.doi.org/10.1021/mp200401p] [PMID: 22085282]
[71]
Buckle, T.; Kuil, J.; van den Berg, N.S.; Bunschoten, A.; Lamb, H.J.; Yuan, H.; Josephson, L.; Jonkers, J.; Borowsky, A.D.; van Leeuwen, F.W. Use of a single hybrid imaging agent for integration of target validation with in vivo and ex vivo imaging of mouse tumor lesions resembling human DCIS. PLoS One, 2013, 8(1), e48324.
[http://dx.doi.org/10.1371/journal.pone.0048324] [PMID: 23326303]
[72]
Lesniak, W.G.; Sikorska, E.; Shallal, H.; Behnam Azad, B.; Lisok, A.; Pullambhatla, M.; Pomper, M.G.; Nimmagadda, S. Structural characterization and in vivo evaluation of β-Hairpin peptidomimetics as specific CXCR4 imaging agents. Mol. Pharm., 2015, 12(3), 941-953.
[http://dx.doi.org/10.1021/mp500799q] [PMID: 25590535]
[73]
Mikaeili, A.; Erfani, M.; Sabzevari, O. Synthesis and evaluation of a 99mTc-labeled chemokine receptor antagonist peptide for imaging of chemokine receptor expressing tumors. Nucl. Med. Biol., 2017, 54, 10-17.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.07.004] [PMID: 28810154]
[74]
Sano, K.; Masuda, R.; Hisada, H.; Oishi, S.; Shimokawa, K.; Ono, M.; Fujii, N.; Saji, H.; Mukai, T. A radiogallium-DOTA-based bivalent peptidic ligand targeting a chemokine receptor, CXCR4, for tumor imaging. Bioorg. Med. Chem. Lett., 2014, 24(5), 1386-1388.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.031] [PMID: 24491461]
[75]
Jacobson, O.; Kiesewetter, D.O.; Chen, X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug. Chem., 2015, 26(1), 1-18.
[http://dx.doi.org/10.1021/bc500475e] [PMID: 25473848]
[76]
Preshlock, S.; Tredwell, M.; Gouverneur, V. F-18-Labeling of arenes and heteroarenes for applications in positron emission tomography. Chem. Rev., 2016, 116(2), 719-766.
[http://dx.doi.org/10.1021/acs.chemrev.5b00493] [PMID: 26751274]
[77]
Schieferstein, H.; Betzel, T.; Fischer, C.R.; Ross, T.L. 18 F-click labeling and preclinical evaluation of a new 18 F-folate for PET imaging. EJNMMI Res., 2013, 3(1), 68.
[http://dx.doi.org/10.1186/2191-219X-3-68] [PMID: 24041035]
[78]
Krishnan, H.S.; Ma, L.; Vasdev, N.; Liang, S.H. F-18-labeling of sensitive biomolecules for positron emission tomography. Chemistry, 2017, 23(62), 15553-15577.
[http://dx.doi.org/10.1002/chem. 201701581] [PMID: 28704575]
[79]
Richter, S.; Wuest, M.; Bergman, C.N.; Way, J.D.; Krieger, S.; Rogers, B.E.; Wuest, F. Rerouting the metabolic pathway of (18)F-labeled peptides: the influence of prosthetic groups. Bioconjug. Chem., 2015, 26(2), 201-212.
[http://dx.doi.org/10.1021/bc500599m] [PMID: 25572982]
[80]
Waengler, C.; Niedermoser, S.; Chin, J.; Orchowski, K.; Schirrmacher, E.; Jurkschat, K. Iovkova- Berends, L.; Kostikov, A.P.; Schirrmacher, R.; Waengler, B. One-step F-18-labeling of peptides for positron emission tomography imaging using the SiFA methodology. Nat. Protoc., 2012, 7, 1946-1955.
[http://dx.doi.org/dx.doi. org/10.1038/nprot.2012.109] [PMID: 23037309]
[81]
Basuli, F.; Zhang, X.; Jagoda, E.M.; Choyke, P.L.; Swenson, R.E. Rapid synthesis of maleimide functionalized fluorine-18 labeled prosthetic group using “radio-fluorination on the Sep-Pak” method. J. Labelled Comp. Radiopharm., 2018, 61(8), 599-605.
[http://dx.doi.org/dx. doi.org/10.1002/jlcr.3623] [PMID: 29575176]
[82]
Kumar, K.; Ghosh, A. 18F-AlF labeled peptide and protein conjugates as positron emission tomography imaging pharmaceuticals. Bioconjug. Chem., 2018, 29(4), 953-975.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00817] [PMID: 29463084]
[83]
McBride, W.J.; Sharkey, R.M.; Karacay, H.; D’Souza, C.A.; Rossi, E.A.; Laverman, P.; Chang, C.H.; Boerman, O.C.; Goldenberg, D.M. A novel method of 18F radiolabeling for PET. J. Nucl. Med., 2009, 50(6), 991-998.
[http://dx.doi.org/10.2967/jnumed. 108. 060418] [PMID: 19443594]
[84]
Liu, S.; Shen, B.; Chin, F.T.; Cheng, Z. Recent progress in radiofluorination of peptides for PET molecular imaging. Curr. Org. Synth., 2011, 8, 584-592.
[http://dx.doi.org/10.2174/157017911796117197]
[85]
Jacobson, O.; Weiss, I.D.; Kiesewetter, D.O.; Farber, J.M.; Chen, X. PET of tumor CXCR4 expression with 4-18F-T140. J. Nucl. Med., 2010, 51(11), 1796-1804.
[http://dx.doi.org/10.2967/jnumed.110.079418] [PMID: 20956475]
[86]
Zhang, X.X.; Sun, Z.; Guo, J.; Wang, Z.; Wu, C.; Niu, G.; Ma, Y.; Kiesewetter, D.O.; Chen, X. Comparison of (18)F-labeled CXCR4 antagonist peptides for PET imaging of CXCR4 expression. Mol. Imaging Biol., 2013, 15(6), 758-767.
[http://dx.doi.org/10.1007/s11307-013-0640-0] [PMID: 23636490]
[87]
Yan, X.; Niu, G.; Wang, Z.; Yang, X.; Kiesewetter, D.O.; Jacobson, O.; Shen, B.; Chen, X. [18F]NOTA-T140 peptide for noninvasive visualization of CXCR4 expression. Mol. Imaging Biol., 2016, 18(1), 135-142.
[http://dx.doi.org/10.1007/s11307-015-0872-2] [PMID: 26126597]
[88]
Tamamura, H.; Esaka, A.; Ogawa, T.; Araki, T.; Ueda, S.; Wang, Z.; Trent, J.O.; Tsutsumi, H.; Masuno, H.; Nakashima, H.; Yamamoto, N.; Peiper, S.C.; Otaka, A.; Fujii, N. Structure-activity relationship studies on CXCR4 antagonists having cyclic pentapeptide scaffolds. Org. Biomol. Chem., 2005, 3(24), 4392-4394.
[http://dx.doi.org/10.1039/b513145f] [PMID: 16327900]
[89]
Åberg, O.; Pisaneschi, F.; Smith, G.; Nguyen, Q.; Stevens, E.; Aboagye, E.O. 18F-labelling of a cyclic pentapeptide inhibitor of the chemokine receptor CXCR4. J. Fluor. Chem., 2012, 135, 200-206.
[http://dx.doi.org/10.1016/j.jfluchem.2011.11.003]
[90]
George, G.P.C.; Pisaneschi, F.; Stevens, E.; Nguyen, Q.D.; Åberg, O.; Spivey, A.C.; Aboagye, E.O. Scavenging strategy for specific activity improvement: application to a new CXCR4-specific cyclopentapeptide positron emission tomography tracer. J. Labelled Comp. Radiopharm., 2013, 56(13), 679-685.
[http://dx.doi.org/10.1002/jlcr.3095] [PMID: 25196030]
[91]
Poschenrieder, A.; Osl, T.; Schottelius, M.; Hoffmann, F.; Wirtz, M.; Schwaiger, M.; Wester, H.J. First 18F-Labeled Pentixafor-based imaging agent for PET imaging of CXCR4 expression In Vivo. Tomography, 2016, 2(2), 85-93.
[http://dx.doi.org/10.18383/j. tom.2016.00130] [PMID: 30042959]
[92]
Karimi, Z.; Sadeghi, M.; Mataji-Kojouri, N. 64Cu, a powerful positron emitter for immunoimaging and theranostic: Production vianatZnO and natZnO-NPs. Appl. Radiat. Isot., 2018, 137, 56-61.
[http://dx.doi.org/10.1016/j.apradiso.2018.03.007] [PMID: 29571037]
[93]
Qaim, S.M.; Spahn, I. Development of novel radionuclides for medical applications. J. Labelled Comp. Radiopharm., 2018, 61(3), 126-140.
[http://dx.doi.org/10.1002/jlcr.3578] [PMID: 29110328]
[94]
Jalilian, A.R., Jr Osso, J. The current status and future of theranostic Copper-64 radiopharmaceuticals. Iran. J. Nucl. Med., 2017, 25, 1-10.
[95]
Jacobson, O.; Weiss, I.D.; Szajek, L.P.; Niu, G.; Ma, Y.; Kiesewetter, D.O.; Farber, J.M.; Chen, X. PET imaging of CXCR4 using copper-64 labeled peptide antagonist. Theranostics, 2011, 1, 251-262.
[http://dx.doi.org/10.7150/thno/v01p0251] [PMID: 21544263]
[96]
Jacobson, O.; Weiss, I.D.; Szajek, L.P.; Niu, G.; Ma, Y.; Kiesewetter, D.O.; Peled, A.; Eden, H.S.; Farber, J.M.; Chen, X. Improvement of CXCR4 tracer specificity for PET imaging. J. Control. Release, 2012, 157(2), 216-223.
[http://dx.doi.org/10.1016/j.jconrel. 2011.09.076] [PMID: 21964282]
[97]
Tanzey, S.S.; Thompson, S.; Scott, P.J.; Brooks, A.F. Gallium-68: methodology and novel radiotracers for positron emission tomography (2012-2017). Pharm. Pat. Anal., 2018, 7(5), 193-227.
[http://dx.doi.org/10.4155/ppa-2018-0016] [PMID: 30066605]
[98]
Sharma, V.; Sivapackiam, J.; Harpstrite, S.E.; Prior, J.L.; Gu, H.; Rath, N.P.; Piwnica-Worms, D. A generator-produced gallium-68 radiopharmaceutical for PET imaging of myocardial perfusion. PLoS One, 2014, 9(10), e109361.
[http://dx.doi.org/10.1371/journal.pone.0109361] [PMID: 25353349]
[99]
Hennrich, U.; Seyler, L.; Schäfer, M.; Bauder-Wüst, U.; Eisenhut, M.; Semmler, W.; Bäuerle, T. Synthesis and in vitro evaluation of 68Ga-DOTA-4-FBn-TN14003, a novel tracer for the imaging of CXCR4 expression. Bioorg. Med. Chem., 2012, 20(4), 1502-1510.
[http://dx.doi.org/10.1016/j.bmc.2011.12.052] [PMID: 22264762]
[100]
Wang, Z.; Zhang, M.; Wang, L.; Wang, S.; Kang, F.; Li, G.; Jacobson, O.; Niu, G.; Yang, W.; Wang, J.; Chen, X. Prospective study of 68Ga-NOTA-NFB: Radiation dosimetry in healthy volunteers and first application in glioma patients. Theranostics, 2015, 5(8), 882-889.
[http://dx.doi.org/10.7150/thno.12303] [PMID: 26000059]
[101]
Gourni, E.; Demmer, O.; Schottelius, M.; D’Alessandria, C.; Schulz, S.; Dijkgraaf, I.; Schumacher, U.; Schwaiger, M.; Kessler, H.; Wester, H.J. PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. J. Nucl. Med., 2011, 52(11), 1803-1810.
[http://dx.doi.org/10.2967/jnumed.111.098798] [PMID: 22045709]
[102]
Demmer, O.; Gourni, E.; Schumacher, U.; Kessler, H.; Wester, H.J. PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem, 2011, 6(10), 1789-1791.
[http://dx.doi.org/10.1002/cmdc.201100320] [PMID: 21780290]
[103]
Poschenrieder, A.; Schottelius, M.; Schwaiger, M.; Wester, H.J. Preclinical evaluation of [(68)Ga]NOTA-pentixafor for PET imaging of CXCR4 expression in vivo-a comparison to [(68)Ga]pentixafor. EJNMMI Res., 2016, 6(1), 70.
[http://dx.doi.org/10.1186/s13550-016-0227-2] [PMID: 27655427]
[104]
Wester, H.J.; Keller, U.; Schottelius, M.; Beer, A.; Philipp-Abbrederis, K.; Hoffmann, F.; Šimeček, J.; Gerngross, C.; Lassmann, M.; Herrmann, K.; Pellegata, N.; Rudelius, M.; Kessler, H.; Schwaiger, M. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics, 2015, 5(6), 618-630.
[http://dx.doi.org/10.7150/thno.11251] [PMID: 25825601]
[105]
Philipp-Abbrederis, K.; Herrmann, K.; Knop, S.; Schottelius, M.; Eiber, M.; Lückerath, K.; Pietschmann, E.; Habringer, S.; Gerngroß, C.; Franke, K.; Rudelius, M.; Schirbel, A.; Lapa, C.; Schwamborn, K.; Steidle, S.; Hartmann, E.; Rosenwald, A.; Kropf, S.; Beer, A.J.; Peschel, C.; Einsele, H.; Buck, A.K.; Schwaiger, M.; Götze, K.; Wester, H.J.; Keller, U. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol. Med., 2015, 7(4), 477-487.
[http://dx.doi.org/10.15252/emmm.201404698] [PMID: 25736399]
[106]
Herrmann, K.; Lapa, C.; Wester, H.J.; Schottelius, M.; Schiepers, C.; Eberlein, U.; Bluemel, C.; Keller, U.; Knop, S.; Kropf, S.; Schirbel, A.; Buck, A.K.; Lassmann, M. Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. J. Nucl. Med., 2015, 56(3), 410-416.
[http://dx.doi.org/10.2967/jnumed.114.151647] [PMID: 25698782]
[107]
Lapa, C.; Schreder, M.; Schirbel, A.; Samnick, S.; Kortüm, K.M.; Herrmann, K.; Kropf, S.; Einsele, H.; Buck, A.K.; Wester, H.J.; Knop, S.; Lückerath, K. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - Comparison to [18F]FDG and laboratory values. Theranostics, 2017, 7(1), 205-212.
[http://dx.doi.org/10.7150/thno.16576] [PMID: 28042328]
[108]
Herhaus, P.; Habringer, S.; Philipp-Abbrederis, K.; Vag, T.; Gerngross, C.; Schottelius, M.; Slotta-Huspenina, J.; Steiger, K.; Altmann, T.; Weißer, T.; Steidle, S.; Schick, M.; Jacobs, L.; Slawska, J.; Müller-Thomas, C.; Verbeek, M.; Subklewe, M.; Peschel, C.; Wester, H.J.; Schwaiger, M.; Götze, K.; Keller, U. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia. Haematologica, 2016, 101(8), 932-940.
[http://dx.doi.org/10.3324/haematol.2016.142976] [PMID: 27175029]
[109]
Werner, R.A.; Weich, A.; Higuchi, T.; Schmid, J.S.; Schirbel, A.; Lassmann, M.; Wild, V.; Rudelius, M.; Kudlich, T.; Herrmann, K.; Scheurlen, M.; Buck, A.K.; Kropf, S.; Wester, H.J.; Lapa, C. Imaging of chemokine receptor 4 expression in neuroendocrine tumors-A triple tracer comparative approach. Theranostics, 2017, 7(6), 1489-1498.
[http://dx.doi.org/10.7150/thno.18754] [PMID: 28529632]
[110]
Derlin, T.; Hueper, K. CXCR4-targeted therapy in breast cancer. Lancet Oncol., 2018, 19(8), e370.
[http://dx.doi.org/10.1016/S1470-2045(18)30480-7] [PMID: 30102220]
[111]
Roy, S.; Valkenburg, K.C.; Pienta, K.J. CXCR4 and CXCR7 play distinct and overlapping roles in prostate cancer dissemination to bone. Cancer Res., 2017, 77.
[http://dx.doi.org/10.1158/1538-7445.AM2017-903]
[112]
Mercurio, L.; Ajmone-Cat, M.A.; Cecchetti, S.; Ricci, A.; Bozzuto, G.; Molinari, A.; Manni, I.; Pollo, B.; Scala, S.; Carpinelli, G.; Minghetti, L. Targeting CXCR4 by a selective peptide antagonist modulates tumor microenvironment and microglia reactivity in a human glioblastoma model. J. Exp. Clin. Cancer Res., 2016, 35, 55.
[http://dx.doi.org/10.1186/s13046-016-0326-y] [PMID: 27015814]
[113]
Wagner, P.; Vasquez, M.; Sica, G.; Hyjek, E.; Liu, Y.F.; Altorki, N.; Saqi, A. CXCR4 expression in stage I, stage II and multifocal non-small cell lung carcinomas. Lab. Invest., 2007, 87(1), 333A-333A.
[114]
Roy, I.; Zimmerman, N.P.; Mackinnon, A.C.; Tsai, S.; Evans, D.B.; Dwinell, M.B. CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis. PLoS One, 2014, 9(3), e90400.
[http://dx.doi.org/10.1371/journal.pone.0090400] [PMID: 24594697]
[115]
Zhang, P.; Yu, J.; Li, J.; Shen, L.; Li, N.; Zhu, H.; Zhai, S.; Zhang, Y.; Yang, Z.; Lu, M. Clinical and prognostic value of PET/CT imaging with combination of Ga-68-DOTATATE and F-18-FDG in gastroenteropancreatic neuroendocrine neoplasms. Contrast Media Mol. I. UNSP, 2018, 2018, 2340389.
[http://dx.doi.org/10.1155/2018/2340389]
[116]
Cuccurullo, V.; Di Stasio, G.D.; Mansi, L. Nuclear medicine in prostate cancer:A new era for radiotracers. World J. Nucl. Med., 2018, 17(2), 70-78.
[PMID: 29719480]
[117]
Derlin, T.; Hueper, K.; Soudah, B. Ga-68-DOTA-TATE PET/CT for molecular imaging of somatostatin receptor expression in metastasizing epithelioid hemangioendothelioma comparison with F-18-FDG. Clin. Nucl. Med., 2017, 42, 478-479.
[http://dx.doi.org/10.1097/RLU.0000000000001814] [PMID: 28240659]
[118]
Bar-Sever, Z.; Biassoni, L.; Shulkin, B.; Kong, G.; Hofman, M.S.; Lopci, E.; Manea, I.; Koziorowski, J.; Castellani, R.; Boubaker, A.; Lambert, B.; Pfluger, T.; Nadel, H.; Sharp, S.; Giammarile, F. Guidelines on nuclear medicine imaging in neuroblastoma. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(11), 2009-2024.
[http://dx.doi.org/10.1007/s00259-018-4070-8] [PMID: 29938300]
[119]
Choudhury, P.; Gupta, M. Personalized & precision medicine in cancer: A theranostic approach. Curr. Radiopharm., 2017, 10(3), 166-170.
[http://dx.doi.org/10.2174/18744710106661707280940-08] [PMID: 28758574]
[120]
Mittra, E.S. Neuroendocrine tumor therapy: Lu-177-DOTATATE. AJR Am. J. Roentgenol., 2018, 211(2), 278-285.
[http://dx.doi.org/ dx.doi.org/10.2214/AJR.18.19953] [PMID: 29949416]
[121]
Cives, M.; Strosberg, J. Radionuclide therapy for neuroendocrine tumors. Curr. Oncol. Rep., 2017, 19(2), 9.
[http://dx.doi.org/10.1007/s11912-017-0567-8] [PMID: 28220446]
[122]
Heck, M.M.; Retz, M.; Tauber, R.; Knorr, K.; Kratochwil, C.; Eiber, M. [PSMA-targeted radioligand therapy in prostate cancer]. Urologe A, 2017, 56(1), 32-39.
[http://dx.doi.org/10.1007/s00120-016-0274-3] [PMID: 27885457]
[123]
Banerjee, S.; Pillai, M.R.A.; Knapp, F.F.R. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem. Rev., 2015, 115(8), 2934-2974.
[http://dx.doi.org/10.1021/cr500171e] [PMID: 25865818]
[124]
Wigg, A.; Wallington, M. Yttrium 90 therapy for hepatocellular carcinoma: Is it any better than conventional external beam radiotherapy? Hepatology, 2012, 55(3), 981-982.
[http://dx.doi.org/ dx.doi.org/10.1002/hep.25535] [PMID: 22183954]
[125]
Schottelius, M.; Osl, T.; Poschenrieder, A.; Hoffmann, F.; Beykan, S.; Hänscheid, H.; Schirbel, A.; Buck, A.K.; Kropf, S.; Schwaiger, M.; Keller, U.; Lassmann, M.; Wester, H.J. [177Lu]pentixather: comprehensive preclinical characterization of a first CXCR4-directed endoradiotherapeutic agent. Theranostics, 2017, 7(9), 2350-2362.
[http://dx.doi.org/10.7150/thno.19119] [PMID: 28744319]
[126]
Herrmann, K.; Schottelius, M.; Lapa, C.; Osl, T.; Poschenrieder, A.; Hänscheid, H.; Lückerath, K.; Schreder, M.; Bluemel, C.; Knott, M.; Keller, U.; Schirbel, A.; Samnick, S.; Lassmann, M.; Kropf, S.; Buck, A.K.; Einsele, H.; Wester, H.J.; Knop, S. First-in-human experience of CXCR4-directed endoradiotherapy with 177Lu- and 90Y-labeled pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J. Nucl. Med., 2016, 57(2), 248-251.
[http://dx.doi.org/10.2967/jnumed.115.167361] [PMID: 26564323]
[127]
Habringer, S.; Lapa, C.; Herhaus, P.; Schottelius, M.; Istvanffy, R.; Steiger, K.; Slotta-Huspenina, J.; Schirbel, A.; Hänscheid, H.; Kircher, S.; Buck, A.K.; Götze, K.; Vick, B.; Jeremias, I.; Schwaiger, M.; Peschel, C.; Oostendorp, R.; Wester, H.J.; Grigoleit, G.U.; Keller, U. Dual targeting of acute leukemia and supporting niche by CXCR4-directed theranostics. Theranostics, 2018, 8(2), 369-383.
[http://dx.doi.org/10.7150/thno.21397] [PMID: 29290814]
[128]
Lapa, C.; Hanscheid, H.; Kircher, M.; Schirbel, A.; Wunderlich, G.; Werner, R.; Samnick, S.; Kotzerke, J.; Einsele, H.; Buck, A.; Wester, H.; Grigoleit, G.U. Feasibility of CXCR4-directed radioligand therapy in advanced diffuse large B cell lymphoma. J. Nucl. Med., 2019, 60(1), 60-64.
[http://dx.doi.org/10.2967/jnumed.118. 210997]