Clinical Implications of Methotrexate Pharmacogenetics in Childhood Acute Lymphoblastic Leukaemia

Page: [313 - 330] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: In the past two decades, a great body of research has been published regarding the effects of genetic polymorphisms on methotrexate (MTX)-induced toxicity and efficacy. Of particular interest is the role of this compound in childhood acute lymphoblastic leukaemia (ALL), where it is a pivotal drug in the different treatment protocols, both at low and high doses. MTX acts on a variety of target enzymes in the folates cycle, as well as being transported out and into of the cell by several transmembrane proteins.

Methods: We undertook a structured search of bibliographic databases for peer-reviewed research literature using a focused review question.

Results: This review has intended to summarize the current knowledge concerning the clinical impact of polymorphisms in enzymes and transporters involved in MTX disposition and mechanism of action on paediatric patients with ALL.

Conclusion: In this work, we describe why, in spite of the significant research efforts, pharmacogenetics findings in this setting have not yet found their way into routine clinical practice.

Keywords: Methotrexate, polymorphism, folate cycle, efficiency, toxicity, childhood acute lymphoblastic leukaemia.

Graphical Abstract

[1]
Rocha, J.M.; Xavier, S.G.; De Lima Souza, M.E.; Assumpcao, J.G.; Murao, M.; De Oliveira, B.M. Current strategies for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Mediterr. J. Hematol. Infect. Dis., 2016, 8(1), e2016024.
[2]
Terwilliger, T.; Abdul-Hay, M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J., 2017, 7(6), e577.
[3]
Hunger, S.P.; Mullighan, C.G. Acute lymphoblastic leukemia in children. N. Engl. J. Med., 2015, 373(16), 1541-1552.
[4]
Schmiegelow, K.; Nielsen, S.N.; Frandsen, T.L.; Nersting, J. Mercaptopurine/methotrexate maintenance therapy of childhood acute lymphoblastic leukemia: Clinical facts and fiction. J. Pediatr. Hematol. Oncol., 2014, 36(7), 503-517.
[5]
Schmiegelow, K. Advances in individual prediction of methotrexate toxicity: A review. Br. J. Haematol., 2009, 146(5), 489-503.
[6]
Vagace, J.M.; de la Maya, M.D.; Caceres-Marzal, C.; Gonzalez De Murillo, S.; Gervasini, G. Central nervous system chemotoxicity during treatment of pediatric acute lymphoblastic leukemia/lymphoma. Crit. Rev. Oncol. Hematol., 2012, 84(2), 274-286.
[7]
Pui, C.H.; Evans, W.E. Treatment of acute lymphoblastic leukemia. N. Engl. J. Med., 2006, 354(2), 166-178.
[8]
Rudin, S.; Marable, M.; Huang, R.S. The promise of pharmacogenomics in reducing toxicity during acute lymphoblastic leukemia maintenance treatment. Genomics Proteomics Bioinformatics, 2017, 15(2), 82-93.
[9]
Lopez-Lopez, E.; Gutierrez-Camino, A.; Bilbao-Aldaiturriaga, N.; Pombar-Gomez, M.; Martin-Guerrero, I.; Garcia-Orad, A. Pharmacogenetics of childhood acute lymphoblastic leukemia. Pharmacogenomics, 2014, 15(10), 1383-1398.
[10]
Moscow, J.A.; Gong, M.; He, R.; Sgagias, M.K.; Dixon, K.H.; Anzick, S.L.; Meltzer, P.S.; Cowan, K.H. Isolation of a gene encoding a human reduced folate carrier (rfc1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Res., 1995, 55(17), 3790-3794.
[11]
Van De Steeg, E.; Van Der Kruijssen, C.M.; Wagenaar, E.; Burggraaff, J.E.; Mesman, E.; Kenworthy, K.E.; Schinkel, A.H. Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1b1 (slco1b1). Drug Metab. Dispos., 2009, 37(2), 277-281.
[12]
Strand, V.; Cohen, S.; Schiff, M.; Weaver, A.; Fleischmann, R.; Cannon, G.; Fox, R.; Moreland, L.; Olsen, N.; Furst, D.; Caldwell, J.; Kaine, J.; Sharp, J.; Hurley, F.; Loew-Friedrich, I. Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Leflunomide rheumatoid arthritis investigators group. Arch. Intern. Med., 1999, 159(21), 2542-2550.
[13]
Chabner, B.A.; Allegra, C.J.; Curt, G.A.; Clendeninn, N.J.; Baram, J.; Koizumi, S.; Drake, J.C.; Jolivet, J. Polyglutamation of methotrexate. Is methotrexate a prodrug? J. Clin. Invest., 1985, 76(3), 907-912.
[14]
de Beaumais, T.A.; Jacqz-Aigrain, E. Intracellular disposition of methotrexate in acute lymphoblastic leukemia in children. Curr. Drug Metab., 2012, 13(6), 822-834.
[15]
Szeto, D.W.; Cheng, Y.C.; Rosowsky, A.; Yu, C.S.; Modest, E.J.; Piper, J.R.; Temple, C., Jr; Elliott, R.D.; Rose, J.D.; Montgomery, J.A. Human thymidylate synthetase--iii. Effects of methotrexate and folate analogs. Biochem. Pharmacol., 1979, 28(17), 2633-2637.
[16]
Galivan, J. Evidence for the cytotoxic activity of polyglutamate derivatives of methotrexate. Mol. Pharmacol., 1980, 17(1), 105-110.
[17]
Allegra, C.J.; Drake, J.C.; Jolivet, J.; Chabner, B.A. Inhibition of phosphoribosylaminoimidazolecarboxamide transformylase by methotrexate and dihydrofolic acid polyglutamates. Proc. Natl. Acad. Sci. USA, 1985, 82(15), 4881-4885.
[18]
Frosst, P.; Blom, H.J.; Milos, R.; Goyette, P.; Sheppard, C.A.; Matthews, R.G.; Boers, G.J.; Den Heijer, M.; Kluijtmans, L.A.; Van Den Heuvel, L.P. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat. Genet., 1995, 10(1), 111-113.
[19]
Van Der Put, N.M.; Gabreels, F.; Stevens, E.M.; Smeitink, J.A.; Trijbels, F.J.; Eskes, T.K.; Van Den Heuvel, L.P.; Blom, H.J. A second common mutation in the methylenetetrahydrofolate reductase gene: An additional risk factor for neural-tube defects? Am. J. Hum. Genet., 1998, 62(5), 1044-1051.
[20]
Cheok, M.H.; Evans, W.E. Acute lymphoblastic leukaemia: A model for the pharmacogenomics of cancer therapy. Nat. Rev. Cancer, 2006, 6(2), 117-129.
[21]
Brattstrom, L.; Zhang, Y.; Hurtig, M.; Refsum, H.; Ostensson, S.; Fransson, L.; Jones, K.; Landgren, F.; Brudin, L.; Ueland, P.M. A common methylenetetrahydrofolate reductase gene mutation and longevity. Atherosclerosis, 1998, 141(2), 315-319.
[22]
Weisberg, I.; Tran, P.; Christensen, B.; Sibani, S.; Rozen, R. A second genetic polymorphism in methylenetetrahydrofolate reductase (mthfr) associated with decreased enzyme activity. Mol. Genet. Metab., 1998, 64(3), 169-172.
[23]
El-Khodary, N.M.; El-Haggar, S.M.; Eid, M.A.; Ebeid, E.N. Study of the pharmacokinetic and pharmacogenetic contribution to the toxicity of high-dose methotrexate in children with acute lymphoblastic leukemia. Med. Oncol., 2012, 29(3), 2053-2062.
[24]
D’Angelo, V.; Ramaglia, M.; Iannotta, A.; Crisci, S.; Indolfi, P.; Francese, M.; Affinita, M.C.; Pecoraro, G.; Napolitano, A.; Fusco, C.; Oreste, M.; Indolfi, C.; Casale, F. Methotrexate toxicity and efficacy during the consolidation phase in paediatric acute lymphoblastic leukaemia and mthfr polymorphisms as pharmacogenetic determinants. Cancer Chemother. Pharmacol., 2011, 68(5), 1339-1346.
[25]
Araoz, H.V.; D’Aloi, K.; Foncuberta, M.E.; Sanchez La Rosa, C.G.; Alonso, C.N.; Chertkoff, L.; Felice, M. Pharmacogenetic studies in children with acute lymphoblastic leukemia in argentina. Leuk. Lymphoma, 2015, 56(5), 1370-1378.
[26]
Karathanasis, N.V.; Stiakaki, E.; Goulielmos, G.N.; Kalmanti, M. The role of the methylenetetrahydrofolate reductase 677 and 1298 polymorphisms in cretan children with acute lymphoblastic leukemia. Genet. Test. Mol. Biomarkers, 2011, 15(1-2), 5-10.
[27]
Mahmoud, L.B.; Mdhaffar, M.; Frikha, R.; Ghozzi, H.; Hakim, A.; Sahnoun, Z.; Elloumi, M.; Zeghal, K. Use of mthfr c677t polymorphism and plasma pharmacokinetics to predict methotrexate toxicity in patients with acute lymphoblastic leukemia. Adv. Clin. Exp. Med., 2018, 27(8), 1061-1068.
[28]
Pietrzyk, J.J.; Bik-Multanowski, M.; Balwierz, W.; Skoczen, S.; Wojcik, D.; Chybicka, A.; Sikorska-Fic, B.; Matysiak, M.; Szczepanski, T.; Sonta-Jakimczyk, D.; Ploszynska, A.; Balcerska, A.; Mycko, K.; Bodalski, J.; Krawczuk-Rybak, M.; Kowalczyk, J.; Koltan, A.; Sobol, G.; Derwich, K.; Kwinta, P. Additional genetic risk factor for death in children with acute lymphoblastic leukemia: A common polymorphism of the mthfr gene. Pediatr. Blood Cancer, 2009, 52(3), 364-368.
[29]
Ramirez-Pacheco, A.; Moreno-Guerrero, S.; Alamillo, I.; Medina-Sanson, A.; Lopez, B.; Moreno-Galvan, M. Mexican childhood acute lymphoblastic leukemia: A pilot study of the mdr1 and mthfr gene polymorphisms and their associations with clinical outcomes. Genet. Test. Mol. Biomarkers, 2016, 20(10), 597-602.
[30]
Shimasaki, N.; Mori, T.; Torii, C.; Sato, R.; Shimada, H.; Tanigawara, Y.; Kosaki, K.; Takahashi, T. Influence of mthfr and rfc1 polymorphisms on toxicities during maintenance chemotherapy for childhood acute lymphoblastic leukemia or lymphoma. J. Pediatr. Hematol. Oncol., 2008, 30(5), 347-352.
[31]
Tanaka, Y.; Manabe, A.; Nakadate, H.; Kondoh, K.; Nakamura, K.; Koh, K.; Kikuchi, A.; Komiyama, T. Methylenetetrahydrofolate reductase gene haplotypes affect toxicity during maintenance therapy for childhood acute lymphoblastic leukemia in Japanese patients. Leuk. Lymphoma, 2014, 55(5), 1126-1131.
[32]
Zgheib, N.K.; Akra-Ismail, M.; Aridi, C.; Mahfouz, R.; Abboud, M.R.; Solh, H.; Muwakkit, S.A. Genetic polymorphisms in candidate genes predict increased toxicity with methotrexate therapy in lebanese children with acute lymphoblastic leukemia. Pharmacogenet. Genomics, 2014, 24(8), 387-396.
[33]
Vagace, J.M.; Caceres-Marzal, C.; Jimenez, M.; Casado, M.S.; de Murillo, S.G.; Gervasini, G. Methotrexate-induced subacute neurotoxicity in a child with acute lymphoblastic leukemia carrying genetic polymorphisms related to folate homeostasis. Am. J. Hematol., 2011, 86(1), 98-101.
[34]
Mahadeo, K.M.; Dhall, G.; Panigrahy, A.; Lastra, C.; Ettinger, L.J. Subacute methotrexate neurotoxicity and cerebral venous sinus thrombosis in a 12-year-old with acute lymphoblastic leukemia and methylenetetrahydrofolate reductase (mthfr) c677t polymorphism: Homocysteine-mediated methotrexate neurotoxicity via direct endothelial injury. Pediatr. Hematol. Oncol., 2010, 27(1), 46-52.
[35]
Strunk, T.; Gottschalk, S.; Goepel, W.; Bucsky, P.; Schultz, C. Subacute leukencephalopathy after low-dose intrathecal methotrexate in an adolescent heterozygous for the mthfr c677t polymorphism. Med. Pediatr. Oncol., 2003, 40(1), 48-50.
[36]
Kishi, S.; Griener, J.; Cheng, C.; Das, S.; Cook, E.H.; Pei, D.; Hudson, M.; Rubnitz, J.; Sandlund, J.T.; Pui, C.H.; Relling, M.V. Homocysteine, pharmacogenetics, and neurotoxicity in children with leukemia. J. Clin. Oncol., 2003, 21(16), 3084-3091.
[37]
Aplenc, R.; Lange, B. Pharmacogenetic determinants of outcome in acute lymphoblastic leukaemia. Br. J. Haematol., 2004, 125(4), 421-434.
[38]
De Deus, D.M.; De Lima, E.L.; Seabra Silva, R.M.; Leite, E.P.; Cartaxo Muniz, M.T. Influence of methylenetetrahydrofolate reductase c677t, a1298c, and g80a polymorphisms on the survival of pediatric patients with acute lymphoblastic leukemia. Leukemia Res. Treat., 2012, 2012, 292043.
[39]
Erculj, N.; Kotnik, B.F.; Debeljak, M.; Jazbec, J.; Dolzan, V. Influence of folate pathway polymorphisms on high-dose methotrexate-related toxicity and survival in childhood acute lymphoblastic leukemia. Leuk. Lymphoma, 2012, 53(6), 1096-1104.
[40]
Huang, L.; Tissing, W.J.; de Jonge, R.; van Zelst, B.D.; Pieters, R. Polymorphisms in folate-related genes: Association with side effects of high-dose methotrexate in childhood acute lymphoblastic leukemia. Leukemia, 2008, 22(9), 1798-1800.
[41]
Kim, H.; Kang, H.J.; Kim, H.J.; Jang, M.K.; Kim, N.H.; Oh, Y.; Han, B.D.; Choi, J.Y.; Kim, C.W.; Lee, J.W.; Park, K.D.; Shin, H.Y.; Ahn, H.S. Pharmacogenetic analysis of pediatric patients with acute lymphoblastic leukemia: A possible association between survival rate and itpa polymorphism. PLoS One, 2012, 7(9), e45558.
[42]
Lopez-Lopez, E.; Ballesteros, J.; Garcia-Orad, A. Mthfr 677tt genotype and toxicity of methotrexate: Controversial results. Cancer Chemother. Pharmacol., 2011, 68(5), 1369-1370.
[43]
Moulik, N.R.; Kumar, A.; Agrawal, S.; Mahdi, A.A. Effect of folate status and methylenetetrahydrofolate reductase genotypes on the complications and outcome of high dose methotrexate chemotherapy in north indian children with acute lymphoblastic leukemia. Indian J. Med. Paediatr. Oncol., 2016, 37(2), 85-89.
[44]
Radtke, S.; Zolk, O.; Renner, B.; Paulides, M.; Zimmermann, M.; Moricke, A.; Stanulla, M.; Schrappe, M.; Langer, T. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood, 2013, 121(26), 5145-5153.
[45]
Shimasaki, N.; Mori, T.; Samejima, H.; Sato, R.; Shimada, H.; Yahagi, N.; Torii, C.; Yoshihara, H.; Tanigawara, Y.; Takahashi, T.; Kosaki, K. Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. J. Pediatr. Hematol. Oncol., 2006, 28(2), 64-68.
[46]
Suzuki, R.; Fukushima, H.; Noguchi, E.; Tsuchida, M.; Kiyokawa, N.; Koike, K.; Ma, E.; Takahashi, H.; Kobayashi, C.; Nakajima-Yamaguchi, R.; Sakai, A.; Saito, M.; Iwabuchi, A.; Kato, K.; Nakao, T.; Yoshimi, A.; Sumazaki, R.; Fukushima, T. Influence of slco1b1 polymorphism on maintenance therapy for childhood leukemia. Pediatr. Int., 2015, 57(4), 572-577.
[47]
Tsujimoto, S.; Yanagimachi, M.; Tanoshima, R.; Urayama, K.Y.; Tanaka, F.; Aida, N.; Goto, H.; Ito, S. Influence of adora2a gene polymorphism on leukoencephalopathy risk in mtx-treated pediatric patients affected by hematological malignancies. Pediatr. Blood Cancer, 2016, 63(11), 1983-1989.
[48]
Wang, S.M.; Sun, L.L.; Zeng, W.X.; Wu, W.S.; Zhang, G.L. Influence of genetic polymorphisms of fpgs, ggh, and mthfr on serum methotrexate levels in chinese children with acute lymphoblastic leukemia. Cancer Chemother. Pharmacol., 2014, 74(2), 283-289.
[49]
Yazicioglu, B.; Kaya, Z.; Guntekin Ergun, S.; Percin, F.; Kocak, U.; Yenicesu, I.; Gursel, T. Influence of folate-related gene polymorphisms on high-dose methotrexate-related toxicity and prognosis in turkish children with acute lymphoblastic leukemia. Turk. J. Haematol., 2017, 34(2), 143-150.
[50]
Aplenc, R.; Thompson, J.; Han, P.; La, M.; Zhao, H.; Lange, B.; Rebbeck, T. Methylenetetrahydrofolate reductase polymorphisms and therapy response in pediatric acute lymphoblastic leukemia. Cancer Res., 2005, 65(6), 2482-2487.
[51]
Kantar, M.; Kosova, B.; Cetingul, N.; Gumus, S.; Toroslu, E.; Zafer, N.; Topcuoglu, N.; Aksoylar, S.; Cinar, M.; Tetik, A.; Eroglu, Z. Methylenetetrahydrofolate reductase c677t and a1298c gene polymorphisms and therapy-related toxicity in children treated for acute lymphoblastic leukemia and non-hodgkin lymphoma. Leuk. Lymphoma, 2009, 50(6), 912-917.
[52]
Haase, R.; Elsner, K.; Merkel, N.; Stiefel, M.; Mauz-Korholz, C.; Kramm, C.M.; Korholz, D. High dose methotrexate treatment in childhood all: Pilot study on the impact of the mthfr 677c>t and 1298a>c polymorphisms on mtx-related toxicity. Klin. Padiatr., 2012, 224(3), 156-159.
[53]
Roy Moulik, N.; Kumar, A.; Agrawal, S.; Awasthi, S.; Mahdi, A.A. Role of folate status and methylenetetrahydrofolate reductase genotype on the toxicity and outcome of induction chemotherapy in children with acute lymphoblastic leukemia. Leuk. Lymphoma, 2015, 56(5), 1379-1384.
[54]
Kamdar, K.Y.; Krull, K.R.; El-Zein, R.A.; Brouwers, P.; Potter, B.S.; Harris, L.L.; Holm, S.; Dreyer, Z.; Scaglia, F.; Etzel, C.J.; Bondy, M.; Okcu, M.F. Folate pathway polymorphisms predict deficits in attention and processing speed after childhood leukemia therapy. Pediatr. Blood Cancer, 2011, 57(3), 454-460.
[55]
Faganel Kotnik, B.; Grabnar, I.; Bohanec Grabar, P.; Dolzan, V.; Jazbec, J. Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur. J. Clin. Pharmacol., 2011, 67(10), 993-1006.
[56]
Lopez-Lopez, E.; Martin-Guerrero, I.; Ballesteros, J.; Garcia-Orad, A. A systematic review and meta-analysis of mthfr polymorphisms in methotrexate toxicity prediction in pediatric acute lymphoblastic leukemia. Pharmacogenomics J., 2013, 13(6), 498-506.
[57]
Yao, P.; He, X.; Zhang, R.; Tong, R.; Xiao, H. The influence of mthfr genetic polymorphisms on adverse reactions after methotrexate in patients with hematological malignancies: A meta-analysis. Hematology, 2018, 24(1), 10-19.
[58]
Yang, L.; Hu, X.; Xu, L. Impact of methylenetetrahydrofolate reductase (mthfr) polymorphisms on methotrexate-induced toxicities in acute lymphoblastic leukemia: A meta-analysis. Tumour Biol., 2012, 33(5), 1445-1454.
[59]
Krajinovic, M.; Lemieux-Blanchard, E.; Chiasson, S.; Primeau, M.; Costea, I.; Moghrabi, A. Role of polymorphisms in mthfr and mthfd1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J., 2004, 4(1), 66-72.
[60]
Fukushima, H.; Fukushima, T.; Sakai, A.; Suzuki, R.; Nakajima-Yamaguchi, R.; Kobayashi, C.; Iwabuchi, A.; Saito, M.; Yoshimi, A.; Nakao, T.; Kato, K.; Tsuchida, M.; Takahashi, H.; Koike, K.; Kiyokawa, N.; Noguchi, E.; Sumazaki, R. Polymorphisms of mthfr associated with higher relapse/death ratio and delayed weekly mtx administration in pediatric lymphoid malignancies. Leukemia Res. Treat., 2013, 2013, 238528.
[61]
Leonardi, D.B.; Abbate, M.; Riccheri, M.C.; Nunez, M.; Alfonso, G.; Gueron, G.; De Siervi, A.; Vazquez, E.; Cotignola, J. Improving risk stratification of patients with childhood acute lymphoblastic leukemia: Glutathione-s-transferases polymorphisms are associated with increased risk of relapse. Oncotarget, 2017, 8(1), 110-117.
[62]
Hoang, P.T.; Ambroise, J.; Dekairelle, A.F.; Durant, J.F.; Butoescu, V.; Chi, V.L.; Huynh, N.; Nguyen, T.B.; Robert, A.; Vermylen, C.; Gala, J.L. Comparative pharmacogenetic analysis of risk polymorphisms in caucasian and vietnamese children with acute lymphoblastic leukemia: Prediction of therapeutic outcome? Br. J. Clin. Pharmacol., 2015, 79(3), 429-440.
[63]
Candelaria, M.; Ojeda, J.; Gutierrez-Hernandez, O.; Taja-Chayeb, L.; Vidal-Millan, S.; Duenas-Gonzalez, A. G80a single nucleotide polymorphism in reduced folate carrier-1 gene in a mexican population and its impact on survival in patients with acute lymphoblastic leukemia. Rev. Invest. Clin., 2016, 68(3), 154-162.
[64]
He, H.R.; Chen, S.Y.; You, H.S.; Hu, S.S.; Sun, J.Y.; Dong, Y.L.; Lu, J. Association between methylenetetrahydrofolate reductase polymorphisms and the relapse of acute lymphoblastic leukemia: A meta-analysis. Pharmacogenomics J., 2014, 14(5), 432-438.
[65]
Ojha, R.P.; Gurney, J.G. Methylenetetrahydrofolate reductase c677t and overall survival in pediatric acute lymphoblastic leukemia: A systematic review. Leuk. Lymphoma, 2014, 55(1), 67-73.
[66]
Salazar, J.; Altes, A.; del Rio, E.; Estella, J.; Rives, S.; Tasso, M.; Navajas, A.; Molina, J.; Villa, M.; Vivanco, J.L.; Torrent, M.; Baiget, M.; Badell, I. Methotrexate consolidation treatment according to pharmacogenetics of mthfr ameliorates event-free survival in childhood acute lymphoblastic leukaemia. Pharmacogenomics J., 2012, 12(5), 379-385.
[67]
Welsh, S.J.; Titley, J.; Brunton, L.; Valenti, M.; Monaghan, P.; Jackman, A.L.; Aherne, G.W. Comparison of thymidylate synthase (ts) protein up-regulation after exposure to ts inhibitors in normal and tumor cell lines and tissues. Clin. Cancer Res., 2000, 6(6), 2538-2546.
[68]
Horie, N.; Aiba, H.; Oguro, K.; Hojo, H.; Takeishi, K. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct. Funct., 1995, 20(3), 191-197.
[69]
Wang, W.; Marsh, S.; Cassidy, J.; McLeod, H.L. Pharmacogenomic dissection of resistance to thymidylate synthase inhibitors. Cancer Res., 2001, 61(14), 5505-5510.
[70]
Finkelstein, Y.; Blonquist, T.M.; Vijayanathan, V.; Stevenson, K.E.; Neuberg, D.S.; Silverman, L.B.; Vrooman, L.M.; Sallan, S.E.; Cole, P.D. A thymidylate synthase polymorphism is associated with increased risk for bone toxicity among children treated for acute lymphoblastic leukemia. Pediatr. Blood Cancer, 2017, 64(7), 26393.
[71]
De Jonge, R.; Hooijberg, J.H.; van Zelst, B.D.; Jansen, G.; Van Zantwijk, C.H.; Kaspers, G.J.; Peters, G.J.; Ravindranath, Y.; Pieters, R.; Lindemans, J. Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood, 2005, 106(2), 717-720.
[72]
Pakakasama, S.; Kanchanakamhaeng, K.; Kajanachumpol, S.; Udomsubpayakul, U.; Sirachainan, N.; Thithapandha, A.; Hongeng, S. Genetic polymorphisms of folate metabolic enzymes and toxicities of high dose methotrexate in children with acute lymphoblastic leukemia. Ann. Hematol., 2007, 86(8), 609-611.
[73]
Mandola, M.V.; Stoehlmacher, J.; Muller-Weeks, S.; Cesarone, G.; Yu, M.C.; Lenz, H.J.; Ladner, R.D. A novel single nucleotide polymorphism within the 5′ tandem repeat polymorphism of the thymidylate synthase gene abolishes usf-1 binding and alters transcriptional activity. Cancer Res., 2003, 63(11), 2898-2904.
[74]
Oosterom, N.; Berrevoets, M.; Den Hoed, M.A.H.; Zolk, O.; Hoerning, S.; Pluijm, S.M.F.; Pieters, R.; De Jonge, R.; Tissing, W.J.E.; Van Den Heuvel-Eibrink, M.M.; Heil, S.G. The role of genetic polymorphisms in the thymidylate synthase (tyms) gene in methotrexate-induced oral mucositis in children with acute lymphoblastic leukemia. Pharmacogenet. Genomics, 2018, 28(10), 223-229.
[75]
Pietrzyk, J.J.; Bik-Multanowski, M.; Skoczen, S.; Kowalczyk, J.; Balwierz, W. AlicjaChybicka; Matysiak, M.; Szczepanski, T.; Balcerska, A.; Bodalski, J.; Krawczuk-Rybak, M.; Wysocki, M.; Sobol, G.; Wachowiak, J. Polymorphism of the thymidylate synthase gene and risk of relapse in childhood all. Leuk. Res., 2011, 35(11), 1464-1466.
[76]
Da Silva Silveira, V.; Canalle, R.; Scrideli, C.A.; Queiroz, R.G.; Bettiol, H.; Valera, E.T.; Tone, L.G. Polymorphisms of xenobiotic metabolizing enzymes and DNA repair genes and outcome in childhood acute lymphoblastic leukemia. Leuk. Res., 2009, 33(7), 898-901.
[77]
Krajinovic, M.; Costea, I.; Chiasson, S. Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia. Lancet, 2002, 359(9311), 1033-1034.
[78]
Krajinovic, M.; Costea, I.; Primeau, M.; Dulucq, S.; Moghrabi, A. Combining several polymorphisms of thymidylate synthase gene for pharmacogenetic analysis. Pharmacogenomics J., 2005, 5(6), 374-380.
[79]
Costea, I.; Moghrabi, A.; Krajinovic, M. The influence of cyclin d1 (ccnd1) 870a>g polymorphism and ccnd1-thymidylate synthase (ts) gene-gene interaction on the outcome of childhood acute lymphoblastic leukaemia. Pharmacogenetics, 2003, 13(9), 577-580.
[80]
Li, W.; Fan, J.; Hochhauser, D.; Banerjee, D.; Zielinski, Z.; Almasan, A.; Yin, Y.; Kelly, R.; Wahl, G.M.; Bertino, J.R. Lack of functional retinoblastoma protein mediates increased resistance to antimetabolites in human sarcoma cell lines. Proc. Natl. Acad. Sci. USA, 1995, 92(22), 10436-10440.
[81]
Chiusolo, P.; Reddiconto, G.; Farina, G.; Mannocci, A.; Fiorini, A.; Palladino, M.; La Torre, G.; Fianchi, L.; Sora, F.; Laurenti, L.; Leone, G.; Sica, S. Mthfr polymorphisms’ influence on outcome and toxicity in acute lymphoblastic leukemia patients. Leuk. Res., 2007, 31(12), 1669-1674.
[82]
Dulucq, S.; St-Onge, G.; Gagne, V.; Ansari, M.; Sinnett, D.; Labuda, D.; Moghrabi, A.; Krajinovic, M. DNA variants in the dihydrofolate reductase gene and outcome in childhood all. Blood, 2008, 111(7), 3692-3700.
[83]
Lauten, M.; Asgedom, G.; Welte, K.; Schrappe, M.; Stanulla, M. Thymidylate synthase gene polymorphism and its association with relapse in childhood b-cell precursor acute lymphoblastic leukemia. Haematologica, 2003, 88(3), 353-354.
[84]
Ulrich, C.M.; Bigler, J.; Velicer, C.M.; Greene, E.A.; Farin, F.M.; Potter, J.D. Searching expressed sequence tag databases: Discovery and confirmation of a common polymorphism in the thymidylate synthase gene. Cancer Epidemiol. Biomarkers Prev., 2000, 9(12), 1381-1385.
[85]
Mandola, M.V.; Stoehlmacher, J.; Zhang, W.; Groshen, S.; Yu, M.C.; Iqbal, S.; Lenz, H.J.; Ladner, R.D.A. 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral ts mrna levels. Pharmacogenetics, 2004, 14(5), 319-327.
[86]
Sinnett, D.; Beaulieu, P.; Belanger, H.; Lefebvre, J.F.; Langlois, S.; Theberge, M.C.; Drouin, S.; Zotti, C.; Hudson, T.J.; Labuda, D. Detection and characterization of DNA variants in the promoter regions of hundreds of human disease candidate genes. Genomics, 2006, 87(6), 704-710.
[87]
Al-Shakfa, F.; Dulucq, S.; Brukner, I.; Milacic, I.; Ansari, M.; Beaulieu, P.; Moghrabi, A.; Laverdiere, C.; Sallan, S.E.; Silverman, L.B.; Neuberg, D.; Kutok, J.L.; Sinnett, D.; Krajinovic, M. DNA variants in region for noncoding interfering transcript of dihydrofolate reductase gene and outcome in childhood acute lymphoblastic leukemia. Clin. Cancer Res., 2009, 15(22), 6931-6938.
[88]
Ceppi, F.; Gagne, V.; Douyon, L.; Quintin, C.J.; Colombini, A.; Parasole, R.; Buldini, B.; Basso, G.; Conter, V.; Cazzaniga, G.; Krajinovic, M. DNA variants in dhfr gene and response to treatment in children with childhood b all: Revisited in aieop-bfm protocol. Pharmacogenomics, 2018, 19(2), 105-112.
[89]
Kodidela, S.; Pradhan, S.C.; Dubashi, B.; Basu, D. Influence of dihydrofolate reductase gene polymorphisms rs408626 (-317a>g) and rs442767 (-680c>a) on the outcome of methotrexate-based maintenance therapy in south indian patients with acute lymphoblastic leukemia. Eur. J. Clin. Pharmacol., 2015, 71(11), 1349-1358.
[90]
Gervasini, G.; De Murillo, S.G.; Jimenez, M.; De La Maya, M.D.; Vagace, J.M. Dihydrofolate reductase genetic polymorphisms affect methotrexate dose requirements in pediatric patients with acute lymphoblastic leukemia on maintenance therapy. J. Pediatr. Hematol. Oncol., 2017, 39(8), 589-595.
[91]
Girgis, S.; Suh, J.R.; Jolivet, J.; Stover, P.J. 5-formyltetrahydro-folate regulates homocysteine remethylation in human neuroblastoma. J. Biol. Chem., 1997, 272(8), 4729-4734.
[92]
Heil, S.G.; Van Der Put, N.M.; Waas, E.T.; Den Heijer, M.; Trijbels, F.J.; Blom, H.J. Is mutated serine hydroxymethyltransferase (shmt) involved in the etiology of neural tube defects? Mol. Genet. Metab., 2001, 73(2), 164-172.
[93]
Lopez-Lopez, E.; Martin-Guerrero, I.; Ballesteros, J.; Pinan, M.A.; Garcia-Miguel, P.; Navajas, A.; Garcia-Orad, A. Polymorphisms of the slco1b1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr. Blood Cancer, 2011, 57(4), 612-619.
[94]
Dervieux, T.; Greenstein, N.; Kremer, J. Pharmacogenomic and metabolic biomarkers in the folate pathway and their association with methotrexate effects during dosage escalation in rheumatoid arthritis. Arthritis Rheum., 2006, 54(10), 3095-3103.
[95]
Skibola, C.F.; Smith, M.T.; Hubbard, A.; Shane, B.; Roberts, A.C.; Law, G.R.; Rollinson, S.; Roman, E.; Cartwright, R.A.; Morgan, G.J. Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. Blood, 2002, 99(10), 3786-3791.
[96]
Shane, B. Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam. Horm., 1989, 45, 263-335.
[97]
Hol, F.A.; Van Der Put, N.M.; Geurds, M.P.; Heil, S.G.; Trijbels, F.J.; Hamel, B.C.; Mariman, E.C.; Blom, H.J. Molecular genetic analysis of the gene encoding the trifunctional enzyme mthfd (methylenetetrahydrofolate-dehydrogenase, methenyltetrahydrofolate-cyclohydrolase, formyltetrahydrofolate synthetase) in patients with neural tube defects. Clin. Genet., 1998, 53(2), 119-125.
[98]
Christensen, K.E.; Rohlicek, C.V.; Andelfinger, G.U.; Michaud, J.; Bigras, J.L.; Richter, A.; Mackenzie, R.E.; Rozen, R. The mthfd1 p.Arg653gln variant alters enzyme function and increases risk for congenital heart defects. Hum. Mutat., 2009, 30(2), 212-220.
[99]
Goulding, C.W.; Postigo, D.; Matthews, R.G. Cobalamin-dependent methionine synthase is a modular protein with distinct regions for binding homocysteine, methyltetrahydrofolate, cobalamin, and adenosylmethionine. Biochemistry (Mosc.), 1997, 36(26), 8082-8091.
[100]
Leclerc, D.; Campeau, E.; Goyette, P.; Adjalla, C.E.; Christensen, B.; Ross, M.; Eydoux, P.; Rosenblatt, D.S.; Rozen, R.; Gravel, R.A. Human methionine synthase: Cdna cloning and identification of mutations in patients of the cblg complementation group of folate/cobalamin disorders. Hum. Mol. Genet., 1996, 5(12), 1867-1874.
[101]
Shao, H.B.; Ren, K.; Gao, S.L.; Zou, J.G.; Mi, Y.Y.; Zhang, L.F.; Zuo, L.; Okada, A.; Yasui, T. Human methionine synthase a2756g polymorphism increases susceptibility to prostate cancer. Aging (Albany N.Y.), 2018, 10(7), 1776-1788.
[102]
Harmon, D.L.; Shields, D.C.; Woodside, J.V.; McMaster, D.; Yarnell, J.W.; Young, I.S.; Peng, K.; Shane, B.; Evans, A.E.; Whitehead, A.S. Methionine synthase d919g polymorphism is a significant but modest determinant of circulating homocysteine concentrations. Genet. Epidemiol., 1999, 17(4), 298-309.
[103]
Chaabane, S.; Messedi, M.; Akrout, R.; Ben Hamad, M.; Turki, M.; Marzouk, S.; Keskes, L.; Bahloul, Z.; Rebai, A.; Ayedi, F.; Maalej, A. Association of hyperhomocysteinemia with genetic variants in key enzymes of homocysteine metabolism and methotrexate toxicity in rheumatoid arthritis patients. Inflamm. Res., 2018, 67(8), 703-710.
[104]
Berkun, Y.; Abou Atta, I.; Rubinow, A.; Orbach, H.; Levartovsky, D.; Aamar, S.; Arbel, O.; Dresner-Pollak, R.; Friedman, G.; Ben-Yehuda, A. 2756gg genotype of methionine synthase reductase gene is more prevalent in rheumatoid arthritis patients treated with methotrexate and is associated with methotrexate-induced nodulosis. J. Rheumatol., 2007, 34(8), 1664-1669.
[105]
Li, S.Y.; Ye, J.Y.; Liang, E.Y.; Yang, M. The protective role of mtr a2756g polymorphisms in childhood acute lymphoblastic leukemia remains inconclusive. Leuk. Lymphoma, 2014, 55(9), 2217-2218.
[106]
Fang, D.H.; Ji, Q.; Fan, C.H.; An, Q.; Li, J. Methionine synthase reductase a66g polymorphism and leukemia risk: Evidence from published studies. Leuk. Lymphoma, 2014, 55(8), 1910-1914.
[107]
Xia, J.; Wang, Y.; Zhang, H.; Hu, Y. Association between mtr a2756g polymorphism and childhood acute lymphoblastic leukemia: A meta-analysis. Leuk. Lymphoma, 2014, 55(6), 1388-1393.
[108]
Krajinovic, M.; Robaey, P.; Chiasson, S.; Lemieux-Blanchard, E.; Rouillard, M.; Primeau, M.; Bournissen, F.G.; Moghrabi, A. Polymorphisms of genes controlling homocysteine levels and iq score following the treatment for childhood all. Pharmacogenomics, 2005, 6(3), 293-302.
[109]
Wilson, A.; Platt, R.; Wu, Q.; Leclerc, D.; Christensen, B.; Yang, H.; Gravel, R.A.; Rozen, R. A common variant in methionine synthase reductase combined with low cobalamin (vitamin b12) increases risk for spina bifida. Mol. Genet. Metab., 1999, 67(4), 317-323.
[110]
Gaughan, D.J.; Kluijtmans, L.A.; Barbaux, S.; McMaster, D.; Young, I.S.; Yarnell, J.W.; Evans, A.; Whitehead, A.S. The methionine synthase reductase (mtrr) a66g polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis, 2001, 157(2), 451-456.
[111]
Jacques, P.F.; Bostom, A.G.; Selhub, J.; Rich, S.; Ellison, R.C.; Eckfeldt, J.H.; Gravel, R.A.; Rozen, R. Effects of polymorphisms of methionine synthase and methionine synthase reductase on total plasma homocysteine in the nhlbi family heart study. Atherosclerosis, 2003, 166(1), 49-55.
[112]
Wang, J.; Ouyang, N.; Qu, L.; Lin, T.; Zhang, X.; Yu, Y.; Jiang, C.; Xie, L.; Wang, L.; Wang, Z.; Ren, S.; Chen, S.; Huang, J.; Liu, F.; Huang, W.; Qin, X. Effect of mthfr a1298c and mtrr a66g genetic mutations on homocysteine levels in the chinese population: A systematic review and meta-analysis. J. Transl. Int. Med., 2017, 5(4), 220-229.
[113]
Koppen, I.J.; Hermans, F.J.; Kaspers, G.J. Folate related gene polymorphisms and susceptibility to develop childhood acute lymphoblastic leukaemia. Br. J. Haematol., 2010, 148(1), 3-14.
[114]
Vijayakrishnan, J.; Houlston, R.S. Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: A systematic review and meta-analysis. Haematologica, 2010, 95(8), 1405-1414.
[115]
Smid, A.; Karas-Kuzelicki, N.; Jazbec, J.; Mlinaric-Rascan, I. Pacsin2 polymorphism is associated with thiopurine-induced hematological toxicity in children with acute lymphoblastic leukaemia undergoing maintenance therapy. Sci. Rep., 2016, 6, 30244.
[116]
Sepe, D.M.; McWilliams, T.; Chen, J.; Kershenbaum, A.; Zhao, H.; La, M.; Devidas, M.; Lange, B.; Rebbeck, T.R.; Aplenc, R. Germline genetic variation and treatment response on ccg-1891. Pediatr. Blood Cancer, 2012, 58(5), 695-700.
[117]
Leclerc, G.J.; Mou, C.; Leclerc, G.M.; Mian, A.M.; Barredo, J.C. Histone deacetylase inhibitors induce fpgs mrna expression and intracellular accumulation of long-chain methotrexate polyglutamates in childhood acute lymphoblastic leukemia: Implications for combination therapy. Leukemia, 2010, 24(3), 552-562.
[118]
Rots, M.G.; Willey, J.C.; Jansen, G.; Van Zantwijk, C.H.; Noordhuis, P.; DeMuth, J.P.; Kuiper, E.; Veerman, A.J.; Pieters, R.; Peters, G.J. Mrna expression levels of methotrexate resistance-related proteins in childhood leukemia as determined by a standardized competitive template-based rt-pcr method. Leukemia, 2000, 14(12), 2166-2175.
[119]
Leil, T.A.; Endo, C.; Adjei, A.A.; Dy, G.K.; Salavaggione, O.E.; Reid, J.R.; Ames, M.M. Identification and characterization of genetic variation in the folylpolyglutamate synthase gene. Cancer Res., 2007, 67(18), 8772-8782.
[120]
Huang, Z.; Tong, H.F.; Li, Y.; Qian, J.C.; Wang, J.X.; Wang, Z.; Ruan, J.C. Effect of the polymorphism of folylpolyglutamate synthetase on treatment of high-dose methotrexate in pediatric patients with acute lymphocytic leukemia. Med. Sci. Monit., 2016, 22, 4967-4973.
[121]
Gomez-Gomez, Y.; Organista-Nava, J.; Rangel-Rodriguez, C.A.; Illades-Aguiar, B.; Moreno-Godinez, M.E.; Alarcon-Romero, L.D.; Leyva-Vazquez, M.A. Effect of folylpolyglutamate synthase a22g polymorphism on the risk and survival of patients with acute lymphoblastic leukemia. Oncol. Lett., 2014, 8(2), 731-735.
[122]
Stark, M.; Wichman, C.; Avivi, I.; Assaraf, Y.G. Aberrant splicing of folylpolyglutamate synthetase as a novel mechanism of antifolate resistance in leukemia. Blood, 2009, 113(18), 4362-4369.
[123]
Wojtuszkiewicz, A.; Raz, S.; Stark, M.; Assaraf, Y.G.; Jansen, G.; Peters, G.J.; Sonneveld, E.; Kaspers, G.J.; Cloos, J. Folylpolyglutamate synthetase splicing alterations in acute lymphoblastic leukemia are provoked by methotrexate and other chemotherapeutics and mediate chemoresistance. Int. J. Cancer, 2016, 138(7), 1645-1656.
[124]
Cheng, Q.; Wu, B.; Kager, L.; Panetta, J.C.; Zheng, J.; Pui, C.H.; Relling, M.V.; Evans, W.E. A substrate specific functional polymorphism of human gamma-glutamyl hydrolase alters catalytic activity and methotrexate polyglutamate accumulation in acute lymphoblastic leukaemia cells. Pharmacogenetics, 2004, 14(8), 557-567.
[125]
Chave, K.J.; Ryan, T.J.; Chmura, S.E.; Galivan, J. Identification of single nucleotide polymorphisms in the human gamma-glutamyl hydrolase gene and characterization of promoter polymorphisms. Gene, 2003, 319, 167-175.
[126]
Koomdee, N.; Hongeng, S.; Apibal, S.; Pakakasama, S. Association between polymorphisms of dihydrofolate reductase and gamma glutamyl hydrolase genes and toxicity of high dose methotrexate in children with acute lymphoblastic leukemia. Asian Pac. J. Cancer Prev., 2012, 13(7), 3461-3464.
[127]
Garcia-Bournissen, F.; Moghrabi, A.; Krajinovic, M. Therapeutic responses in childhood acute lymphoblastic leukemia (all) and haplotypes of gamma glutamyl hydrolase (ggh) gene. Leuk. Res., 2007, 31(7), 1023-1025.
[128]
Niemi, M.; Pasanen, M.K.; Neuvonen, P.J. Organic anion transporting polypeptide 1b1: A genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol. Rev., 2011, 63(1), 157-181.
[129]
Ge, Y.; Haska, C.L.; LaFiura, K.; Devidas, M.; Linda, S.B.; Liu, M.; Thomas, R.; Taub, J.W.; Matherly, L.H. Prognostic role of the reduced folate carrier, the major membrane transporter for methotrexate, in childhood acute lymphoblastic leukemia: A report from the children’s oncology group. Clin. Cancer Res., 2007, 13(2 Pt 1), 451-457.
[130]
Chango, A.; Emery-Fillon, N.; de Courcy, G.P.; Lambert, D.; Pfister, M.; Rosenblatt, D.S.; Nicolas, J.P. A polymorphism (80g->a) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol. Genet. Metab., 2000, 70(4), 310-315.
[131]
Whetstine, J.R.; Gifford, A.J.; Witt, T.; Liu, X.Y.; Flatley, R.M.; Norris, M.; Haber, M.; Taub, J.W.; Ravindranath, Y.; Matherly, L.H. Single nucleotide polymorphisms in the human reduced folate carrier: Characterization of a high-frequency g/a variant at position 80 and transport properties of the his(27) and arg(27) carriers. Clin. Cancer Res., 2001, 7(11), 3416-3422.
[132]
Liu, S.G.; Gao, C.; Zhang, R.D.; Zhao, X.X.; Cui, L.; Li, W.J.; Chen, Z.P.; Yue, Z.X.; Zhang, Y.Y.; Wu, M.Y.; Wang, J.X.; Li, Z.G.; Zheng, H.Y. Polymorphisms in methotrexate transporters and their relationship to plasma methotrexate levels, toxicity of high-dose methotrexate, and outcome of pediatric acute lymphoblastic leukemia. Oncotarget, 2017, 8(23), 37761-37772.
[133]
Laverdiere, C.; Chiasson, S.; Costea, I.; Moghrabi, A.; Krajinovic, M. Polymorphism g80a in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood, 2002, 100(10), 3832-3834.
[134]
Gregers, J.; Christensen, I.J.; Dalhoff, K.; Lausen, B.; Schroeder, H.; Rosthoej, S.; Carlsen, N.; Schmiegelow, K.; Peterson, C. The association of reduced folate carrier 80g>a polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number. Blood, 2010, 115(23), 4671-4677.
[135]
Imanishi, H.; Okamura, N.; Yagi, M.; Noro, Y.; Moriya, Y.; Nakamura, T.; Hayakawa, A.; Takeshima, Y.; Sakaeda, T.; Matsuo, M.; Okumura, K. Genetic polymorphisms associated with adverse events and elimination of methotrexate in childhood acute lymphoblastic leukemia and malignant lymphoma. J. Hum. Genet., 2007, 52(2), 166-171.
[136]
Kishi, S.; Cheng, C.; French, D.; Pei, D.; Das, S.; Cook, E.H.; Hijiya, N.; Rizzari, C.; Rosner, G.L.; Frudakis, T.; Pui, C.H.; Evans, W.E.; Relling, M.V. Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood, 2007, 109(10), 4151-4157.
[137]
He, H.R.; Liu, P.; He, G.H.; Dong, W.H.; Wang, M.Y.; Dong, Y.L.; Lu, J. Association between reduced folate carrier g80a polymorphism and methotrexate toxicity in childhood acute lymphoblastic leukemia: A meta-analysis. Leuk. Lymphoma, 2014, 55(12), 2793-2800.
[138]
Karathanasis, N.V.; Stiakaki, E.; Goulielmos, G.; Kalmanti, M. The effect of rfc g80a polymorphism in cretan children with acute lymphoblastic leukemia and its interaction with mthfr c677t and a1298c polymorphisms. Int. J. Lab. Hematol., 2014, 36(4), 425-430.
[139]
Rocha, J.C.; Cheng, C.; Liu, W.; Kishi, S.; Das, S.; Cook, E.H.; Sandlund, J.T.; Rubnitz, J.; Ribeiro, R.; Campana, D.; Pui, C.H.; Evans, W.E.; Relling, M.V. Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood, 2005, 105(12), 4752-4758.
[140]
Dawidowska, M.; Kosmalska, M.; Sedek, L.; Szczepankiewicz, A.; Twardoch, M.; Sonsala, A.; Szarzynska-Zawadzka, B.; Derwich, K.; Lejman, M.; Pawelec, K.; Obitko-Pludowska, A.; Pawinska-Wasikowska, K.; Kwiecinska, K.; Koltan, A.; Dyla, A.; Grzeszczak, W.; Kowalczyk, J.R.; Szczepanski, T.; Zietkiewicz, E.; Witt, M. Association of germline genetic variants in rfc, il15 and vdr genes with minimal residual disease in pediatric b-cell precursor all. Sci. Rep., 2016, 6, 29427.
[141]
Yang, R.; Qin, J.; Hoang, B.H.; Healey, J.H.; Gorlick, R. Polymorphisms and methylation of the reduced folate carrier in osteosarcoma. Clin. Orthop. Relat. Res., 2008, 466(9), 2046-2051.
[142]
Chatzikyriakidou, A.; Georgiou, I.; Voulgari, P.V.; Papadopoulos, C.G.; Tzavaras, T.; Drosos, A.A. Transcription regulatory polymorphism -43t>c in the 5′-flanking region of slc19a1 gene could affect rheumatoid arthritis patient response to methotrexate therapy. Rheumatol. Int., 2007, 27(11), 1057-1061.
[143]
Abe, T.; Unno, M.; Onogawa, T.; Tokui, T.; Kondo, T.N.; Nakagomi, R.; Adachi, H.; Fujiwara, K.; Okabe, M.; Suzuki, T.; Nunoki, K.; Sato, E.; Kakyo, M.; Nishio, T.; Sugita, J.; Asano, N.; Tanemoto, M.; Seki, M.; Date, F.; Ono, K.; Kondo, Y.; Shiiba, K.; Suzuki, M.; Ohtani, H.; Shimosegawa, T.; Iinuma, K.; Nagura, H.; Ito, S.; Matsuno, S. Lst-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology, 2001, 120(7), 1689-1699.
[144]
Tirona, R.G.; Leake, B.F.; Merino, G.; Kim, R.B. Polymorphisms in oatp-c: Identification of multiple allelic variants associated with altered transport activity among european- and african-americans. J. Biol. Chem., 2001, 276(38), 35669-35675.
[145]
Ramsey, L.B.; Bruun, G.H.; Yang, W.; Trevino, L.R.; Vattathil, S.; Scheet, P.; Cheng, C.; Rosner, G.L.; Giacomini, K.M.; Fan, Y.; Sparreboom, A.; Mikkelsen, T.S.; Corydon, T.J.; Pui, C.H.; Evans, W.E.; Relling, M.V. Rare versus common variants in pharmacogenetics: Slco1b1 variation and methotrexate disposition. Genome Res., 2012, 22(1), 1-8.
[146]
Li, J.; Wang, X.R.; Zhai, X.W.; Wang, H.S.; Qian, X.W.; Miao, H.; Zhu, X.H. Association of slco1b1 gene polymorphisms with toxicity response of high dose methotrexate chemotherapy in childhood acute lymphoblastic leukemia. Int. J. Clin. Exp. Med., 2015, 8(4), 6109-6113.
[147]
Zhang, H.N.; He, X.L.; Wang, C.; Wang, Y.; Chen, Y.J.; Li, J.X.; Niu, C.H.; Gao, P. Impact of slco1b1 521t > c variant on leucovorin rescue and risk of relapse in childhood acute lymphoblastic leukemia treated with high-dose methotrexate. Pediatr. Blood Cancer, 2014, 61(12), 2203-2207.
[148]
Eldem, I.; Yavuz, D.; Cumaogullari, O.; Ileri, T.; Unal Ince, E.; Ertem, M.; Doganay Erdogan, B.; Bindak, R.; Ozdag, H.; Satiroglu-Tufan, N.L.; Uysal, L.Z. Slco1b1 polymorphisms are associated with drug intolerance in childhood leukemia maintenance therapy. J. Pediatr. Hematol. Oncol., 2018, 40(5), e289-e294.
[149]
De Carvalho, D.C.; Wanderley, A.V.; Dos Santos, A.M.R.; Fernandes, M.R.; Cohen Lima De Castro, A.N.; Leitao, L.P.C.; De Carvalho, J.A.N.J.; De Souza, T.P.; Khayat, A.S.; Dos Santos, S.E.B.; De Assumpcao, P.P.; Dos Santos, N.P.C. Pharmacogenomics and variations in the risk of toxicity during the consolidation/maintenance phases of the treatment of pediatric b-cell leukemia patients from an admixed population in the brazilian amazon. Leuk. Res., 2018, 74, 10-13.
[150]
Trevino, L.R.; Shimasaki, N.; Yang, W.; Panetta, J.C.; Cheng, C.; Pei, D.; Chan, D.; Sparreboom, A.; Giacomini, K.M.; Pui, C.H.; Evans, W.E.; Relling, M.V. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J. Clin. Oncol., 2009, 27(35), 5972-5978.
[151]
Ramsey, L.B.; Panetta, J.C.; Smith, C.; Yang, W.; Fan, Y.; Winick, N.J.; Martin, P.L.; Cheng, C.; Devidas, M.; Pui, C.H.; Evans, W.E.; Hunger, S.P.; Loh, M.; Relling, M.V. Genome-wide study of methotrexate clearance replicates slco1b1. Blood, 2013, 121(6), 898-904.
[152]
Iparraguirre, L.; Gutierrez-Camino, A.; Umerez, M.; Martin-Guerrero, I.; Astigarraga, I.; Navajas, A.; Sastre, A.; Garcia de Andoin, N.; Garcia-Orad, A. Mir-pharmacogenetics of methotrexate in childhood b-cell acute lymphoblastic leukemia. Pharmacogenet. Genomics, 2016, 26(11), 517-525.
[153]
Chen, Z.S.; Lee, K.; Walther, S.; Raftogianis, R.B.; Kuwano, M.; Zeng, H.; Kruh, G.D. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (abcc4): Mrp4 is a component of the methotrexate efflux system. Cancer Res., 2002, 62(11), 3144-3150.
[154]
Hooijberg, J.H.; Peters, G.J.; Assaraf, Y.G.; Kathmann, I.; Priest, D.G.; Bunni, M.A.; Veerman, A.J.; Scheffer, G.L.; Kaspers, G.J.; Jansen, G. The role of multidrug resistance proteins mrp1, mrp2 and mrp3 in cellular folate homeostasis. Biochem. Pharmacol., 2003, 65(5), 765-771.
[155]
Kool, M.; Van Der Linden, M.; De Haas, M.; Scheffer, G.L.; De Vree, J.M.; Smith, A.J.; Jansen, G.; Peters, G.J.; Ponne, N.; Scheper, R.J.; Elferink, R.P.; Baas, F.; Borst, P. Mrp3, an organic anion transporter able to transport anti-cancer drugs. Proc. Natl. Acad. Sci. USA, 1999, 96(12), 6914-6919.
[156]
Takatori, R.; Takahashi, K.A.; Tokunaga, D.; Hojo, T.; Fujioka, M.; Asano, T.; Hirata, T.; Kawahito, Y.; Satomi, Y.; Nishino, H.; Tanaka, T.; Hirota, Y.; Kubo, T. Abcb1 c3435t polymorphism influences methotrexate sensitivity in rheumatoid arthritis patients. Clin. Exp. Rheumatol., 2006, 24(5), 546-554.
[157]
Chen, Z.S.; Robey, R.W.; Belinsky, M.G.; Shchaveleva, I.; Ren, X.Q.; Sugimoto, Y.; Ross, D.D.; Bates, S.E.; Kruh, G.D. Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-d-glucuronide) by abcg2: Effects of acquired mutations at r482 on methotrexate transport. Cancer Res., 2003, 63(14), 4048-4054.
[158]
Volk, E.L.; Schneider, E. Wild-type breast cancer resistance protein (bcrp/abcg2) is a methotrexate polyglutamate transporter. Cancer Res., 2003, 63(17), 5538-5543.
[159]
Lopez-Lopez, E.; Ballesteros, J.; Pinan, M.A.; Sanchez de Toledo, J.; Garcia de Andoin, N.; Garcia-Miguel, P.; Navajas, A.; Garcia-Orad, A. Polymorphisms in the methotrexate transport pathway: A new tool for mtx plasma level prediction in pediatric acute lymphoblastic leukemia. Pharmacogenet. Genomics, 2013, 23(2), 53-61.
[160]
Plasschaert, S.L.; De Bont, E.S.; Boezen, M. vander Kolk, D.M.; Daenen, S.M.; Faber, K.N.; Kamps, W.A.; De Vries, E.G.; Vellenga, E. Expression of multidrug resistance-associated proteins predicts prognosis in childhood and adult acute lymphoblastic leukemia. Clin. Cancer Res., 2005, 11(24 Pt 1), 8661-8668.
[161]
Franca, R.; Rebora, P.; Bertorello, N.; Fagioli, F.; Conter, V.; Biondi, A.; Colombini, A.; Micalizzi, C.; Zecca, M.; Parasole, R.; Petruzziello, F.; Basso, G.; Putti, M.C.; Locatelli, F.; d’Adamo, P.; Valsecchi, M.G.; Decorti, G.; Rabusin, M. Pharmacogenetics and induction/consolidation therapy toxicities in acute lymphoblastic leukemia patients treated with aieop-bfm all 2000 protocol. Pharmacogenomics J., 2017, 17(1), 4-10.
[162]
Rau, T.; Erney, B.; Gores, R.; Eschenhagen, T.; Beck, J.; Langer, T. High-dose methotrexate in pediatric acute lymphoblastic leukemia: Impact of abcc2 polymorphisms on plasma concentrations. Clin. Pharmacol. Ther., 2006, 80(5), 468-476.
[163]
Liu, Y.; Yin, Y.; Sheng, Q.; Lu, X.; Wang, F.; Lin, Z.; Tian, H.; Xu, A.; Zhang, J. Association of abcc2 -24c>t polymorphism with high-dose methotrexate plasma concentrations and toxicities in childhood acute lymphoblastic leukemia. PLoS One, 2014, 9(1), e82681.
[164]
Sharifi, M.J.; Bahoush, G.; Zaker, F.; Ansari, S.; Rafsanjani, K.A.; Sharafi, H. Association of -24ct, 1249ga, and 3972ct abcc2 gene polymorphisms with methotrexate serum levels and toxic side effects in children with acute lymphoblastic leukemia. Pediatr. Hematol. Oncol., 2014, 31(2), 169-177.
[165]
Yanagimachi, M.; Goto, H.; Kaneko, T.; Naruto, T.; Sasaki, K.; Takeuchi, M.; Tanoshima, R.; Kato, H.; Yokosuka, T.; Kajiwara, R.; Fujii, H.; Tanaka, F.; Goto, S.; Takahashi, H.; Mori, M.; Kai, S.; Yokota, S. Influence of pre-hydration and pharmacogenetics on plasma methotrexate concentration and renal dysfunction following high-dose methotrexate therapy. Int. J. Hematol., 2013, 98(6), 702-707.
[166]
Gervasini, G.; de Murillo, S.G.; Jimenez, M.; De La Maya, M.D.; Vagace, J.M. Effect of polymorphisms in transporter genes on dosing, efficacy and toxicity of maintenance therapy in children with acute lymphoblastic leukemia. Gene, 2017, 628, 72-77.
[167]
Ansari, M.; Sauty, G.; Labuda, M.; Gagne, V.; Laverdiere, C.; Moghrabi, A.; Sinnett, D.; Krajinovic, M. Polymorphisms in multidrug resistance-associated protein gene 4 is associated with outcome in childhood acute lymphoblastic leukemia. Blood, 2009, 114(7), 1383-1386.
[168]
Mesrian Tanha, H.; Rahgozar, S.; Mojtabavi Naeini, M. Abcc4 functional snp in the 3′ splice acceptor site of exon 8 (g912t) is associated with unfavorable clinical outcome in children with acute lymphoblastic leukemia. Cancer Chemother. Pharmacol., 2017, 80(1), 109-117.
[169]
Den Hoed, M.A.; Lopez-Lopez, E.; Te Winkel, M.L.; Tissing, W.; De Rooij, J.D.; Gutierrez-Camino, A.; Garcia-Orad, A.; Den Boer, E.; Pieters, R.; Pluijm, S.M.; De Jonge, R.; Van Den Heuvel-Eibrink, M.M. Genetic and metabolic determinants of methotrexate-induced mucositis in pediatric acute lymphoblastic leukemia. Pharmacogenomics J., 2015, 15(3), 248-254.
[170]
Ansari, M.; Sauty, G.; Labuda, M.; Gagne, V.; Rousseau, J.; Moghrabi, A.; Laverdiere, C.; Sinnett, D.; Krajinovic, M. Polymorphism in multidrug resistance-associated protein gene 3 is associated with outcomes in childhood acute lymphoblastic leukemia. Pharmacogenomics J., 2012, 12(5), 386-394.
[171]
Aller, S.G.; Yu, J.; Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo, R.; Harrell, P.M.; Trinh, Y.T.; Zhang, Q.; Urbatsch, I.L.; Chang, G. Structure of p-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 2009, 323(5922), 1718-1722.
[172]
Hooijberg, J.H.; Broxterman, H.J.; Kool, M.; Assaraf, Y.G.; Peters, G.J.; Noordhuis, P.; Scheper, R.J.; Borst, P.; Pinedo, H.M.; Jansen, G. Antifolate resistance mediated by the multidrug resistance proteins mrp1 and mrp2. Cancer Res., 1999, 59(11), 2532-2535.
[173]
Marzolini, C.; Paus, E.; Buclin, T.; Kim, R.B. Polymorphisms in human mdr1 (p-glycoprotein): Recent advances and clinical relevance. Clin. Pharmacol. Ther., 2004, 75(1), 13-33.
[174]
Zaruma-Torres, F.; Lares-Asseff, I.; Reyes-Espinoza, A.; Loera-Castaneda, V.; Chairez-Hernandez, I.; Sosa-Macias, M.; Galaviz-Hernandez, C.; Almanza-Reyes, H. Association of abcb1, abcc5 and xanthine oxidase genetic polymorphisms with methotrexate adverse reactions in mexican pediatric patients with all. Drug Metab. Pers. Ther., 2015, 30(3), 195-201.
[175]
Yang, J.J.; Cheng, C.; Devidas, M.; Cao, X.; Campana, D.; Yang, W.; Fan, Y.; Neale, G.; Cox, N.; Scheet, P.; Borowitz, M.J.; Winick, N.J.; Martin, P.L.; Bowman, W.P.; Camitta, B.; Reaman, G.H.; Carroll, W.L.; Willman, C.L.; Hunger, S.P.; Evans, W.E.; Pui, C.H.; Loh, M.; Relling, M.V. Genome-wide association study identifies germline polymorphisms associated with relapse of childhood acute lymphoblastic leukemia. Blood, 2012, 120(20), 4197-4204.
[176]
Gregers, J.; Green, H.; Christensen, I.J.; Dalhoff, K.; Schroeder, H.; Carlsen, N.; Rosthoej, S.; Lausen, B.; Schmiegelow, K.; Peterson, C. Polymorphisms in the abcb1 gene and effect on outcome and toxicity in childhood acute lymphoblastic leukemia. Pharmacogenomics J., 2015, 15(4), 372-379.
[177]
Erdilyi, D.J.; Kamory, E.; Csokay, B.; Andrikovics, H.; Tordai, A.; Kiss, C.; Filni-Semsei, A.; Janszky, I.; Zalka, A.; Fekete, G.; Falus, A.; Kovacs, G.T.; Szalai, C. Synergistic interaction of abcb1 and abcg2 polymorphisms predicts the prevalence of toxic encephalopathy during anticancer chemotherapy. Pharmacogenomics J., 2008, 8(5), 321-327.
[178]
Mitomo, H.; Kato, R.; Ito, A.; Kasamatsu, S.; Ikegami, Y.; Kii, I.; Kudo, A.; Kobatake, E.; Sumino, Y.; Ishikawa, T. A functional study on polymorphism of the atp-binding cassette transporter abcg2: Critical role of arginine-482 in methotrexate transport. Biochem. J., 2003, 373(Pt 3), 767-774.
[179]
El Mesallamy, H.O.; Rashed, W.M.; Hamdy, N.M.; Hamdy, N. High-dose methotrexate in egyptian pediatric acute lymphoblastic leukemia: The impact of abcg2 c421a genetic polymorphism on plasma levels, what is next? J. Cancer Res. Clin. Oncol., 2014, 140(8), 1359-1365.
[180]
Hirschhorn, J.N.; Lohmueller, K.; Byrne, E.; Hirschhorn, K. A comprehensive review of genetic association studies. Genet. Med., 2002, 4(2), 45-61.
[181]
Kodidela, S.; Suresh Chandra, P.; Dubashi, B. Pharmacogenetics of methotrexate in acute lymphoblastic leukaemia: Why still at the bench level? Eur. J. Clin. Pharmacol., 2014, 70(3), 253-260.
[182]
Gervasini, G. Polymorphisms in methotrexate pathways: What is clinically relevant, what is not, and what is promising. Curr. Drug Metab., 2009, 10(6), 547-566.
[183]
Sorich, M.J.; Pottier, N.; Pei, D.; Yang, W.; Kager, L.; Stocco, G.; Cheng, C.; Panetta, J.C.; Pui, C.H.; Relling, M.V.; Cheok, M.H.; Evans, W.E. In vivo response to methotrexate forecasts outcome of acute lymphoblastic leukemia and has a distinct gene expression profile. PLoS Med., 2008, 5(4), e83.
[184]
Zhang, B.; Lauschke, V.M. Genetic variability and population diversity of the human slco (oatp) transporter family. Pharmacol. Res., 2019. In press
[185]
Udagawa, C.; Sasaki, Y.; Suemizu, H.; Ohnishi, Y.; Ohnishi, H.; Tokino, T.; Zembutsu, H. Targeted sequencing reveals genetic variants associated with sensitivity of 79 human cancer xenografts to anticancer drugs. Exp. Ther. Med., 2018, 15(2), 1339-1359.