Advance in Tissue Differentiation and its Regulatory Mechanisms by Master Proteins of Nervous System during Weaning

Page: [683 - 689] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Weaning is a critical period for the growth and development of mammals, in which various physiological and biochemical indicators of the body have undergone great changes. The development, differentiation, and maturation of the nervous system are regulated by many proteins. Changes in related proteins affect the physiological functions of the nervous system. However, the regulation of selfrenewal and differentiation of the nervous system at this stage is still poorly understood. The mechanism of differentiation and regulation of the major proteins in the nervous system during this special period of weaning remains to be investigated. Therefore, this paper aims to summarize the alteration of the nervous system during weaning and provide the basis for subsequent research.

Keywords: Nervous system, weaning, differentiation, behavioral, neurotoxicity, physiological function.

Graphical Abstract

[1]
Sandstead, H.H.W.O. Atwater memorial lecture. Zinc: Essentiality for brain development and function. Nutr. Rev., 1985, 43, 129-137.
[2]
Anderson, K.D.; Sengupta, J.; Morin, M.; Neve, R.L.; Valenzuela, C.F.; Perrone-Bizzozero, N.I. Overexpression of HuD accelerates neurite outgrowth and increases GAP-43 mRNA expression in cortical neurons and retinoic acid-induced embryonic stem cells in vitro. Exp. Neurol., 2001, 168, 250-258.
[3]
Deschenes-Furry, J.; Belanger, G.; Perrone-Bizzozero, N.; Jasmin, B.J. Post-transcriptional regulation of acetylcholinesterase mRNAs in nerve growth factor-treated PC12 cells by the RNA-binding protein HuD. J. Biol. Chem., 2003, 278, 5710-5717.
[4]
Kasashima, K.; Terashima, K.; Yamamoto, K.; Sakashita, E.; Sakamoto, H. Cytoplasmic localization is required for the mammalian ELAV-like protein HuD to induce neuronal differentiation. Genes Cells, 1999, 4, 667-683.
[5]
Mobarak, C.D.; Anderson, K.D.; Morin, M.; Beckel-Mitchener, A.; Rogers, S.L.; Furneaux, H.; King, P. Perrone-Bizzozero, N.I. The RNA-binding protein HuD is required for GAP-43 mRNA stability, GAP-43 gene expression, and PKC-dependent neurite outgrowth in PC12 cells. Mol. Biol. Cell, 2000, 11, 3191-3203.
[6]
Deschênes-Furry, J.; Angus, L.M.; Bélanger, G.; Mwanjewe, J.; Jasmin, B.J. Role of ELAV-like RNA-binding proteins HuD and HuR in the post-transcriptional regulation of acetylcholinesterase in neurons and skeletal muscle cells. Chem. Biol. Interact., 2005, 157-158, 43-49.
[7]
Lin, L.; Zhang, X.X.; Jian, W.; Rong, J. Distribution and differentiation of transplanted neural tissuse committed stem cells to the brain after ischemic stroke. Med. J. Chin. PLA, 2012, 37, 1031-1035.
[8]
Duggal, N.; Iskander, S.; Hammond, R.R. MAP2 and nestin co-expression in dysembryoplastic neuroepithelial tumors. Clin. Neuropathol., 2003, 22, 57-65.
[9]
Lasek, R.J.; Phillips, L.; Katz, M.J.; Autilio-Gambetti, L. Function and evolution of neurofilament proteins. Ann. N. Y. Acad. Sci., 1985, 455, 462-478.
[10]
Maccioni, R.B.; Cambiazo, V. Role of microtubule-associated proteins in the control of microtubule assembly. Physiol. Rev., 1995, 75, 835-864.
[11]
Liu, Z.; Zeng, S.L.; Li, F.F. Effects of schwann cells on proliferation and differentiation of co-cultured neural stem cells. China Med. Herald, 2007, 4, 98-99.
[12]
Pettingill, L.N.; Minter, R.L.; Shepherd, R.K. Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro. Neuroscience, 2008, 152, 821-828.
[13]
Chen, J.M.; Li, B.C.; Wang, J.M. Effects of coculture of schwann cells and anterior horn motor neurons of spinal cord on its function. J. Third Mil. Med. Univ., 2007, 29, 2226-2229.
[14]
Song, P.; Zhang, R.; Wang, X.; He, P.; Tan, L.; Ma, X. Dietary grape-seed procyanidins decreased postweaning diarrhea by modulating intestinal permeability and suppressing oxidative stress in rats. J. Agric. Food Chem., 2011, 59, 6227-6232.
[15]
Kushwaha, P.; Khedgikar, V.; Sharma, D.; Yuen, T.; Gautam, J.; Ahmad, N.; Karvande, A.; Mishra, P.R.; Trivedi, P.K.; Sun, L.; Bhadada, S.K.; Zaidi, M.; Trivedi, R. MicroRNA 874-3p exerts skeletal anabolic effects epigenetically during weaning by suppressing hdac1 expression. J. Biol. Chem., 2016, 291, 3959-3966.
[16]
Moisa, S.J.; Shike, D.W.; Shoup, L.; Loor, J.J. Maternal plane of nutrition during late-gestation and weaning age alter steer calf longissimus muscle adipogenic microrna and target gene expression. Lipids, 2016, 51, 123-138.
[17]
Plagemann, A.; Waas, T.; Harder, T.; Rittel, F.; Ziska, T.; Rohde, W. Hypothalamic neuropeptide Y levels in weaning offspring of low-protein malnourished mother rats. Neuropeptides, 2000, 34, 1-6.
[18]
Nomura, S.; Kami, K.; Kawano, F.; Oke, Y.; Nakai, N.; Ohira, T.; Fujita, R.; Terada, M.; Imaizumi, K.; Ohira, Y. Effects of hindlimb unloading on neurogenesis in the hippocampus of newly weaned rats. Neurosci. Lett., 2012, 509, 76-81.
[19]
Kapoor, R.; Ghosh, H.; Nordstrom, K.; Vennstrom, B.; Vaidya, V.A. Loss of thyroid hormone receptor beta is associated with increased progenitor proliferation and NeuroD positive cell number in the adult hippocampus. Neurosci. Lett., 2011, 487, 199-203.
[20]
Chengshu, W. The effect of taking fluoxetine during breastfeeding on offspring’s behavior and serotonin neurons loop function; , 2016. Kunming Medical University: Kunming, China.
[21]
Kepser, L.J.; Homberg, J.R. The neurodevelopmental effects of serotonin: A behavioural perspective. Behav. Brain Res., 2015, 277, 3-13.
[22]
Yu, Z. The influence of prenatal stress on offspring behaviors and brain myelin development mice; , 2016. Chongqing Medical University: Chongqing, China.
[23]
Nose-Ishibashi, K.; Watahiki, J.; Yamada, K.; Maekawa, M.; Watanabe, A.; Yamamoto, G.; Enomoto, A.; Matsuba, Y.; Nampo, T.; Taguchi, T.; Ichikawa, Y.; Saido, T.C.; Mishima, K.; Yamaguchi, Y.; Yoshikawa, T.; Maki, K. Soft-diet feeding after weaning affects behavior in mice: Potential increase in vulnerability to mental disorders. Neuroscience, 2014, 263, 257-268.
[24]
Meister, A. Advances in Enzymology and Related Areas of Molecular Biology. John Wiley & Sons 2006, 53, 201-237.
[25]
Walker, W.A.; Iyengar, R.S. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr. Res., 2015, 77, 220-228.
[26]
Changzhi, P. The effect of glutamate on weaned piglet nutrition and intestinal nervous system; , 2012. Nanchang University: Nanchang, China
[27]
Ma, N.; Tian, Y.A.; Wu, Y.; Ma, X. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr. Protein Pept. Sci., 2017, 18, 795-808.
[28]
Fan, P.; Tan, Y.; Jin, K.; Lin, C.; Xia, S.; Han, B.; Zhang, F.; Wu, L.; Ma, X. Supplemental lipoic acid relieves post-weaning diarrhoea by decreasing intestinal permeability in rats. J. Anim. Physiol. Anim. Nutr. , 2017, 101, 136-146.
[29]
Xia, T.; Lai, W.; Han, M.; Han, M.; Ma, X.; Zhang, L. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget, 2017, 8, 64878-64891.
[30]
Shuang, W. Preliminary study on neuronal circuit mechanism of attention deficit&; hyperactivity disoeder induced by chronic lead exposure; , 2016. HeFei University of Technology: HeFei, China
[31]
Xingdong, Y. Study on the impact and mechanism of developmental hippocampal neuronal development induced by food-derived Pb exposure; , 2017. Hefei University of Technology: Hefei, China.
[32]
Lim, A.P.; Aris, A.Z. A review on economically adsorbents on heavy metals removal in water and wastewater. Rev. Environ. Sci. Biotechnol., 2014, 13, 163-181.
[33]
Tanaka, T.; Hasegawa-Baba, Y.; Watanabe, Y.; Mizukami, S.; Kangawa, Y.; Yoshida, T.; Shibutani, M. Maternal exposure to ochratoxin A targets intermediate progenitor cells of hippocampal neurogenesis in rat offspring via cholinergic signal downregulation and oxidative stress responses. Reprod. Toxicol., 2016, 65, 113-122.
[34]
Watanabe, Y.; Nakajima, K.; Mizukami, S.; Akahori, Y.; Imatanaka, N.; Woo, G.H.; Yoshida, T.; Shibutani, M. Differential effects between developmental and postpubertal exposure to N-methyl-N-nitrosourea on progenitor cell proliferation of rat hippocampal neurogenesis in relation to COX2 expression in granule cells. Toxicology, 2017, 389, 55-66.
[35]
Abe, H.; Tanaka, T.; Kimura, M.; Mizukami, S.; Saito, F.; Imatanaka, N.; Akahori, Y.; Yoshida, T.; Shibutani, M. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study. Toxicol. Appl. Pharmacol., 2015, 287, 210-221.
[36]
Wang, C.Y.; Cheng, C.W.; Wang, W.H.; Chen, P.S.; Tzeng, S.F. Postnatal stress induced by injection with valproate leads to developing emotional disorders along with molecular and cellular changes in the hippocampus and amygdala. Mol. Neurobiol., 2016, 53, 6774-6785.
[37]
Montalvo-Ortiz, J.L.; Bordner, K.A.; Carlyle, B.C.; Gelernter, J.; Simen, A.A.; Kaufman, J. The role of genes involved in stress, neural plasticity, and brain circuitry in depressive phenotypes: Convergent findings in a mouse model of neglect. Behav. Brain Res., 2016, 315, 71-74.
[38]
Kundakovic, M.; Gudsnuk, K.; Herbstman, J.B.; Tang, D.; Perera, F.P.; Champagne, F.A. DNA methylation of BDNF as a biomarker of early-life adversity. Proc. Natl. Acad. Sci. USA, 2015, 112, 6807-6813.
[39]
Kikusui, T.; Kiyokawa, Y.; Mori, Y. Deprivation of mother-pup interaction by early weaning alters myelin formation in male, but not female, ICR mice. Brain Res., 2007, 1133, 115-122.
[40]
Yang, N.V.; Pannia, E.; Chatterjee, D.; Kubant, R.; Ho, M.; Hammoud, R.; Pausova, Z.; Anderson, G.H. Gestational folic acid content alters the development and function of hypothalamic food intake regulating neurons in Wistar rat offspring post-weaning. Nutr. Neurosci., 2018, 30, 1-12.
[41]
Abarinov, E.V.; Beaudin, A.E.; Field, M.S.; Perry, C.A.; Allen, R.H.; Stabler, S.P.; Stover, P.J. Disruption of shmt1 impairs hippocampal neurogenesis and mnemonic function in mice. J. Nutr., 2013, 143, 1028-1035.
[42]
Ogawa, M.; Nagai, T.; Saito, Y.; Miyaguchi, H.; Kumakura, K.; Abe, K.; Asakura, T. Short-term mastication after weaning upregulates GABAergic signalling and reduces dendritic spine in thalamus. Biochem. Biophys. Res. Commun., 2018, 498, 621-626.
[43]
Paxinos, G.; Watson, C.R.; Emson, P.C. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J. Neurosci. Methods, 1980, 3, 129-149.