Benzimidazole-derived Compounds Designed for Different Targets of Alzheimer’s Disease

Page: [3260 - 3278] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Benzimidazole scaffold has been efficiently used for the design of various pharmacologically active molecules. Indeed, there are various benzimidazole drugs, available today, employed for the treatment of different diseases. Although there is no benzimidazole moiety containing a drug used in clinic today for the treatment of Alzheimer’s Disease (AD), there have been many benzimidazole derivative compounds designed and synthesized to act on some of the validated and non-validated targets of AD. This paper aims to review the literature to describe these benzimidazole containing molecules designed to target some of the biochemical cascades shown to be involved in the development of AD.

Keywords: Benzimidazoles, cholinesterase inhibition, H3 receptors, PPAR, BACE, gamma-secretase, glutaminyl cyclase.

[1]
Orhan, I.E.; Senol, F.S. Designing multi-targeted therapeutics for the treatment of Alzheimer’s disease. Curr. Top. Med. Chem., 2016, 16(17), 1889-1896.
[http://dx.doi.org/10.2174/1568026616666160204121832] [PMID: 26845553]
[2]
Santos, M.A.; Chand, K.; Chaves, S. Recent progress in repositioning Alzheimer’s disease drugs based on a multitarget strategy. Future Med. Chem., 2016, 8(17), 2113-2142.
[http://dx.doi.org/10.4155/fmc-2016-0103] [PMID: 27774814]
[3]
Kumar, A.; Singh, A. Ekavali, A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[4]
Lobo, A.; Launer, L.J.; Fratiglioni, L.; Andersen, K.; Di Carlo, A.; Breteler, M.M.; Copeland, J.R.; Dartigues, J.F.; Jagger, C.; Martinez-Lage, J.; Soininen, H.; Hofman, A. Prevalence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurology, 2000, 54(11)(Suppl. 5), S4-S9.
[PMID: 10854354]
[5]
Rice, D.P.; Fox, P.J.; Max, W.; Webber, P.A.; Lindeman, D.A.; Hauck, W.W.; Segura, E. The economic burden of Alzheimer’s disease care. Health Aff. (Millwood), 1993, 12(2), 164-176.
[http://dx.doi.org/10.1377/hlthaff.12.2.164] [PMID: 8375811]
[6]
Gulcan, H.O.; Orhan, I.E.; Sener, B. Chemical and molecular aspects on interactions of galanthamine and its derivatives with cholinesterases. Curr. Pharm. Biotechnol., 2015, 16(3), 252-258.
[http://dx.doi.org/10.2174/1389201015666141202105105] [PMID: 25483718]
[7]
Galimberti, D.; Scarpini, E. Old and new acetylcholinesterase inhibitors for Alzheimer’s disease. Expert Opin. Investig. Drugs, 2016, 25(10), 1181-1187.
[http://dx.doi.org/10.1080/13543784.2016.1216972] [PMID: 27459153]
[8]
Tarawneh, R.; Holtzman, D.M. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb. Perspect. Med., 2012, 2(5)006148
[http://dx.doi.org/10.1101/cshperspect.a006148] [PMID: 22553492]
[9]
Crews, L.; Masliah, E. Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum. Mol. Genetet, 2010. 15;19(R1), R12-20.
[http://dx.doi.org/10.1093/hmg/ddq160]
[10]
van der Cammen, T.J.; Tiemeier, H.; Engelhart, M.J.; Fekkes, D. Abnormal neurotransmitter metabolite levels in Alzheimer patients with a delirium. Int. J. Geriatr. Psychiatry, 2006, 21(9), 838-843.
[http://dx.doi.org/10.1002/gps.1569] [PMID: 16955437]
[11]
Francis, P.T. The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr., 2005, 10(11)(Suppl. 18), 6-9.
[http://dx.doi.org/10.1017/S1092852900014164] [PMID: 16273023]
[12]
Lublin, A.L.; Gandy, S. Amyloid-β oligomers: possible roles as key neurotoxins in Alzheimer’s Disease. Mt. Sinai J. Med., 2010, 77(1), 43-49.
[http://dx.doi.org/10.1002/msj.20160] [PMID: 20101723]
[13]
Rampa, A.; Gobbi, S.; Belluti, F.; Bisi, A. Emerging targets in neurodegeneration: New opportunities for Alzheimer’s disease treatment? Curr. Top. Med. Chem., 2013, 13(15), 1879-1904.
[http://dx.doi.org/10.2174/15680266113139990143] [PMID: 23931436]
[14]
Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M. Alzheimer’s disease: Clinical trials and drug development. Lancet Neurol., 2010, 9(7), 702-716.
[http://dx.doi.org/10.1016/S1474-4422(10)70119-8] [PMID: 20610346]
[15]
Wright, J.B. The chemistry of the benzimidazoles. Chem. Rev., 1951, 48(3), 397-541.
[http://dx.doi.org/10.1021/cr60151a002] [PMID: 24541208]
[16]
Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 2015, 97(97), 419-443.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.053] [PMID: 25479684]
[17]
Bansal, Y.; Silakari, O. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem., 2012, 20(21), 6208-6236.
[http://dx.doi.org/10.1016/j.bmc.2012.09.013] [PMID: 23031649]
[18]
Keri, R.S.; Hiremathad, A.; Budagumpi, S.; Nagaraja, B.M. Comprehensive review in current developments of benzimidazole-based medicinal chemistry. Chem. Biol. Drug Des., 2015, 86(1), 19-65.
[http://dx.doi.org/10.1111/cbdd.12462] [PMID: 25352112]
[19]
Ingle, R.G.; Magar, D.D. Heterocyclic chemistry of benzimidazoles and potential activities of derivatives. Int. J. Drug Res. Tech., 2011, 1(1), 26-32.
[20]
Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: an emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76(76), 494-505.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.030] [PMID: 24602792]
[21]
Casey, D.A.; Antimisiaris, D.; O’Brien, J. Drugs for Alzheimer’s disease: are they effective? P&T, 2010, 35(4), 208-211.
[PMID: 20498822]
[22]
Alpan, A.S.; Parlar, S.; Carlino, L.; Tarikogullari, A.H.; Alptüzün, V.; Güneş, H.S. Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors. Bioorg. Med. Chem., 2013, 21(17), 4928-4937.
[http://dx.doi.org/10.1016/j.bmc.2013.06.065] [PMID: 23891231]
[23]
Coban, G.; Carlino, L.; Tarikogullari, A.H.; Parlar, S.; Sarikaya, G.; Alptuzun, V.; Alpan, A.S.; Gunes, H.S.; Erciyas, E. 1H-benzimidazole derivatives as butyrylcholinesterase inhibitors: Synthesis and molecular modeling studies. Med. Chem. Res., 2016, 25(9), 2005-2014.
[http://dx.doi.org/10.1007/s00044-016-1648-1]
[24]
Aslam, S.; Zaib, S.; Ahmad, M.; Gardiner, J.M.; Ahmad, A.; Hameed, A.; Furtmann, N.; Gütschow, M.; Bajorath, J.; Iqbal, J. Novel structural hybrids of pyrazolobenzothiazines with benzimidazoles as cholinesterase inhibitors. Eur. J. Med. Chem., 2014, 78, 106-117.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.035] [PMID: 24681070]
[25]
Zhu, J.; Wu, C.F.; Li, X.; Wu, G.S.; Xie, S.; Hu, Q.N.; Deng, Z.; Zhu, M.X.; Luo, H.R.; Hong, X. Synthesis, biological evaluation and molecular modeling of substituted 2-aminobenzimidazoles as novel inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorg. Med. Chem., 2013, 21(14), 4218-4224.
[http://dx.doi.org/10.1016/j.bmc.2013.05.001] [PMID: 23719283]
[26]
Luo, H.; Hong, X.; Deng, Z.; Wu, G.; Ding, A.; Zhu, J.; Zou, X. Preparation of benzimidazole derivatives useful in the treatment of neuropsychiatric disease. Faming Zhuanli Shenqing 2013.CN 103121969.
[27]
Yoon, Y.K.; Ali, M.A.; Wei, A.C.; Choon, T.S.; Khaw, K.Y.; Murugaiyah, V.; Osman, H.; Masand, V.H. Synthesis, characterization, and molecular docking analysis of novel benzimidazole derivatives as cholinesterase inhibitors. Bioorg. Chem., 2013, 49, 33-39.
[http://dx.doi.org/10.1016/j.bioorg.2013.06.008] [PMID: 23886696]
[28]
Rozengart, E.V.; Basova, N.E. Ammonium compounds with localized and delocalized charge as reversible inhibitors of cholinesterases of different origin. J. Evol. Biochem. Physiol., 2001, 37(6), 604-610.
[http://dx.doi.org/10.1023/A:1014414126143]
[29]
Basova, N.E.; Kormilitsyn, B.N.; Perchenok, A.Iu.; Rosengart, E.V.; Saakov, V.S.; Suvorov, A.A. Inhibitory effect of benzimidazole derivatives on cholinesterases of animals in the presence of different substrates. Ukr. Biochem. J., 2014, 86(5), 47-55.
[http://dx.doi.org/10.15407/ubj86.05.047] [PMID: 25816587]
[30]
Cedillo-Rivera, R.; Muñoz, O. In-vitro susceptibility of Giardia lamblia to albendazole, mebendazole and other chemotherapeutic agents. J. Med. Microbiol., 1992, 37(3), 221-224.
[http://dx.doi.org/10.1099/00222615-37-3-221] [PMID: 1518040]
[31]
Tekwani, B.L. Secretory cholinesterase of Ancylostoma ceylanicum: Effect of tubulin binding agents and benzimidazole anthelmintics. Life Sci., 1992, 50(10), 747-752.
[http://dx.doi.org/10.1016/0024-3205(92)90478-8] [PMID: 1738300]
[32]
Lee, D.L. Why do some nematode parasites of the alimentary tract secrete acetylcholinesterase? Int. J. Parasitol., 1996, 26(5), 499-508.
[http://dx.doi.org/[https://doi.org/10.1016/0020-7519(96)00040-9] [PMID: 8818729]
[33]
Stringer, A.; Wright, M.A. The toxicity of benomyl and some related 2-substituted benzimidazoles to the earthworm Lumbricus terrestris. Pestic. Sci., 1976, 7(5), 459-464.
[http://dx.doi.org/10.1002/ps.2780070507]
[34]
Sharma, B.K.; Singh, K.; Saxena, K.K. The effect of levamisole and albendazole on some enzymes of Ascaridia galli and Heterakis gallinae. Vet. Parasitol., 1989, 30(3), 213-222.
[35]
Tiwari, S.S.; Pandley, M.P.; Pandley, V.K. Search for new anthelmintics – Part II. Synthesis of 1,2-disubstituted benzimidazole derivatives. Acta Cienc. Indica Chem., 1980, 6(2), 108-111.
[36]
Yoon, S.S.; Jo, S.A. Mechanisms of amyloid-β peptide clearance: Potential therapeutic targets for Alzheimer’s disease. Biomol. Ther. (Seoul), 2012, 20(3), 245-255.
[http://dx.doi.org/10.4062/biomolther.2012.20.3.245] [PMID: 24130920]
[37]
De Strooper, B.; Vassar, R.; Golde, T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol., 2010, 6(2), 99-107.
[http://dx.doi.org/10.1038/nrneurol.2009.218] [PMID: 20139999]
[38]
Ghosh, A.K.; Osswald, H.L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem. Soc. Rev., 2014, 43(19), 6765-6813.
[http://dx.doi.org/10.1039/C3CS60460H] [PMID: 24691405]
[39]
Panza, F.; Frisardi, V.; Imbimbo, B.P.; Capurso, C.; Logroscino, G.; Sancarlo, D.; Seripa, D.; Vendemiale, G.; Pilotto, A.; Solfrizzi, V. REVIEW: γ-Secretase inhibitors for the treatment of Alzheimer’s disease: The current state. CNS Neurosci. Ther., 2010, 16(5), 272-284.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00164.x] [PMID: 20560993]
[40]
Roussel, C.; Andreoli, F.; Vanthuyne, N.D.P. Process to prepare new substituted 1H-benzo[d]imidazol-2(3H)-ones, new intermediates and their use as BACE 1 inhibitors. PCT Int. Appl, WO, 2010052670, A1. >2010
[41]
Takahashi, T.; Hijikuro, I.; Sugimoto, H.; Kihara, T.; Shimmoyo, Y.; Niidome, T. Preparation of novel curcumin derivatives as β-secretase inhibitors. PCT Int Appl, WO, 2008066151, A1. 2008
[42]
Mjalli, A.M.; Jones, D.; Gohimmukkula, D.R.; Huang, G.; Zhu, J.; Rao, M.; Andrews, R.C.; Ren, T. Benzazole derivatives and their preparation, compositions, and methods of use as β-secretase inhibitors. PCT Int Appl. WO, 2006099379 A2 2006
[43]
Bischoff, F.; Berthelot, D.; De Cleyn, M.; Macdonald, G.; Minne, G.; Oehlrich, D.; Pieters, S.; Surkyn, M.; Trabanco, A.A.; Tresadern, G.; Van Brandt, S.; Velter, I.; Zaja, M.; Borghys, H.; Masungi, C.; Mercken, M.; Gijsen, H.J. Design and synthesis of a novel series of bicyclic heterocycles as potent γ-secretase modulators. J. Med. Chem., 2012, 55(21), 9089-9106.
[http://dx.doi.org/10.1021/jm201710f] [PMID: 22650177]
[44]
Gijsen, H.J.M.; Bischoff, F.P. Substituted benzoxazole, benzimidazole, oxazolopyridine and imidazopyridine derivatives as γ-secretase modulators and their preparation and use for the treatment of diseases. PCT Int. Appl, 2010. WO 2010094647 A1.
[45]
Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2011, 1(1)a006189
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[46]
Saji, H.; Ono, M.; Ihara, M.; Seki, I. Preparation of radioactive iodine labeled pyrido[1,2-a] benzimidazole derivative compounds. PCT Int. Appl, 2016. WO 2016140118 A1.
[47]
Matsumura, K.; Ono, M.; Kitada, A.; Watanabe, H.; Yoshimura, M.; Iikuni, S.; Kimura, H.; Okamoto, Y.; Ihara, M.; Saji, H. Structure activity relationship study of heterocyclic phenylethenyl and pyridinylethenyl derivatives as tau-imaging agents that selectively detect neurofibrillary tangles in Alzheimer’s Disease brains. J. Med. Chem., 2015, 58(18), 7241-7257.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00440] [PMID: 26327138]
[48]
Matsumura, K.; Ono, M.; Yoshimura, M.; Kimura, H.; Watanabe, H.; Okamoto, Y.; Ihara, M.; Takahashi, R.; Saji, H. Synthesis and biological evaluation of novel styryl benzimidazole derivatives as probes for imaging of neurofibrillary tangles in Alzheimer’s disease. Bioorg. Med. Chem., 2013, 21(11), 3356-3362.
[http://dx.doi.org/10.1016/j.bmc.2013.02.054] [PMID: 23601814]
[49]
Rojo, L.E.; Alzate-Morales, J.; Saavedra, I.N.; Davies, P.; Maccioni, R.B. Selective interaction of lansoprazole and astemizole with tau polymers: potential new clinical use in diagnosis of Alzheimer’s disease. J. Alzheimers Dis., 2010, 19(2), 573-589.
[http://dx.doi.org/10.3233/JAD-2010-1262] [PMID: 20110603]
[50]
Maccioni, B.R.; Rojo, L.; Kuljis, A.R. Benzimidazole-derived compounds used as markers in the case of neurodegenerative diseases., 2010.WO2010013127A1.
[51]
Pickhardt, M.; Larbig, G.; Khlistunova, I.; Coksezen, A.; Meyer, B. Mandelkow, Eva-Maria; Schmidt, B.; Mandelkow, E. Phenylthiazolyl-hydrazide and its derivatives are potent inhibitors of T aggregation and toxicity in vitro and in cells. Biochemistry, 2007, 46(35), 10016-10023.
[http://dx.doi.org/10.1021/bi700878g] [PMID: 17685560]
[52]
Okamura, N.; Suemoto, T.; Furumoto, S.; Suzuki, M.; Shimadzu, H.; Akatsu, H.; Yamamoto, T.; Fujiwara, H.; Nemoto, M.; Maruyama, M.; Arai, H.; Yanai, K.; Sawada, T.; Kudo, Y. Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer’s disease. J. Neurosci., 2005, 25(47), 10857-10862.
[http://dx.doi.org/10.1523/JNEUROSCI.1738-05.2005] [PMID: 16306398]
[53]
Ando, R.; Aritomo, K.; Shoda, A.; Watanabe, K.; Uehara, F.; Saito, K. Preparation of N-phenyl-1H-benzimidazole-1- carboxamides for treating a disease caused by tau protein kinase 1 hyperactivity. PCT Int. Appl,, 2001. WO 2001042224 A1.
[54]
Harada, R.; Okamura, N.; Furumoto, S.; Yoshikawa, T.; Arai, H.; Yanai, K.; Kudo, Y. Use of a benzimidazole derivative BF-188 in fluorescence multispectral imaging for selective visualization of tau protein fibrils in the Alzheimer’s disease brain. Mol. Imaging Biol., 2014, 16(1), 19-27.
[http://dx.doi.org/10.1007/s11307-013-0667-2] [PMID: 23868612 ]
[55]
Vohora, D.; Bhowmik, M. Histamine H3 receptor antagonists/inverse agonists on cognitive and motor processes: Relevance to Alzheimer’s disease, ADHD, schizophrenia, and drug abuse. Front. Syst. Neurosci., 2012, 6(6), 72.
[http://dx.doi.org/10.3389/fnsys.2012.00072] [PMID: 23109919]
[56]
Esbenshade, T.A.; Browman, K.E.; Bitner, R.S.; Strakhova, M.; Cowart, M.D.; Brioni, J.D. The histamine H3 receptor: An attractive target for the treatment of cognitive disorders. Br. J. Pharmacol., 2008, 154(6), 1166-1181.
[http://dx.doi.org/10.1038/bjp.2008.147] [PMID: 18469850]
[57]
Kubo, M.; Kishi, T.; Matsunaga, S.; Iwata, N. Histamine H3 receptor antagonists for Alzheimer’s disease: A systematic review and meta-analysis of randomized placebo-controlled trials. J. Alzheimers Dis., 2015, 48(3), 667-671.
[http://dx.doi.org/10.3233/JAD-150393] [PMID: 26402104]
[58]
Brioni, J.D.; Esbenshade, T.A.; Garrison, T.R.; Bitner, S.R.; Cowart, M.D. Discovery of histamine H3 antagonists for the treatment of cognitive disorders and Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2011, 336(1), 38-46.
[http://dx.doi.org/10.1124/jpet.110.166876] [PMID: 20864505]
[59]
Rivara, M.; Zuliani, V.; Cocconcelli, G.; Morini, G.; Comini, M.; Rivara, S.; Mor, M.; Bordi, F.; Barocelli, E.; Ballabeni, V.; Bertoni, S.; Plazzi, P.V. Synthesis and biological evaluation of new non-imidazole H3-receptor antagonists of the 2-aminobenzimidazole series. Bioorg. Med. Chem., 2006, 14(5), 1413-1424.
[http://dx.doi.org/10.1016/j.bmc.2005.09.063] [PMID: 16263297]
[60]
Czechtizky, W.; Gao, Z.; Hurst, W.J.; Schwink, L.; Stengelin, S. Preparation of substituted N-phenylpyrrolidinylmethylpyrrolidine amides as H3 receptors modulators. PCT Int. Appl, 2009.WO 2009052063 A1.
[61]
Wager, T.T.; Mente, S.R.; Butler, T.W. Preparation of benzimidazole antagonists of the H-3 receptor. PCT Int. Appl, 2007. WO 2007069053 A1.
[62]
Aslanian, R.; Zhu, X.; Vaccaro, H.A.; Shih, N.Y.; Piwinski, J.J.; Williams, S.M.; West, R.E. Jr Benzimidazole-substituted (3-phenoxypropyl)amines as histamine H3 receptor ligands. Bioorg. Med. Chem. Lett., 2008, 18(18), 5032-5036.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.008] [PMID: 18752952]
[63]
Aslanian, R.G.; Tom, W.C.; Zhu, X. Preparation of imidazole and benzimidazole derivatives as histamine H3 antagonists., 2006. WO 2006078775 A1.
[64]
Gross, J.L.; Robichaud, A.J.; Mazzacani, A.; Williams, M.J. Preparation of aminoalkylazole derivatives as histamine-3 antagonists., 2009.WO 2009012252 A1.
[65]
Nakamura, T.; Masuda, S.; Fujino, A. Preparation of nitrogen-containing heterocyclic derivatives as histamine H3 receptor antagonists., 2010.JP 2010090067 A.
[66]
Auberson, Y.P.; Troxler, T.; Zhang, X.; Yang, C.R.; Feuerbach, D.; Liu, Y.C.; Lagu, B.; Perrone, M.; Lei, L.; Shen, X.; Zhang, D.; Wang, C.; Wang, T.L.; Briner, K.; Bock, M.G. From ergolines to indoles: improved inhibitors of the human H3 receptor for the treatment of narcolepsy. ChemMedChem, 2015, 10(2), 266-275.
[http://dx.doi.org/10.1002/cmdc.201402418] [PMID: 25394333]
[67]
Cole, D.C.; Gross, J.L.; Comery, T.A.; Aschmies, S.; Hirst, W.D.; Kelley, C.; Kim, J.I.; Kubek, K.; Ning, X.; Platt, B.J.; Robichaud, A.J.; Solvibile, W.R.; Stock, J.R.; Tawa, G.; Williams, M.J.; Ellingboe, J.W. Benzimidazole- and indole-substituted 1,3′-bipyrrolidine benzamides as histamine H3 receptor antagonists. Bioorg. Med. Chem. Lett., 2010, 20(3), 1237-1240.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.122] [PMID: 20042333]
[68]
Tang, L.; Zhao, L.; Hong, L.; Yang, F.; Sheng, R.; Chen, J.; Shi, Y.; Zhou, N.; Hu, Y. Design and synthesis of novel 3-substituted-indole derivatives as selective H3 receptor antagonists and potent free radical scavengers. Bioorg. Med. Chem., 2013, 21(19), 5936-5944.
[http://dx.doi.org/10.1016/j.bmc.2013.07.051] [PMID: 23978359]
[69]
Solas, M.; Puerta, E.; Ramirez, M.J. Treatment options in Alzheimer’s disease: The GABA story. Curr. Pharm. Des., 2015, 21(34), 4960-4971.
[http://dx.doi.org/10.2174/1381612821666150914121149] [PMID: 26365140]
[70]
Carlsen, J. New perspectives on the functional anatomical organization of the basolateral amygdala. Acta Neurol. Scand. Suppl., 1989, 122, 1-27.
[http://dx.doi.org/10.1111/j.1600-0404.1989.tb08018.x] [PMID: 2763796]
[71]
Seidl, R.; Cairns, N.; Singewald, N.; Kaehler, S.T.; Lubec, G. Differences between GABA levels in Alzheimer’s disease and Down syndrome with Alzheimer-like neuropathology. Naunyn Schmiedebergs Arch. Pharmacol., 2001, 363(2), 139-145.
[http://dx.doi.org/10.1007/s002100000346] [PMID: 11218066]
[72]
Rissman, R.A.; Mobley, W.C. Implications for treatment: GABAA receptors in aging, Down syndrome and Alzheimer’s disease. J. Neurochem., 2011, 117(4), 613-622.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07237.x] [PMID: 21388375]
[73]
Larsen, J.S.; Teuber, L.; Ahring, P.K.; Nielsen, E.O.; Mirza, N. Benzimidazole derivatives and their use for modulating the GABAA receptor complex useful in the treatment of anxiety and related diseases and their preparation., 2007.WO 2007110374 A1.
[74]
Teuber, L.; Larsen, J.S.; Ahring, P.K.; Nielsen, E.O.; Mirza, N. Preparation of benzimidazole derivatives and their use for modulating the GABAA receptor complex., 2006.WO 2006108800 A1.
[75]
Teuber, L.; Larsen, J.S. Preparation of arylbenzimidazole derivatives and their use for modulating the GABA-a receptor complex to combat anxiety and related diseases. PCT Int. Appl, 2004. WO 2004087690 A2..
[76]
Teuber, L.; Larsen, J.S. A preparation of benzimidazole derivatives and their use for modulating GABAA receptor complex., 2004.WO2004087137 A1..
[77]
Teuber, L.; Watjen, F.; Fukuda, Y.; Ichimaru, Y. Preparation of benzimidazole compounds as GABAA receptor complex modulators., 1999. WO 9919323 A1.
[78]
Larsen, J.S.; Teuber, L. Preparation of benzimidazole modulators of GABAA receptor complex., 2004.WO 2004089912 A1.
[79]
Teuber, L.; Larsen, J.S.; Ahring, P.K.; Nielsen, E.O.; Mirza, N. Preparation of benzimidazole derivatives and their use for modulating the GABAA receptor complex., 2006. WO 2006111517 A1..
[80]
Teuber, L.; Larsen, J.S.; Ahring, P.K.; Nielsen, E.O.; Mirza, N. Preparation of benzimidazole derivatives and their use for modulating the GABAA receptor complex., 2006.WO 2006111516 A1.
[81]
Hamilton, N.M.; Napier, S.E.; Easson, M.A.M.; Cooke, A.J.; Teuber, L.; Mirza, N.; Waetjen, F. A preparation of 1,5,7-trisubstituted benzimidazole derivatives, useful as modulator of GABAA receptor. PCT Int. Appl, 2005.WO 2005040131 A1..
[82]
Desimone, R.W.; Hutchison, A.; Shaw, K.; Rosewater, D.L. Preparation of aryl and heteroaryl fused aminoalkyl-imidazole derivatives as selective modulators of GABAA receptors., 2000.WO 2000059905 A1.
[83]
Morawski, M.; Schilling, S.; Kreuzberger, M.; Waniek, A.; Jäger, C.; Koch, B.; Cynis, H.; Kehlen, A.; Arendt, T.; Hartlage-Rübsamen, M.; Demuth, H.U.; Roßner, S. Glutaminyl cyclase in human cortex: correlation with (pGlu)-amyloid-β load and cognitive decline in Alzheimer’s disease. J. Alzheimers Dis., 2014, 39(2), 385-400.
[http://dx.doi.org/10.3233/JAD-131535] [PMID: 24164736]
[84]
Hartlage-Rübsamen, M.; Morawski, M.; Waniek, A.; Jäger, C.; Zeitschel, U.; Koch, B.; Cynis, H.; Schilling, S.; Schliebs, R.; Demuth, H.U.; Rossner, S. Glutaminyl cyclase contributes to the formation of focal and diffuse pyroglutamate (pGlu)-Aβ deposits in hippocampus via distinct cellular mechanisms. Acta Neuropathol., 2011, 121(6), 705-719.
[http://dx.doi.org/10.1007/s00401-011-0806-2] [PMID: 21301857]
[85]
Perez-Garmendia, R.; Gevorkian, G. Pyroglutamate-modified amyloid beta peptides: Emerging targets for Alzheimer’s disease immunotherapy. Curr. Neuropharmacol., 2013, 11(5), 491-498.
[http://dx.doi.org/10.2174/1570159X11311050004] [PMID: 24403873]
[86]
Hennekens, C.H.; Bensadon, B.A.; Zivin, R.; Gaziano, J.M. Hypothesis: glutaminyl cyclase inhibitors decrease risks of Alzheimer’s disease and related dementias. Expert Rev. Neurother., 2015, 15(11), 1245-1248.
[http://dx.doi.org/10.1586/14737175.2015.1088784] [PMID: 26450764]
[87]
Ramsbeck, D.; Buchholz, M.; Koch, B.; Böhme, L.; Hoffmann, T.; Demuth, H.U.; Heiser, U. Structure-activity relationships of benzimidazole-based glutaminyl cyclase inhibitors featuring a heteroaryl scaffold. J. Med. Chem., 2013, 56(17), 6613-6625.
[http://dx.doi.org/10.1021/jm4001709] [PMID: 23886302]
[88]
Heiser, U.; Ramsbeck, D.; Hoffmann, T.; Boehme, L.; Demuth, H.U. Preparation of heterocyclic derivatives as glutaminyl cyclase inhibitors., 2011.WO 2011107530 A2..
[89]
Heiser, U.; Sommer, R.; Ramsbeck, D.; Meyer, A.; Hoffmann, T.; Boehme, L.; Demuth, H.U. Preparation of heterocyclic imidazole derivatives as therapeutic inhibitors of glutaminyl cyclase., 2011.WO 2011029920 A1..
[90]
Buchholz, M.; Niestroj, A.J.; Heiser, U.; Ramsbeck, D.; Schilling, S. Preparation of benzo[d]imidazolyl-1,3,4- oxadiazoles as glutaminyl cyclase inhibitors useful in prophylaxis and combination therapy of diseases. PCT Int. Appl, 2008.WO 2008065141 A1.
[91]
Heiser, U.; Ramsbeck, D. Preparation of benzimidazole derivatives as inhibitors of glutaminyl cyclase., 2012.WO 2012123563 A1..
[92]
Heiser, U.; Ramsbeck, D.; Hoffmann, T.; Boehme, L. Benzimidazole derivatives as inhibitors of glutaminyl cyclase, 2011.WO2011131748A3.
[93]
Buchholz, M.; Heiser, U.; Niestroj, A.J. Novel urea inhibitors of glutaminyl cyclase and their therapeutic uses. U.S. Pat. Appl. Publ, 2008.US 20080262063 A1.
[94]
Heiser, U.; Ramsbeck, D.; Demuth, H.U. Preparation of radiolabelled glutaminyl cyclase (qc) inhibitors for use as imaging agents. U.S. Pat. Appl. Publ, 2012. US 20120301398 A1..
[95]
Kummer, M.P.; Heneka, M.T. PPARs in Alzheimer’s Disease. PPAR Res., 2008.2008403896
[http://dx.doi.org/10.1155/2008/403896] [PMID: 18645613]
[96]
Mandard, S.; Patsouris, D. Nuclear control of the inflammatory response in mammals by peroxisome proliferator-activated receptors. PPAR Res., 2013.2013613864
[http://dx.doi.org/10.1155/2013/613864] [PMID: 23577023]
[97]
Gasparini, L.; Ongini, E.; Wenk, G. Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: old and new mechanisms of action. J. Neurochem., 2004, 91(3), 521-536.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02743.x] [PMID: 15485484]
[98]
Moore, A.H.; Bigbee, M.J.; Boynton, G.E.; Wakeham, C.M.; Rosenheim, H.M.; Staral, C.J.; Morrissey, J.L.; Hund, A.K. Non-Steroidal Anti-Inflammatory Drugs in Alzheimer’s Disease and Parkinson’s Disease: Reconsidering the Role of Neuroinflammation. Pharmaceuticals (Basel), 2010, 3(6), 1812-1841.
[http://dx.doi.org/10.3390/ph3061812] [PMID: 27713331]
[99]
Darwish, K.M.; Salama, I.; Mostafa, S.; Gomaa, M.S.; Helal, M.A. Design, synthesis, and biological evaluation of novel thiazolidinediones as PPARγ/FFAR1 dual agonists. Eur. J. Med. Chem., 2016, 109, 157-172.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.049] [PMID: 26774923]
[100]
Sime, M.; Allan, A.C.; Chapman, P.; Fieldhouse, C.; Giblin, G.M.P.; Healy, M.P.; Lambert, M.H.; Leesnitzer, L.M.; Lewis, A.; Merrihew, R.V.; Rutter, R.A.; Sasse, R.; Shearer, B.G.; Willson, T.M.; Xu, R.X.; Virley, D.J. Discovery of GSK1997132B a novel centrally penetrant benzimidazole PPARγ partial agonist. Bioorg. Med. Chem. Lett., 2011, 21(18), 5568-5572.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.088] [PMID: 21798739]
[101]
Ushiroda, K.; Maruta, K.; Takazawa, T.; Nagano, T.; Taiji, M.; Kohno, T.; Sato, Y.; Horai, S.; Yanagi, K.; Nagata, R. Synthesis and pharmacological evaluation of novel benzoylazole-based PPAR α/γ activators. Bioorg. Med. Chem. Lett., 2011, 21(7), 1978-1982.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.032] [PMID: 21377875]
[102]
Goebel, M.; Staels, B.; Unger, T.; Kintscher, U.; Gust, R. Characterization of new PPARgamma agonists: benzimidazole derivatives - the importance of position 2. ChemMedChem, 2009, 4(7), 1136-1142.
[http://dx.doi.org/10.1002/cmdc.200900067] [PMID: 19504532]
[103]
Ripka, A.S.; Saunders, J.O.; Kamenecka, T.M.; Griffin, P.R. Preparation of N-biphenylmethylbenzimidazole modulators of PPARG. PCT Int. Appl, 2013. WO 2013078240 A1.
[104]
Ripka, A.S.; Saunders, J.O.; Kamenecka, T.M. Griffin, P.R. -benzylbenzimidazole modulators of PPARγ. . PCT Int. Appl, 2013.WO 2013078233 A1.
[105]
Yanagisawa, A.; Uehara, K.; Matsubara, M.; Ueno, K.; Suzuki, M.; Kuboyama, T.; Yamamoto, K.; Tamura, T. Preparation of tricyclic compounds as PPARγ agonists., 2010. WO 2010016549 aff1.
[106]
Smith, M.A.; Rottkamp, C.A.; Nunomura, A.; Raina, A.K.; Perry, G. Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2000, 1502(1), 139-144.
[http://dx.doi.org/10.1016/S0925-4439(00)00040-5]
[107]
Dumont, M.; Beal, M.F. Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic. Biol. Med., 2011, 51(5), 1014-1026.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.11.026] [PMID: 21130159]
[108]
Carocho, M.; Ferreira, I.C. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 2013, 51, 15-25.
[http://dx.doi.org/10.1016/j.fct.2012.09.021] [PMID: 23017782]
[109]
Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov., 2004, 3(3), 205-214.
[http://dx.doi.org/10.1038/nrd1330] [PMID: 15031734]
[110]
Moure, A.; Cruz, J.M.; Franco, D.; Domínguez, J.M.; Sineiro, J.; Domínguez, H.; Parajó, J.C. Natural antioxidants from residual sources. Food Chem., 2001, 72(2), 145-171.
[http://dx.doi.org/10.1016/S0308-8146(00)00223-5]
[111]
Pokorný, J. Are natural antioxidants better–and safer–than synthetic antioxidants? Eur. J. Lipid Sci. Technol., 2007, 109(6), 629-642.
[http://dx.doi.org/10.1002/ejlt.200700064]
[112]
Kim, T.; Yang, H.Y.; Park, B.G.; Jung, S.Y.; Park, J.H.; Park, K.D.; Min, S.J.; Tae, J.; Yang, H.; Cho, S.; Cho, S.J.; Song, H.; Mook-Jung, I.; Lee, J.; Pae, A.N. Discovery of benzimidazole derivatives as modulators of mitochondrial function: A potential treatment for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 1172-1192.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.017] [PMID: 27855359]
[113]
Vangavaragu, J.R.; Valasani, K.R.; Gan, X.; Yan, S.S. Identification of human presequence protease (hPreP) agonists for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2014, 76, 506-516.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.046] [PMID: 24602793]
[114]
Alpan, A.S.; Sarıkaya, G.; Çoban, G.; Parlar, S.; Armagan, G.; Alptüzün, V. Mannich-benzimidazole derivatives as antioxidant and anticholinesterase inhibitors: Synthesis, biological evaluations, and molecular docking study. Arch. Pharm. (Weinheim), 2017, 350(7)e1600351
[http://dx.doi.org/10.1002/ardp.201600351] [PMID: 28379621]
[115]
Chaves, S.; Hiremathad, A.; Tomás, D.; Keri, R.S.; Piemontese, L.; Santos, M.A. Exploring the chelating capacity of 2-hydroxyphenyl-benzimidazole based hybrids with multi-target ability as anti-Alzheimer’s agents. New J. Chem., 2018, 42(20), 16503-16515.
[http://dx.doi.org/10.1039/C8NJ00117K]
[116]
Ozadali-Sari, K.; Tüylü Küçükkılınç, T.; Ayazgok, B.; Balkan, A.; Unsal-Tan, O. Novel multi-targeted agents for Alzheimer’s disease: Synthesis, biological evaluation, and molecular modeling of novel 2-[4-(4-substitutedpiperazin-1-yl)phenyl]benzimidazoles. Bioorg. Chem., 2017, 72, 208-214.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.018] [PMID: 28478328]
[117]
Sarıkaya, G.; Çoban, G.; Parlar, S.; Tarikogullari, A.H.; Armagan, G.; Erdoğan, M.A.; Alptüzün, V.; Alpan, A.S. Multifunctional cholinesterase inhibitors for Alzheimer’s disease: Synthesis, biological evaluations, and docking studies of o/p-propoxyphenylsubstituted-1H-benzimidazole derivatives. Arch. Pharm. (Weinheim), 2018, 351(8)1800076
[http://dx.doi.org/10.1002/ardp.201800076] [PMID: 29984517]