An Overview of Chitosan Nanofibers and their Applications in the Drug Delivery Process

Page: [272 - 294] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Chitosan is a polycationic natural polymer which is abundant in nature. Chitosan has gained much attention as natural polymer in the biomedical field. The up to date drug delivery as well as the nanotechnology in controlled release of drugs from chitosan nanofibers are focused in this review. Electrospinning is one of the most established and widely used techniques for preparing nanofibers. This method is versatile and efficient for the production of continuous nanofibers. The chitosan-based nanofibers are emerging materials in the arena of biomaterials. Recent studies revealed that various drugs such as antibiotics, chemotherapeutic agents, proteins and anti-inflammatory analgesic drugs were successfully loaded onto electrospun nanofibers. Chitosan nanofibers have several outstanding properties for different significant pharmaceutical applications such as wound dressing, tissue engineering, enzyme immobilization, and drug delivery systems. This review highlights different issues of chitosan nanofibers in drug delivery applications, starting from the preparation of chitosan nanofibers, followed by giving an idea about the biocompatibility and degradation of chitosan nanofibers, then describing how to load the drug into the nanofibers. Finally, the major applications of chitosan nanofibers in drug delivery systems.

Keywords: Biomedical applications, chitosan, controlled release systems, drug delivery, electrospinning, nanofibers.

Graphical Abstract

[1]
Nikalje, A.P. Nanotechnology and its applications in medicine. Med. Chem., 2015, 5(2), 81-89.
[2]
Keservani, R.K.; Sharma, A.K.; Kesharwani, R.K. Drug Delivery Approaches and Nanosystems, Volume 1: Novel Drug Carriers, Apple Academic Press; USA, CRC Press. 2017.
[3]
Vikas, K.; Arvind, S.; Ashish, S.; Gourav, J.; Vipasha, D. Recent advances in NDDS (Novel Drug Delivery System) for delivery of anti-hypertensive drugs. Int. J. Drug Dev. Res, 2011, 3(1), 252-259.
[4]
Wen, H-F.; Yang, C.; Yu, D-G.; Li, X-Y.; Zhang, D-F. Electrospun zein nanoribbons for treatment of lead-contained wastewater. Chem. Eng. J., 2016, 290, 263-272.
[5]
Yang, C.; Yu, D.G.; Pan, D.; Liu, X.K.; Wang, X.; Bligh, S.W.; Williams, G.R. Electrospun pH-sensitive core–shell polymer nanocomposites fabricated using a tri-axial process. Acta Biomater., 2016, 35, 77-86.
[6]
Yu, D-G.; Yang, C.; Jin, M.; Williams, G.R.; Zou, H.; Wang, X.; Bligh, S.W. Medicated Janus fibers fabricated using a Teflon-coated side-by-side spinneret. Colloids and Surf. B Biointerfaces, 2016, 138, 110-116.
[7]
Bafghi, R.A.; Biazar, E. Development of oriented nanofibrous silk guide for repair of nerve defects. Int. J. Polym. Mater. Polym. Biomater., 2016, 65(2), 91-95.
[8]
Sweidan, K.; Jaber, A-M.; Al-Jbour, N.; Obaidat, R.; Al-Remawi, M.; Badwan, A. Further investigation on the degree of deacetylation of chitosan determined by potentiometric titration. J. Excip. Food Chem., 2011, 2(1), 16-25.
[9]
Chandy, T.; Sharma, C.P. Chitosan-as a biomaterial. Biomater. Artif. Cells Artif. Organs, 1990, 18(1), 1-24.
[10]
Muzzarelli, R.A.A.; Muzzarelli, C. Chitosan chemistry: Relevance to the biomedical sciences. Polysaccharides I., 2005, 186, 151-209.
[11]
Paul, W.; Sharma, C. Chitosan, a drug carrier for the 21st century: A review. STP Pharma Sci, 2000, 10(1), 5-22.
[12]
Nagahama, H.; Kashiki, T.; Nwe, N.; Jayakumar, R.; Furuike, T.; Tamura, H. Preparation of biodegradable chitin/gelatin membranes with GlcNAc for tissue engineering applications. Carbohydr. Polym., 2008, 73(3), 456-463.
[13]
Nagahama, H.; Nwe, N.; Jayakumar, R.; Koiwa, S.; Furuike, T.; Tamura, H. Novel biodegradable chitin membranes for tissue engineering applications. Carbohydr. Polym., 2008, 73(2), 295-302.
[14]
Jayakumar, R.; Prabaharan, M.; Reis, R.L.; Mano, J.F. Graft copolymerized chitosan—present status and applications. Carbohydr. Polym., 2005, 62(2), 142-158.
[15]
Jayakumar, R.; Nwe, N.; Tokura, S.; Tamura, H. Sulfated chitin and chitosan as novel biomaterials. Int. J. Biol. Macromol., 2007, 40(3), 175-181.
[16]
Jayakumar, R.; Divya Rani, V.V.; Shalumon, K.T. SudheeshKumar, P.T.; Nair, S.V.; Furuike, T.; Tamura, H. Bioactive and osteoblast cell attachment studies of novel α-and β-chitin membranes for tissue-engineering applications. Int. J. Biol. Macromol., 2009, 45(3), 260-264.
[17]
Madhumathi, K.; Binulal, N.S.; Nagahama, H.; Tamura, H.; Shalumon, K.T.; Selvamurugan, N.; Nair, S.V.; Jayakumar, R. Preparation and characterization of novel β-chitin–hydroxyapatite composite membranes for tissue engineering applications. Int. J. Biol. Macromol., 2009, 44(1), 1-5.
[18]
Madhumathi, K.; Shalumon, K.T.; Rani, V.V.; Tamura, H.; Furuike, T.; Selvamurugan, N.; Nair, S.V.; Jayakumar, R. Wet chemical synthesis of chitosan hydrogel–hydroxyapatite composite membranes for tissue engineering applications. Int. J. Biol. Macromol., 2009, 45(1), 12-15.
[19]
Schiffman, J.D.; Schauer, C.L. Cross-linking chitosan nanofibers. Biomacromolecules, 2007, 8(2), 594-601.
[20]
Shalumon, K.T.; Binulal, N.S.; Selvamurugan, N.; Nair, S.V.; Menon, D.; Furuike, T.; Tamura, H.; Jayakumar, R. Electrospinning of carboxymethyl chitin/poly (vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr. Polym., 2009, 77(4), 863-869.
[21]
Jayakumar, R.; Reis, R.; Mano, J. Phosphorous containing chitosan beads for controlled oral drug delivery. J. Bioact. Compat. Polym., 2006, 21(4), 327-340.
[22]
Prabaharan, M.; Mano, J. Chitosan-based particles as controlled drug delivery systems. Drug Deliv., 2004, 12(1), 41-57.
[23]
Anitha, A.; Divya, R.V.V.; Krishna, R.; Sreeja, V.; Selvamurugan, N.; Nair, S.V.; Tamura, H.; Jayakumar, R. Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N, O-carboxymethyl chitosan nanoparticles. Carbohydr. Polym., 2009, 78(4), 672-677.
[24]
Madhumathi, K.; Sudheesh Kumar, P.T.; Kavya, K.C.; Furuike, T.; Tamura, H.; Nair, S.V.; Jayakumar, R. Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. Int. J. Biol. Macromol., 2009, 45(3), 289-292.
[25]
Maeda, Y.; Jayakumar, R.; Nagahama, H.; Furuike, T.; Tamura, H. Synthesis, characterization and bioactivity studies of novel β-chitin scaffolds for tissue-engineering applications. Int. J. Biol. Macromol., 2008, 42(5), 463-467.
[26]
Muramatsu, K.; Masuda, S.; Yoshihara, Y.; Fujisawa, A. In vitro degradation behavior of freeze-dried carboxymethyl-chitin sponges processed by vacuum-heating and gamma irradiation. Polym. Degrad. Stabil., 2003, 81(2), 327-332.
[27]
Portero, A.; Teijeiro-Osorio, D.; Alonso, M.J.; Remuñán-López, C. Development of chitosan sponges for buccal administration of insulin. Carbohydr. Polym., 2007, 68(4), 617-625.
[28]
Zhang, C.; Yuan, X.; Wu, L.; Han, Y.; Sheng, J. Study on morphology of electrospun poly (vinyl alcohol) mats. Eur. Polym. J., 2005, 41(3), 423-432.
[29]
Zhang, Y.; Lim, C.T.; Ramakrishna, S.; Huang, Z.M. Recent development of polymer nanofibers for biomedical and biotechnological applications. J. Mater. Sci. Mater. Med., 2005, 16(10), 933-946.
[30]
Fang, J.; Niu, H.; Lin, T.; Wang, X. Applications of electrospun nanofibers. Chin. Sci. Bull., 2008, 53(15), 2265.
[31]
Kumar, M.N.V.R. Handbook of particulate drug delivery, (2- Volume Set). American Scientific Publishers; ISBN. 2008.
[32]
Jain, K.K. Drug delivery systems., Springer Science & Business Media: USA. Vol. 437, 2008.
[33]
Lembhe, S.; Dev, A. Trasdermal drug delivery system: An overview. World J. Pharm. Pharm. Sci., 2016, 5, 584-610.
[34]
Banga, A.K. Transdermal and intradermal delivery of therapeutic agents: Application of physical technologies; CRC Press, 2011.
[35]
Ghori, M.U.; Mahdi, M.H.; Smith, A.M.; Conway, B.R. Nasal drug delivery systems: An overview. Am. J. Pharmacol. Sci., 2015, 3(5), 110-119.
[36]
Reddy, P.D.; Swarnalatha, D. Recent advances in novel drug delivery systems. Int. J. Pharm. Tech. Res., 2010, 2(3), 2025-2027.
[37]
Padalkar, A.N.; S.R., Shahi; Thube, M. Microparticles: An approach for betterment of drug delivery system. Int. J. Pharm. Res. Dev., 2011, 1, 99-115.
[38]
Vikas, K.; Arvind, S.; Ashish, S.; Gourav, J.; Vipasha, D. Recent advances in NDDS (Novel Drug Delivery System) for delivery of anti-hypertensive drugs. Int. J. Drug Dev. Res., 2011, 3(1), 252-259.
[39]
Aramwit, P.; Jaichawa, N.; Ratanavaraporn, J.; Srichana, T. A comparative study of type A and type B gelatin nanoparticles as the controlled release carriers for different model compounds. Mater. Express, 2015, 5(3), 241-248.
[40]
Pelipenko, J.; Kocbek, P.; Kristl, J. Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration. Int. J. Pharm., 2015, 484(1), 57-74.
[41]
Zulkifli, F.H. Improved cellular response of chemically crosslinked collagen incorporated hydroxyethyl cellulose/poly (vinyl) alcohol nanofibers scaffold. J. Biomater. Appl., 2015, 29(7), 1014-1027.
[42]
Gomes, S.R.; Rodrigues, G.; Martins, G.G.; Roberto, M.A.; Mafra, M.; Henriques, C.M.; Silva, J.C. In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study. Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 46, 348-358.
[43]
Alam, A.M.; Shubhra, Q.T. Surface modified thin film from silk and gelatin for sustained drug release to heal wound. J. Mater. Chem. B, 2015, 3(31), 6473-6479.
[44]
Swindle-Reilly, K.E.; Paranjape, C.S.; Miller, C.A. Electrospun poly (caprolactone)-elastin scaffolds for peripheral nerve regeneration. Prog. Biomater., 2014, 3(1), 20.
[45]
Rajangam, T.; An, S.S.A. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int. J. Nanomedicine, 2013, 8, 3641.
[46]
Brenner, E.K.; Schiffman, J.D.; Thompson, E.A.; Toth, L.J.; Schauer, C.L. Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions. Carbohydr. Polym., 2012, 87(1), 926-929.
[47]
Fischer, R.L.; McCoy, M.G.; Grant, S.A. Electrospinning collagen and hyaluronic acid nanofiber meshes. J. Mater. Sci. Mater. Med., 2012, 23(7), 1645-1654.
[48]
Arthanari, S.; Mani, G.; Jang, J.H.; Choi, J.O.; Cho, Y.H.; Lee, J.H.; Cha, S.E.; Oh, H.S.; Kwon, D.H.; Jang, H.T. Preparation and characterization of gatifloxacin-loaded alginate/poly (vinyl alcohol) electrospun nanofibers. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 847-852.
[49]
Boguń, M.; Krucińska, I.; Kommisarczyk, A.; Mikołajczyk, T.; Błażewicz, M.; Stodolak-Zych, E.; Menaszek, E.; Ścisłowska-Czarnecka, A. Fibrous polymeric composites based on alginate fibres and fibres made of poly-ε-caprolactone and dibutyryl chitin for use in regenerative medicine. Molecules, 2013, 18, 3118-3136.
[50]
Shalumon, K.; Anulekha, K.H.; Chennazhi, K.P.; Tamura, H.; Nair, S.V.; Jayakumar, R. Fabrication of chitosan/poly (caprolactone) nanofibrous scaffold for bone and skin tissue engineering. Int. J. Biol. Macromol., 1994, 48(4), 571-576.
[51]
Xu, F.; Weng, B.; Gilkerson, R.; Materon, L.A.; Lozano, K. Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohydr. Polym., 2015, 115, 16-24.
[52]
Vatankhah, E.; Prabhakaran, M.P.; Jin, G.; Mobarakeh, L.G.; Ramakrishna, S. Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J. Biomater. Appl., 2014, 48, 909-921.
[53]
Zulkifli, F.H.; Hussain, F.S.; Rasad, M.S.; Mohd Yusoff, M. Nanostructured materials from hydroxyethyl cellulose for skin tissue engineering. Carbohydr. Polym., 2014, 114, 238-245.
[54]
Lim, Y-M.; Gwon, H-J.; Jeun, J.P.; Nho, Y-C. Preparation of cellulose-based nanofibers using electrospinning, in Nanofibers, 2010. InTech. DOI: 10.5772/8153.
[55]
Lindblad, M.S.; Sjöberg, J.; Albertsson, A-C.; Hartman, J. Hydrogels from polysaccharides for biomedical applications. Materials, chemical, and energy from forest biomass., Argyropoulos, D.S. ed.; ACS Publications. 2007, Ch. 10, pp. 153-167.
[56]
Kong, L.; Ziegler, G.R. Fabrication of κ-Carrageenan Fibers by Wet Spinning: Spinning Parameters. Materials, 2011, 4(10), 1805-1817.
[57]
Shen, X. Preparation and transdermal diffusion evaluation of the prazosin hydrochloride-loaded electrospun poly (vinyl alcohol) fiber mats. J. Nanosci. Nanotechnol., 2014, 14(7), 5258-5265.
[58]
Aramwit, P.; Ratanavaraporn, J.; Siritientong, T. Improvement of physical and wound adhesion properties of silk sericin and polyvinyl alcohol dressing using glycerin. Adv. Skin Wound Care, 2015, 28(8), 358-367.
[59]
Jang, S.I.; Mok, J.Y.; Jeon, I.H.; Park, K.H.; Nguyen, T.T.; Park, J.S.; Hwang, H.M.; Song, M.S.; Lee, D.; Chai, K.Y. Effect of electrospun non-woven mats of dibutyryl chitin/poly (lactic acid) blends on wound healing in hairless mice. Molecules, 2012, 17(3), 2992-3007.
[60]
Ajalloueian, F.; Tavanai, H.; Hilborn, J.; Donzel-Gargand, O.; Leifer, K.; Wickham, A.; Arpanaei, A. Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications. BioMed Res. Int., 2014, 2014, 475280.
[61]
Quirós, J.; Borges, J.P.; Boltes, K.; Rodea-Palomares, I.; Rosal, R. Antimicrobial electrospun silver-, copper-and zinc-doped polyvinylpyrrolidone nanofibers. J. Hazard. Mater., 2015, 299, 298-305.
[62]
Unnithan, A.R.; Gnanasekaran, G.; Sathishkumar, Y.; Lee, Y.S.; Kim, C.S. Electrospun antibacterial polyurethane–cellulose acetate–zein composite mats for wound dressing. Carbohydr. Polym., 2014, 102, 884-892.
[63]
Malafaya, P.B.; Silva, G.A.; Reis, R.L. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev., 2007, 59(4), 207-233.
[64]
Kim, S-K. Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications., 2010, CRC Press.
[65]
Rinaudo, M. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int., 2008, 57(3), 397-430.
[66]
Mourya, V.; Inamdar, N.N. Chitosan-modifications and applications: Opportunities galore. React. Funct. Polym., 2008, 68(6), 1013-1051.
[67]
Kurita, K. Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar. Biotechnol. (NY), 2006, 8(3), 203-226.
[68]
Hirano, S. Chitin and chitosan as novel biotechnological materials. Polym. Int., 1999, 48(8), 732-734.
[69]
Yi, H.; Wu, L-Q.; Bentley, W.E. Ghodssi, R.; Rubloff, G.W.; Culver, J.N.; Payne, G.F. Biofabrication with chitosan. Biomacromolecules, 2005, 6(6), 2881-2894.
[70]
Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci., 2006, 31(7), 603-632.
[71]
Muzzarelli, R.A.A. Chitin; Pergamon Press: Oxford, 1977, pp. 83-252.
[72]
Roberts, G. Chitin Chemistry; MacMillan Press Ltd: London, 1992.
[73]
Campana-Filho, S.P.; de Britto, D.; Curti, E.; Abreu, F.R.; Cardoso, M.B.; Battisti, M.V. Yes; P.C.; Goy, R.C.; Signini, R.; Lavall, R.L. Extraction, structures and properties of alpha-AND beta-chitin. Química. Nova, 2007, 30(3), 644-650.
[74]
Peter, M. Chapter 15: Chitin & Chitosan from Animal Sources. Biopolymers, 2002, 6, 133.
[75]
Tharanathan, R.N.; Kittur, F.S. Chitin—the undisputed biomolecule of great potential. Crit. Rev. Food Sci. Nutr., 2003, 43(1), 61-87.
[76]
Kurita, K. Controlled functionalization of the polysaccharide chitin. Prog. Polym. Sci., 2001, 26(9), 1921-1971.
[77]
Silva, S.S.; Mano, J.F.; Reis, R.L. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem., 2017, 19(5), 1208-1220.
[78]
Kurita, K. Chemistry and application of chitin and chitosan. Polym. Degrad. Stabil., 1998, 59(1-3), 117-120.
[79]
Muzzarelli, R.A.; Jeuniaux, C.; Gooday, G.W., Eds.; Chitin in nature and technology; Springer: USA, 1986, Vol. 385, .
[80]
Jayakumar, R.; Prabaharan, M.; Nair, S.V.; Tokura, S.; Tamura, H.; Selvamurugan, N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog. Mater. Sci., 2010, 55(7), 675-709.
[81]
Geng, X.; Kwon, O-H.; Jang, J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005, 26(27), 5427-5432.
[82]
Neamnark, A.; Rujiravanit, R.; Supaphol, P. Electrospinning of hexanoyl chitosan. Carbohydr. Polym., 2006, 66(3), 298-305.
[83]
BeMiller, J.; Whistler, R.L. Exudate gums, in Industrial Gums (Third Edition); Elsevier, 1993, 309-339, USA.
[84]
Tripathi, S.; Mehrotra, G.; Dutta, P. Chitosan based antimicrobial films for food packaging applications. e-Polymers, 2008, 8(1), 1082-1088.
[85]
Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W.E. Chitosan-based delivery systems for protein therapeutics and antigens. Adv. Drug Deliv. Rev., 2010, 62(1), 59-82.
[86]
Venkatesan, J.; Kim, S-K. Chitosan composites for bone tissue engineering-an overview. Mar. Drugs, 2010, 8(8), 2252-2266.
[87]
Kumar, M.N.R. A review of chitin and chitosan applications. React. Funct. Polym., 2000, 46(1), 1-27.
[88]
Chu, X-H.; Shi, X.L.; Feng, Z.Q.; Gu, Z.Z.; Ding, Y.T. Chitosan nanofiber scaffold enhances hepatocyte adhesion and function. Biotechnol. Lett., 2009, 31(3), 347-352.
[89]
Wang, A.; Ao, Q.; Cao, W.; Yu, M.; He, Q.; Kong, L.; Zhang, L.; Gong, Y.; Zhang, X. Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering. J. Biomed. Mater. Res. A, 2006, 79(1), 36-46.
[90]
Notin, L.; Viton, C.; David, L.; Alcouffe, P.; Rochas, C.; Domard, A. Morphology and mechanical properties of chitosan fibers obtained by gel-spinning: Influence of the dry-jet-stretching step and ageing. Acta Biomater., 2006, 2(4), 387-402.
[91]
Ignatova, M.; Starbova, K.; Markova, N.; Manolova, N.; Rashkov, I. Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly (vinyl alcohol). Carbohydr. Res., 2006, 341(12), 2098-2107.
[92]
Babis, G.C.; Soucacos, P.N. Bone scaffolds: The role of mechanical stability and instrumentation. Injury, 2005, 36(4), S38-S44.
[93]
Semnani, D.; Naghashzargar, E.; Hadjianfar, M.; Manshadi, F.D.; Mohammadi, S.; Karbasi, S.; Effaty, F. Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering. Int. J. Polym. Mater. Polym. Biomater., 2017, 66(3), 149-157.
[94]
Zhang, Y.; Ni, M.; Zhang, M.; Ratner, B. Calcium phosphate—chitosan composite scaffolds for bone tissue engineering. Tissue Eng., 2003, 9(2), 337-345.
[95]
Ahmed, S.; Ikram, S. Chitosan & its derivatives: A review in recent innovations. Int. J. Pharm. Sci. Res., 2015, 6(1), 14.
[96]
Jayakumar, R.; Prabaharan, M.; Nair, S.V.; Tamura, H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol. Adv., 2010, 28(1), 142-150.
[97]
Rhazi, M.; Desbrières, J.; Tolaimate, A.; Rinaudo, M.; Vottero, P.; Alagui, A. Contribution to the study of the complexation of copper by chitosan and oligomers. Polymer, 2002, 43(4), 1267-1276.
[98]
Huang, Z-M.; Zhang, Y-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2003, 63(15), 2223-2253.
[99]
Haider, A.; Haider, S.; Kang, I-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem., 2018, 11(8), 1165-1188.
[100]
Son, Y.J.; Kim, W.J.; Yoo, H.S. Therapeutic applications of electrospun nanofibers for drug delivery systems. Arch. Pharmacal Res., 2014, 37(1), 69-78.
[101]
Torobin, L.; Findlow, R.C. Method and apparatus for producing high efficiency fibrous media incorporating discontinuous submicron diameter fibers, and web media formed thereby. 2001. Google Patents. US6315806B1.
[102]
Fabbricante, A.S.; Ward, G.F.; Fabbricante, T.J. Micro-denier nonwoven materials made using modular die units. 2000. Google Patents. US6114017A.
[103]
Nain, A.S.; Wong, J.C.; Amon, C.; Sitti, M. Drawing suspended polymer micro-/nanofibers using glass micropipettes. Appl. Phys. Lett., 2006, 89(18), 183105.
[104]
Jirsak, O. Method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. 2009. Google Patents, US7585437B2.
[105]
Venugopal, J.; Ramakrishna, S. Applications of polymer nanofibers in biomedicine and biotechnology. Appl. Biochem. Biotechnol., 2005, 125(3), 147-157.
[106]
Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv., 2010, 28(3), 325-347.
[107]
Rojas, O.J.; Montero, G.A.; Habibi, Y. Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. J. Appl. Polym. Sci., 2009, 113(2), 927-935.
[108]
Karakaş, H. Electrospinning of Nanofibers and There Applications; MDT Electro Spinning, 2015, pp. 1-11.
[109]
Wang, H-S.; Fu, G-D.; Li, X-S. Functional polymeric nanofibers from electrospinning. Recent Pat. Nanotechnol., 2009, 3(1), 21-31.
[110]
Deitzel, J.; Kleinmeyer, J.D.; Hirvonen, J.K.; Beck Tan, N.C. Controlled deposition of electrospun poly (ethylene oxide) fibers. Polymer, 2001, 42(19), 8163-8170.
[111]
Reneker, D.; Yarin, A.L.; Zussman, E.; Xu, H. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech., 2007, 41, 43-346.
[112]
Doshi, J.; Reneker, D.H. Electrospinning process and applications of electrospun fibers. J. Electrost., 1995, 35(2-3), 151-160.
[113]
Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release, 2014, 185, 12-21.
[114]
Demir, M.M.; Yilgor, I.; Yilgor, E.; Erman, B. Electrospinning of polyurethane fibers. Polymer, 2002, 43(11), 3303-3309.
[115]
Beachley, V.; Wen, X. Effect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci. Eng. C Mater. Biol. Appl., 2009, 29(3), 663-668.
[116]
Yördem, O.; Papila, M.; Menceloğlu, Y.Z. Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: An investigation by response surface methodology. Mater. Des., 2008, 29(1), 34-44.
[117]
Li, Z.; Wang, C. One-dimensional nanostructures: Electrospinning technique and unique nanofibers; Springer: Switzerland, 2013.
[118]
Ohkawa, K.; Minato, K.; Kumagai, G.; Hayashi, S.; Yamamoto, H. Chitosan nanofiber. Biomacromolecules, 2006, 7(11), 3291-3294.
[119]
Dosunmu, O.O.; Chase, G.G.; Kataphinan, W.; Reneker, D.H. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology, 2006, 17(4), 1123-1127.
[120]
Kim, G.; Cho, Y-S.; Kim, W.D. Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode. Eur. Polym. J., 2006, 42(9), 2031-2038.
[121]
Theron, S.; Yarin, A.L.; Zussman, E. Multiple jets in electrospinning: Experiment and modeling. Polymer, 2005, 46(9), 2889-2899.
[122]
Varabhas, J.; Chase, G.G.; Reneker, D. Electrospun nanofibers from a porous hollow tube. Polymer, 2008, 49(19), 4226-4229.
[123]
Lukas, D.; Sarkar, A.; Pokorny, P. Self-organization of jets in electrospinning from free liquid surface: A generalized approach. J. Appl. Phys., 2008, 103(8), 084309.
[124]
Chase, G.G.; Varabhas, J.S.; Reneker, D.H. New Methods to Electrospin Nanofibers. J. Eng. Fabr. Fiber (JEFF), 2011, 6(3), 1-7.
[125]
Forward, K.M.; Rutledge, G.C. Free surface electrospinning from a wire electrode. Chem. Eng. J., 2012, 183, 492-503.
[126]
Green, T.B.; King, S.L.; Li, L. Apparatus and method for reducing solvent loss for electro-spinning of fine fibers. 2010. Google Patents.
[127]
Jirsak, O.; Sysel, P.; Sanetrnik, F.; Hruza, J.; Chaloupek, J. Polyamic acid nanofibers produced by needleless electrospinning. J. Nanomater., 2010, 49, 1-6.
[128]
Kostakova, E.; Meszaros, L.; Gregr, J. Composite nanofibers produced by modified needleless electrospinning. Mater. Lett., 2009, 63(28), 2419-2422.
[129]
Miloh, T.; Spivak, B.; Yarin, A. Needleless electrospinning: Electrically driven instability and multiple jetting from the free surface of a spherical liquid layer. J. Appl. Phys., 2009, 106(11), 114910.
[130]
Varabhas, J. Electrospun jets launched from polymeric bubbles. J. Eng. Fibers Fabrics, 2009, 4(4), 44-50.
[131]
Yan, X.; Marini, J.; Mulligan, R.; Deleault, A.; Sharma, U.; Brenner, M.P.; Rutledge, G.C.; Freyman, T.; Pham, Q.P. Slit-surface electrospinning: A novel process developed for high-throughput fabrication of core-sheath fibers. PLoS One, 2015, 10(5), e0125407.
[132]
Kenry; Lim, C.T. Nanofiber technology: Current status and emerging developments. Prog. Polym. Sci., 2017, 70, 1-17.
[133]
Kenry; Lim, C.T. Beyond the current state of the syntheses and applications of nanofiber technology. Prog. Polym. Sci., 2017.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.03.002]
[134]
Hasegawa, T.; Mikuni, T. Higher‐order structural analysis of nylon‐66 nanofibers prepared by carbon dioxide laser supersonic drawing and exhibiting near‐equilibrium melting temperature. J. Appl. Polym. Sci., 2014, 131(12), 40361.
[135]
Hu, X.; Zhang, X.; Shen, X.; Li, H.; Takai, O.; Saito, N. Plasma-induced synthesis of CuO nanofibers and ZnO nanoflowers in water. Plasma Chem. Plasma Process., 2014, 34(5), 1129-1139.
[136]
Ren, L.; Pandit, V.; Elkin, J.; Denman, T.; Cooper, J.A.; Kotha, S.P. Large-scale and highly efficient synthesis of micro-and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. Nanoscale, 2013, 5(6), 2337-2345.
[137]
Ren, L.; Ozisik, R.; Kotha, S.P. Rapid and efficient fabrication of multilevel structured silica micro-/nanofibers by centrifugal jet spinning. J. Colloid Interface Sci., 2014, 425, 136-142.
[138]
Ren, L.; Ozisik, R.; Kotha, S.P.; Underhill, P.T. Highly efficient fabrication of polymer nanofiber assembly by centrifugal jet spinning: Process and characterization. Macromolecules, 2015, 48(8), 2593-2602.
[139]
Hong, X.; Harker, A.; Edirisinghe, M. Process modeling for the fiber diameter of polymer, spun by pressure-coupled infusion gyration. ACS Omega, 2018, 3(5), 5470-5479.
[140]
Heseltine, P.L.; Ahmed, J.; Edirisinghe, M. Developments in pressurized gyration for the mass production of polymeric fibers. Macromol. Mater. Eng., 2018, 303(9), 1800218.
[141]
Chansaengsri, K.; Onlaor, K.; Tunhoo, B.; Thiwawong, T. Production of polyvinylidene fluoride nanofibers by free surface electrospinning from wire electrode. Mater. Today: Proceed., 2017, 4(5), 6085-6090.
[142]
Abdal-Hay, A.; Barakat, N.A.; Lim, J.K. Novel technique for polymeric nanofibers preparation: Air jet spinning. Sci. Adv. Mater., 2012, 4(12), 1268-1275.
[143]
Wang, X.; Um, I.C.; Fang, D.; Okamoto, A.; Hsiao, B.S.; Chu, B. Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polymer, 2005, 46(13), 4853-4867.
[144]
Sen, A.; Bedding, J.; Gu, B. Process for forming polymeric micro and nanofibers; Google Patents, 2005.
[145]
Xing, X.; Wang, Y.; Li, B. Nanofiber drawing and nanodevice assembly in poly (trimethylene terephthalate). Optics express, 2008, 16(14), 10815-10822.
[146]
Tong, L.; Mazur, E. Glass nanofibers for micro-and nano-scale photonic devices. J. Non-Cryst. Solids, 2008, 354(12-13), 1240-1244.
[147]
Kunike, G. Chitin and chitosan. J. Soc. Dyers. Colorists, 1926, 42, 318-342.
[148]
Pterson, M.; Kennedy, J.F. Polymers: Biomaterials and medical applications; Kroschwitz, J.I., Ed.; John Wiley-Sons Inc.: New York, 1989, p. pp. xxvi+555.
[149]
Rutherford, F.T. Marine chitin properties and solvents. In Proceedings of the 1st Int. Conference on Chitin/Chitosan, 1978.
[150]
Mutlu, E.C.; Ficai, A.; Ficai, D.; Birinci Yildirim, A.; Yildirim, M.; Oktar, F.N.; Demir, A. Chitosan/poly (ethylene glycol)/hyaluronic acid biocompatible patches obtained by electrospraying. Biomed. Mater., 2018, 13(5), 055011.
[151]
Notin, L.; Viton, C.; Lucas, J.M.; Domard, A. Pseudo-dry-spinning of chitosan. Acta Biomater., 2006, 2(3), 297-311.
[152]
Lapitsky, Y.; Zahir, T.; Shoichet, M.S. Modular biodegradable biomaterials from surfactant and polyelectrolyte mixtures. Biomacromolecules, 2007, 9(1), 166-174.
[153]
Min, B-M.; Lee, S.W.; Lim, J.N.; You, Y.; Lee, T.S.; Kang, P.H.; Park, W.H. Chitin and chitosan nanofibers: Electrospinning of chitin and deacetylation of chitin nanofibers. Polymer, 2004, 45(21), 7137-7142.
[154]
Ohkawa, K.; Cha, D.; Kim, H.; Nishida, A.; Yamamoto, H. Electrospinning of chitosan. Macromol. Rapid Commun., 2004, 25(18), 1600-1605.
[155]
Hasegawa, M.; Isogai, A.; Onabe, F.; Usuda, M. Dissolving states of cellulose and chitosan in trifluoroacetic acid. J. Appl. Polym. Sci., 1992, 45(10), 1857-1863.
[156]
Sangsanoh, P.; Suwantong, O.; Neamnark, A.; Cheepsunthorn, P.; Pavasant, P.; Supaphol, P. In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells. Eur. Polym. J., 2010, 46(3), 428-440.
[157]
De Vrieze, S.; Westbroek, P.; Van Camp, T.; Van Langenhove, L. Electrospinning of chitosan nanofibrous structures: feasibility study. J. Mater. Sci., 2007, 42(19), 8029-8034.
[158]
Yalcinkaya, F. Preparation of various nanofiber layers using wire electrospinning system. Arab. J. Chem., 2016.
[http://dx.doi.org/10.1016/j.arabjc.2016.12.012]
[159]
Xu, Z.; Mahalingam, S.; Basnett, P.; Raimi‐Abraham, B.; Roy, I.; Craig, D.; Edirisinghe, M. Making nonwoven fibrous poly (ε‐caprolactone) constructs for antimicrobial and tissue engineering applications by pressurized melt gyration. Macromol. Mater. Eng., 2016, 301(8), 922-934.
[160]
Goh, Y-f.; Akram, M.; Alshemary, A.; Hussain, R. Antibacterial polylactic acid/chitosan nanofibers decorated with bioactive glass. Appl. Surf. Sci., 2016, 387, 1-7.
[161]
Van der Schueren, L.; Steyaert, I.; De Schoenmaker, B.; De Clerck, K. Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohydr. Polym., 2012, 88(4), 1221-1226.
[162]
Prasad, T.; Shabeena, E.A.; Vinod, D.; Kumary, T.V.; Anil Kumar, P.R. Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering. J. Mater. Sci. Mater. Med., 2015, 26(1), 28.
[163]
Sedghi, R.; Shaabani, A.; Mohammadi, Z.; Samadi, F.Y.; Isaei, E. Biocompatible electrospinning chitosan nanofibers: A novel delivery system with superior local cancer therapy. Carbohydr. Polym., 2017, 159, 1-10.
[164]
Li, L.; Hsieh, Y-L. Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydr. Res., 2006, 341(3), 374-381.
[165]
Zhou, Y.; Yang, D.; Nie, J. Electrospinning of chitosan/poly (vinyl alcohol)/acrylic acid aqueous solutions. J. Appl. Polym. Sci., 2006, 102(6), 5692-5697.
[166]
Klossner, R.R.; Queen, H.A.; Coughlin, A.J.; Krause, W.E. Correlation of chitosan’s rheological properties and its ability to electrospin. Biomacromolecules, 2008, 9(10), 2947-2953.
[167]
Yamane, S.; Iwasaki, N.; Kasahara, Y.; Harada, K.; Majima, T.; Monde, K.; Nishimura, S.; Minami, A. Effect of pore size on in vitro cartilage formation using chitosan‐based hyaluronic acid hybrid polymer fibers. J. Biomed. Mater. Res. A, 2007, 81(3), 586-593.
[168]
Han, W.; Liu, C.; Bai, R. A novel method to prepare high chitosan content blend hollow fiber membranes using a non-acidic dope solvent for highly enhanced adsorptive performance. J. Membr. Sci., 2007, 302(1), 150-159.
[169]
Bazhban, M.; Nouri, M.; Mokhtari, J. Electrospinning of cyclodextrin functionalized chitosan/PVA nanofibers as a drug delivery system. Chin. J. Polym. Sci., 2013, 31(10), 1343-1351.
[170]
Mendes, A.C.; Gorzelanny, C.; Halter, N.; Schneider, S.W.; Chronakis, I.S. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. Int. J. Pharm., 2016, 510(1), 48-56.
[171]
Armentano, I.; Dottoria, M.; Fortunatia, E.; Mattiolia, S.; Kenny, J.M. Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stabil., 2010, 95(11), 2126-2146.
[172]
Vert, M.; Doi, Y.; Hellwich, K-H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem., 2012, 84(2), 377-410.
[173]
Ho, M-H.; Liao, M.H.; Lin, Y.L.; Lai, C.H.; Lin, P.I.; Chen, R.M. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation. Int. J. Nanomedicine, 2014, 9, 4293-4304.
[174]
Espíndola-González, A.; Martínez-Hernández, A.L.; Fernández-Escobar, F.; Castaño, V.M.; Brostow, W.; Datashvili, T.; Velasco-Santos, C. Natural-synthetic hybrid polymers developed via electrospinning: The effect of PET in chitosan/starch system. Int. J. Mol. Sci., 2011, 12(3), 1908-1920.
[175]
Hardiansyah, A.; Tanadi, H.; Yang, M-C.; Liu, T-Y. Electrospinning and antibacterial activity of chitosan-blended poly (lactic acid) nanofibers. J. Polym. Res., 2015, 22(4), 59.
[176]
Zhang, S.; Prabhakaran, M.P.; Qin, X.; Ramakrishna, S. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation. J. Mech. Behav. Biomed. Mater., 2015, 51, 88-98.
[177]
Tsuji, H. Degradation of poly (lactide)--based biodegradable materials; Nova Science Publishers: USA, 2008.
[178]
Costa-Pinto, A.R.; Martins, A.M.; Castelhano-Carlos, M.J.; Correlo, V.M.; Sol, P.C.; Longatto-Filho, A.; Battacharya, M.; Reis, R.L.; Neves, N.M. In vitro degradation and in vivo biocompatibility of chitosan–poly (butylene succinate) fiber mesh scaffolds. J. Bioact. Compat. Polym., 2014, 29(2), 137-151.
[179]
Kumar, A.A.; Karthick, K.; Arumugam, K. Properties of biodegradable polymers and degradation for sustainable development. Int. J. Chem. Eng. Appl., 2011, 2(3), 164.
[180]
Hutmacher, D.; Goh, J.; Teoh, S. An introduction to biodegradable materials for tissue engineering applications. Ann. Acad. Med. Singapore, 2001, 30(2), 183-191.
[181]
Chen, J-K.; Shen, C-R.; Liu, C-L. N-acetylglucosamine: Production and applications. Mar. Drugs, 2010, 8(9), 2493-2516.
[182]
Liu, J.; Kerns, D.G. Suppl 1: Mechanisms of guided bone regeneration: A review. Open Dent. J., 2014, 8, 56.
[183]
Yu, C.-C.; Chang, J.-J.; Lee, Y.-H.; Lin, Y.-C.; Wu, M-.H.; Yang, M.-C.; Chien, C.-T. Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering. Mater. Lett., 2013, 93, 133-136.
[184]
Vaidya, P.; Grove, T.; Edgar, K.J.; Goldstein, A.S. Surface grafting of chitosan shell, polycaprolactone core fiber meshes to confer bioactivity. J. Bioact. Compat. Polym., 2015, 30(3), 258-274.
[185]
Sarhan, W.A.; Azzazy, H.M.; El-Sherbiny, I.M. The effect of increasing honey concentration on the properties of the honey/polyvinyl alcohol/chitosan nanofibers. Mater. Sci. Eng. C, 2016, 67, 276-284.
[186]
Koizumi, R.; Azuma, K.; Izawa, H.; Morimoto, M.; Ochi, K.; Tsuka, T.; Imagawa, T.; Osaki, T.; Ito, N.; Okamoto, Y.; Saimoto, H.; Ifuku, S. Oral administration of surface-deacetylated chitin nanofibers and chitosan inhibit 5-fluorouracil-induced intestinal mucositis in mice. Int. J. Mol. Sci., 2017, 18(2), 279.
[187]
Sims-Mourtada, J.; Niamat, R.A.; Samuel, S.; Eskridge, C.; Kmiec, E.B. Enrichment of breast cancer stem-like cells by growth on electrospun polycaprolactone-chitosan nanofiber scaffolds. Int. J. Nanomedicine, 2014, 9, 995.
[188]
Huang, X-J.; Ge, D.; Xu, Z-K. Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Eur. Polym. J., 2007, 43(9), 3710-3718.