[1]
Khorasanizadeh, S. The nucleosome: from genomic organization to genomic regulation. Cell, 2004, 116(2), 259-272. [http://dx.doi.org/10.1016/S0092-8674(04)00044-3]. [PMID: 14744436].
[2]
Egger, G.; Liang, G.; Aparicio, A.; Jones, P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature, 2004, 429(6990), 457-463. [http://dx.doi.org/10.1038/nature02625]. [PMID: 15164071].
[3]
Esteller, M. Epigenetics in cancer. N. Engl. J. Med., 2008, 358(11), 1148-1159. [http://dx.doi.org/10.1056/NEJMra072067]. [PMID: 18337604].
[4]
Tessarz, P.; Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol., 2014, 15(11), 703-708. [http://dx.doi.org/10.1038/nrm3890]. [PMID: 25315270].
[5]
Kumar, S.; Ahmad, M.K.; Waseem, M.; Pandey, A.K. Drug targets for cancer treatment: An overview. Med. Chem., 2015, 5, 115-123.
[6]
Bernstein, B.E.; Tong, J.K.; Schreiber, S.L. Genomewide studies of histone deacetylase function in yeast. Proc. Natl. Acad. Sci. USA, 2000, 97(25), 13708-13713. [http://dx.doi.org/10.1073/ pnas.250477697]. [PMID: 11095743].
[7]
de Ruijter, A.J.M.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370(Pt 3), 737-749. [http://dx.doi.org/10.1042/bj20021321]. [PMID: 12429021].
[8]
Glozak, M.A.; Sengupta, N.; Zhang, X.; Seto, E. Acetylation and deacetylation of non-histone proteins. Gene, 2005, 363, 15-23. [http://dx.doi.org/10.1016/j.gene.2005.09.010]. [PMID: 16289629].
[9]
Sangwan, R.; Rajan, R.; Mandal, P.K. HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors. Eur. J. Med. Chem., 2018, 158, 620-706. [http://dx.doi.org/ 10.1016/j.ejmech.2018.08.073]. [PMID: 30245394].
[10]
Gregoretti, I.V.; Lee, Y-M.; Goodson, H.V. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. J. Mol. Biol., 2004, 338(1), 17-31. [http://dx.doi.org/10.1016/j.jmb.2004.02.006]. [PMID: 15050820].
[11]
Haigis, M.C.; Guarente, L.P. Mammalian sirtuins-Emerging roles in physiology, aging, and calorie restriction. Genes Dev., 2006, 20(21), 2913-2921. [http://dx.doi.org/10.1101/gad.1467506]. [PMID: 17079682].
[12]
Weichert, W.; Röske, A.; Gekeler, V.; Beckers, T.; Ebert, M.P.; Pross, M.; Dietel, M.; Denkert, C.; Röcken, C. Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: A retrospective analysis. Lancet Oncol., 2008, 9(2), 139-148. [http://dx.doi.org/10.1016/S1470-2045(08)70004-4]. [PMID: 18207460].
[13]
Weichert, W.; Röske, A.; Gekeler, V.; Beckers, T.; Stephan, C.; Jung, K.; Fritzsche, F.R.; Niesporek, S.; Denkert, C.; Dietel, M.; Kristiansen, G. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br. J. Cancer, 2008, 98(3), 604-610. [http://dx.doi.org/10.1038/ sj.bjc.6604199]. [PMID: 18212746].
[14]
Sudo, T.; Mimori, K.; Nishida, N.; Kogo, R.; Iwaya, T.; Tanaka, F.; Shibata, K.; Fujita, H.; Shirouzu, K.; Mori, M. Histone deacetylase 1 expression in gastric cancer. Oncol. Rep., 2011, 26(4), 777-782. [PMID: 21725604].
[15]
Oehme, I.; Deubzer, H.E.; Wegener, D.; Pickert, D.; Linke, J.P.; Hero, B.; Kopp-Schneider, A.; Westermann, F.; Ulrich, S.M.; von Deimling, A.; Fischer, M.; Witt, O. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin. Cancer Res., 2009, 15(1), 91-99. [http://dx.doi.org/10.1158/1078-0432.CCR-08-0684]. [PMID: 19118036].
[16]
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest., 2014, 124(1), 30-39. [http://dx.doi.org/10.1172/JCI69738]. [PMID: 24382387].
[17]
Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov., 2014, 13(9), 673-691. [http://dx.doi.org/ 10.1038/nrd4360]. [PMID: 25131830].
[18]
Li, Y.; Seto, E. HDACs and HDAC Inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831. [http://dx.doi.org/10.1101/cshperspect.a026831]. [PMID: 27599530].
[19]
Duvic, M.; Talpur, R.; Ni, X.; Zhang, C.; Hazarika, P.; Kelly, C.; Chiao, J.H.; Reilly, J.F.; Ricker, J.L.; Richon, V.M.; Frankel, S.R. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood, 2007, 109(1), 31-39. [http://dx.doi.org/10.1182/blood-2006-06-025999]. [PMID: 16960145].
[20]
Piekarz, R.L.; Frye, R.; Turner, M.; Wright, J.J.; Allen, S.L.; Kirschbaum, M.H.; Zain, J.; Prince, H.M.; Leonard, J.P.; Geskin, L.J.; Reeder, C.; Joske, D.; Figg, W.D.; Gardner, E.R.; Steinberg, S.M.; Jaffe, E.S.; Stetler-Stevenson, M.; Lade, S.; Fojo, A.T.; Bates, S.E. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol., 2009, 27(32), 5410-5417. [http://dx.doi.org/10.1200/JCO.2008.21.6150]. [PMID: 19826128].
[21]
Molife, L.R.; de Bono, J.S. Belinostat: Clinical applications in solid tumors and lymphoma. Expert Opin. Investig. Drugs, 2011, 20(12), 1723-1732. [http://dx.doi.org/10.1517/13543784.2011.629604]. [PMID: 22046971].
[22]
Libby, E.N.; Becker, P.S.; Burwick, N.; Green, D.J.; Holmberg, L.; Bensinger, W.I. Panobinostat: A review of trial results and future prospects in multiple myeloma. Expert Rev. Hematol., 2015, 8(1), 9-18. [http://dx.doi.org/10.1586/17474086.2015.983065]. [PMID: 25410127].
[23]
Li, Y.; Chen, K.; Zhou, Y.; Xiao, Y.; Deng, M.; Jiang, Z.; Ye, W.; Wang, X.; Wei, X.; Li, J.; Liang, J.; Zheng, Z.; Yao, Y.; Wang, W.; Li, P.; Xu, B. A new strategy to target acute myeloid leukemia stem and progenitor cells using chidamide, A histone deacetylase inhibitor. Curr. Cancer Drug Targets, 2015, 15(6), 493-503. [http://dx.doi.org/10.2174/156800961506150805153230]. [PMID: 26282548].
[24]
Somoza, J.R.; Skene, R.J.; Katz, B.A.; Mol, C.; Ho, J.D.; Jennings, A.J.; Luong, C.; Arvai, A.; Buggy, J.J.; Chi, E.; Tang, J.; Sang, B.C.; Verner, E.; Wynands, R.; Leahy, E.M.; Dougan, D.R.; Snell, G.; Navre, M.; Knuth, M.W.; Swanson, R.V.; McRee, D.E.; Tari, L.W. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure, 2004, 12(7), 1325-1334. [http://dx.doi.org/10.1016/j.str.2004.04.012]. [PMID: 15242608].
[25]
Cole, K.E.; Dowling, D.P.; Boone, M.A.; Phillips, A.J.; Christianson, D.W. Structural basis of the antiproliferative activity of largazole, A depsipeptide inhibitor of the histone deacetylases. J. Am. Chem. Soc., 2011, 133(32), 12474-12477. [http://dx.doi.org/ 10.1021/ja205972n]. [PMID: 21790156].
[26]
Whitehead, L.; Dobler, M.R.; Radetich, B.; Zhu, Y.; Atadja, P.W.; Claiborne, T.; Grob, J.E.; McRiner, A.; Pancost, M.R.; Patnaik, A.; Shao, W.; Shultz, M.; Tichkule, R.; Tommasi, R.A.; Vash, B.; Wang, P.; Stams, T. Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors. Bioorg. Med. Chem., 2011, 19(15), 4626-4634. [http://dx.doi.org/10.1016/j.bmc.2011.06.030]. [PMID: 21723733].
[27]
Finnin, M.S.; Donigian, J.R.; Cohen, A.; Richon, V.M.; Rifkind, R.A.; Marks, P.A.; Breslow, R.; Pavletich, N.P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature, 1999, 401(6749), 188-193. [http://dx.doi.org/ 10.1038/43710]. [PMID: 10490031].
[28]
Vanommeslaeghe, K.; De Proft, F.; Loverix, S.; Tourwé, D.; Geerlings, P. Theoretical study revealing the functioning of a novel combination of catalytic motifs in histone deacetylase. Bioorg. Med. Chem., 2005, 13(12), 3987-3992. [http://dx.doi.org/ 10.1016/j.bmc.2005.04.001]. [PMID: 15878665].
[29]
Corminboeuf, C.; Hu, P.; Tuckerman, M.E.; Zhang, Y. Unexpected deacetylation mechanism suggested by a density functional theory QM/MM study of histone-deacetylase-like protein. J. Am. Chem. Soc., 2006, 128(14), 4530-4531. [http://dx.doi.org/10.1021/ ja0600882]. [PMID: 16594663].
[30]
Decroos, C.; Bowman, C.M.; Moser, J.A.; Christianson, K.E.; Deardorff, M.A.; Christianson, D.W. Compromised structure and function of HDAC8 mutants identified in cornelia de lange syndrome spectrum disorders. ACS Chem. Biol., 2014, 9(9), 2157-2164. [http://dx.doi.org/10.1021/cb5003762]. [PMID: 25075551].
[31]
Millard, C.J.; Watson, P.J.; Celardo, I.; Gordiyenko, Y.; Cowley, S.M.; Robinson, C.V.; Fairall, L.; Schwabe, J.W.; Class, I.; Class, I. HDACs share a common mechanism of regulation by inositol phosphates. Mol. Cell, 2013, 51(1), 57-67. [http://dx.doi.org/ 10.1016/j.molcel.2013.05.020]. [PMID: 23791785].
[32]
Bressi, J.C.; Jennings, A.J.; Skene, R.; Wu, Y.; Melkus, R.; De Jong, R.; O’Connell, S.; Grimshaw, C.E.; Navre, M.; Gangloff, A.R. Exploration of the HDAC2 foot pocket: Synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorg. Med. Chem. Lett., 2010, 20(10), 3142-3145. [http://dx.doi.org/10.1016/ j.bmcl.2010.03.091]. [PMID: 20392638].
[33]
Lauffer, B.E.; Mintzer, R.; Fong, R.; Mukund, S.; Tam, C.; Zilberleyb, I.; Flicke, B.; Ritscher, A.; Fedorowicz, G.; Vallero, R.; Ortwine, D.F.; Gunzner, J.; Modrusan, Z.; Neumann, L.; Koth, C.M.; Lupardus, P.J.; Kaminker, J.S.; Heise, C.E.; Steiner, P. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J. Biol. Chem., 2013, 288(37), 26926-26943. [http://dx.doi.org/10.1074/jbc.M113.490706]. [PMID: 23897821].
[34]
Watson, P.J.; Fairall, L.; Santos, G.M.; Schwabe, J.W. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature, 2012, 481(7381), 335-340. [http://dx.doi.org/10.1038/nature10728]. [PMID: 22230954].
[35]
Bottomley, M.J.; Lo Surdo, P.; Di Giovine, P.; Cirillo, A.; Scarpelli, R.; Ferrigno, F.; Jones, P.; Neddermann, P.; De Francesco, R.; Steinkühler, C.; Gallinari, P.; Carfí, A. Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J. Biol. Chem., 2008, 283(39), 26694-26704. [http://dx.doi.org/10.1074/jbc.M803514200]. [PMID: 18614528].
[36]
Bürli, R.W.; Luckhurst, C.A.; Aziz, O.; Matthews, K.L.; Yates, D.; Lyons, K.A.; Beconi, M.; McAllister, G.; Breccia, P.; Stott, A.J.; Penrose, S.D.; Wall, M.; Lamers, M.; Leonard, P.; Müller, I.; Richardson, C.M.; Jarvis, R.; Stones, L.; Hughes, S.; Wishart, G.; Haughan, A.F.; O’Connell, C.; Mead, T.; McNeil, H.; Vann, J.; Mangette, J.; Maillard, M.; Beaumont, V.; Munoz-Sanjuan, I.; Dominguez, C. Design, synthesis, and biological evaluation of potent and selective class IIa histone deacetylase (HDAC) inhibitors as a potential therapy for Huntington’s disease. J. Med. Chem., 2013, 56(24), 9934-9954. [http://dx.doi.org/10.1021/jm4011884]. [PMID: 24261862].
[37]
Schuetz, A.; Min, J.; Allali-Hassani, A.; Schapira, M.; Shuen, M.; Loppnau, P.; Mazitschek, R.; Kwiatkowski, N.P.; Lewis, T.A.; Maglathin, R.L.; McLean, T.H.; Bochkarev, A.; Plotnikov, A.N.; Vedadi, M.; Arrowsmith, C.H. Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J. Biol. Chem., 2008, 283(17), 11355-11363. [http://dx.doi.org/10.1074/jbc.M707362200]. [PMID: 18285338].
[38]
Lobera, M.; Madauss, K.P.; Pohlhaus, D.T.; Wright, Q.G.; Trocha, M.; Schmidt, D.R.; Baloglu, E.; Trump, R.P.; Head, M.S.; Hofmann, G.A.; Murray-Thompson, M.; Schwartz, B.; Chakravorty, S.; Wu, Z.; Mander, P.K.; Kruidenier, L.; Reid, R.A.; Burkhart, W.; Turunen, B.J.; Rong, J.X.; Wagner, C.; Moyer, M.B.; Wells, C.; Hong, X.; Moore, J.T.; Williams, J.D.; Soler, D.; Ghosh, S.; Nolan, M.A. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol., 2013, 9(5), 319-325. [http://dx.doi.org/10.1038/nchembio.1223]. [PMID: 23524983].
[39]
Vannini, A.; Volpari, C.; Gallinari, P.; Jones, P.; Mattu, M.; Carfí, A.; De Francesco, R.; Steinkühler, C.; Di Marco, S. Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8-substrate complex. EMBO Rep., 2007, 8(9), 879-884. [http://dx.doi.org/10.1038/sj.embor.7401047]. [PMID: 17721440].
[40]
Somoza, J.R.; Skene, R.J.; Katz, B.A.; Mol, C.; Ho, J.D.; Jennings, A.J.; Luong, C.; Arvai, A.; Buggy, J.J.; Chi, E.; Tang, J.; Sang, B.C.; Verner, E.; Wynands, R.; Leahy, E.M.; Dougan, D.R.; Snell, G.; Navre, M.; Knuth, M.W.; Swanson, R.V.; McRee, D.E.; Tari, L.W. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure, 2004, 12(7), 1325-1334. [http://dx.doi.org/10.1016/j.str.2004.04.012]. [PMID: 15242608].
[41]
Vannini, A.; Volpari, C.; Filocamo, G.; Casavola, E.C.; Brunetti, M.; Renzoni, D.; Chakravarty, P.; Paolini, C.; De Francesco, R.; Gallinari, P.; Steinkühler, C.; Di Marco, S. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl. Acad. Sci. USA, 2004, 101(42), 15064-15069. [http://dx.doi.org/10.1073/ pnas.0404603101]. [PMID: 15477595].
[42]
Dowling, D.P.; Gattis, S.G.; Fierke, C.A.; Christianson, D.W. Structures of metal-substituted human histone deacetylase 8 provide mechanistic inferences on biological function. Biochemistry, 2010, 49(24), 5048-5056. [http://dx.doi.org/10.1021/bi1005046]. [PMID: 20545365].
[43]
Dowling, D.P.; Gantt, S.L.; Gattis, S.G.; Fierke, C.A.; Christianson, D.W. Structural studies of human histone deacetylase 8 and its site-specific variants complexed with substrate and inhibitors. Biochemistry, 2008, 47(51), 13554-13563. [http://dx.doi.org/10.1021/bi801610c]. [PMID: 19053282].
[44]
Schäfer, S.; Saunders, L.; Eliseeva, E.; Velena, A.; Jung, M.; Schwienhorst, A.; Strasser, A.; Dickmanns, A.; Ficner, R.; Schlimme, S.; Sippl, W.; Verdin, E.; Jung, M. Phenylalanine-containing hydroxamic acids as selective inhibitors of class IIb histone deacetylases (HDACs). Bioorg. Med. Chem., 2008, 16(4), 2011-2033. [http://dx.doi.org/10.1016/j.bmc.2007.10.092]. [PMID: 18054239].
[45]
Nielsen, T.K.; Hildmann, C.; Riester, D.; Wegener, D.; Schwienhorst, A.; Ficner, R. Complex structure of a bacterial class 2 histone deacetylase homologue with a trifluoromethylketone inhibitor. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2007, 63(Pt 4), 270-273. [http://dx.doi.org/10.1107/S1744309107012377]. [PMID: 17401192].
[46]
Nielsen, T.K.; Hildmann, C.; Dickmanns, A.; Schwienhorst, A.; Ficner, R. Crystal structure of a bacterial class 2 histone deacetylase homologue. J. Mol. Biol., 2005, 354(1), 107-120. [http://dx.doi.org/10.1016/j.jmb.2005.09.065]. [PMID: 16242151].
[47]
Micelli, C.; Rastelli, G. Histone deacetylases: Structural determinants of inhibitor selectivity. Drug Discov. Today, 2015, 20(6), 718-735. [http://dx.doi.org/10.1016/j.drudis.2015.01.007]. [PMID: 25687212].
[48]
Zhang, L.; Zhang, J.; Jiang, Q.; Zhang, L.; Song, W. Zinc binding groups for histone deacetylase inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 714-721. [http://dx.doi.org/10.1080/14756366.2017.1417274]. [PMID: 29616828].
[49]
Li, Y.; Woster, P.M. Discovery of a new class of histone deacetylase inhibitors with a novel zinc binding group. MedChemComm, 2015, 6(4), 613-618. [http://dx.doi.org/10.1039/C4MD00401A]. [PMID: 26005563].
[50]
Zhang, L.; Han, Y.; Jiang, Q.; Wang, C.; Chen, X.; Li, X.; Xu, F.; Jiang, Y.; Wang, Q.; Xu, W. Trend of histone deacetylase inhibitors in cancer therapy: isoform selectivity or multitargeted strategy. Med. Res. Rev., 2015, 35(1), 63-84. [http://dx.doi.org/10.1002/med.21320]. [PMID: 24782318].
[51]
Frey, R.R.; Wada, C.K.; Garland, R.B.; Curtin, M.L.; Michaelides, M.R.; Li, J.; Pease, L.J.; Glaser, K.B.; Marcotte, P.A.; Bouska, J.J.; Murphy, S.S.; Davidsen, S.K. Trifluoromethyl ketones as inhibitors of histone deacetylase. Bioorg. Med. Chem. Lett., 2002, 12(23), 3443-3447. [http://dx.doi.org/10.1016/S0960-894X(02)00754-0]. [PMID: 12419380].
[52]
Reiter, L.A.; Robinson, R.P.; McClure, K.F.; Jones, C.S.; Reese, M.R.; Mitchell, P.G.; Otterness, I.G.; Bliven, M.L.; Liras, J.; Cortina, S.R.; Donahue, K.M.; Eskra, J.D.; Griffiths, R.J.; Lame, M.E.; Lopez-Anaya, A.; Martinelli, G.J.; McGahee, S.M.; Yocum, S.A.; Lopresti-Morrow, L.L.; Tobiassen, L.M.; Vaughn-Bowser, M.L. Pyran-containing sulfonamide hydroxamic acids: potent MMP inhibitors that spare MMP-1. Bioorg. Med. Chem. Lett., 2004, 14(13), 3389-3395. [http://dx.doi.org/10.1016/j.bmcl.2004.04.083]. [PMID: 15177439].
[53]
Farkas, E.; Katz, Y.; Bhusare, S.; Reich, R.; Röschenthaler, G.V.; Königsmann, M.; Breuer, E. Carbamoylphosphonate-based matrix metalloproteinase inhibitor metal complexes: solution studies and stability constants. Towards a zinc-selective binding group. J. Biol. Inorg. Chem., 2004, 9(3), 307-315. [http://dx.doi.org/10.1007/ s00775-004-0524-5]. [PMID: 14762707].
[54]
O’Brien, E.C.; Farkas, E.; Gil, M.J.; Fitzgerald, D.; Castineras, A.; Nolan, K.B. Metal complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid and benzohydroxamic acid. Crystal and molecular structure of [Cu(phen)2(Cl)]Cl x H2Sha, a model for a peroxidase-inhibitor complex. J. Inorg. Biochem., 2000, 79(1-4), 47-51. [http://dx.doi.org/10.1016/S0162-0134(99)00245-7]. [PMID: 10830846].
[55]
Clawson, G.A. Histone deacetylase inhibitors as cancer therapeutics. Ann. Transl. Med., 2016, 4(15), 287. [http://dx.doi.org/ 10.21037/atm.2016.07.22]. [PMID: 27568481].
[56]
Suzuki, T.; Miyata, N. Non-hydroxamate histone deacetylase inhibitors. Curr. Med. Chem., 2005, 12(24), 2867-2880. [http://dx.doi.org/10.2174/092986705774454706]. [PMID: 16305476].
[57]
Tsuji, N.; Kobayashi, M.; Nagashima, K.; Wakisaka, Y.; Koizumi, K. A new antifungal antibiotic, trichostatin. J. Antibiot. (Tokyo), 1976, 29(1), 1-6. [http://dx.doi.org/10.7164/antibiotics.29.1]. [PMID: 931784].
[58]
Yoshida, M.; Kijima, M.; Akita, M.; Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem., 1990, 265(28), 17174-17179. [PMID: 2211619].
[59]
Bradner, J.E.; West, N.; Grachan, M.L.; Greenberg, E.F.; Haggarty, S.J.; Warnow, T.; Mazitschek, R. Chemical phylogenetics of histone deacetylases. Nat. Chem. Biol., 2010, 6(3), 238-243. [http://dx.doi.org/10.1038/nchembio.313]. [PMID: 20139990].
[60]
Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone deacetylase inhibitors: From bench to clinic. J. Med. Chem., 2008, 51(6), 1505-1529. [http://dx.doi.org/10.1021/jm7011408]. [PMID: 18247554].
[61]
Tam, G.W.; van de Lagemaat, L.N.; Redon, R.; Strathdee, K.E.; Croning, M.D.; Malloy, M.P.; Muir, W.J.; Pickard, B.S.; Deary, I.J.; Blackwood, D.H.; Carter, N.P.; Grant, S.G. Confirmed rare copy number variants implicate novel genes in schizophrenia. Biochem. Soc. Trans., 2010, 38(2), 445-451. [http://dx.doi.org/ 10.1042/BST0380445]. [PMID: 20298200].
[62]
Khan, N.; Jeffers, M.; Kumar, S.; Hackett, C.; Boldog, F.; Khramtsov, N.; Qian, X.; Mills, E.; Berghs, S.C.; Carey, N.; Finn, P.W.; Collins, L.S.; Tumber, A.; Ritchie, J.W.; Jensen, P.B.; Lichenstein, H.S.; Sehested, M. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J., 2008, 409(2), 581-589. [http://dx.doi.org/ 10.1042/BJ20070779]. [PMID: 17868033].
[63]
Richon, V.M.; Emiliani, S.; Verdin, E.; Webb, Y.; Breslow, R.; Rifkind, R.A.; Marks, P.A. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc. Natl. Acad. Sci. USA, 1998, 95(6), 3003-3007. [http://dx.doi.org/ 10.1073/pnas.95.6.3003]. [PMID: 9501205].
[64]
Bian, J.; Zhang, L.; Han, Y.; Wang, C.; Zhang, L. Histone deacetylase inhibitors: potent anti-leukemic agents. Curr. Med. Chem., 2015, 22(17), 2065-2074. [http://dx.doi.org/ 10.2174/0929867322666150416094720]. [PMID: 25876840].
[65]
Giannini, G.; Cabri, W.; Fattorusso, C.; Rodriquez, M. Histone deacetylase inhibitors in the treatment of cancer: Cverview and perspectives. Future Med. Chem., 2012, 4(11), 1439-1460. [http://dx.doi.org/10.4155/fmc.12.80]. [PMID: 22857533].
[66]
Benedetti, R.; Conte, M.; Altucci, L. Targeting histone deacetylases in diseases: Where are we? Antioxid. Redox Signal., 2015, 23(1), 99-126. [http://dx.doi.org/10.1089/ars.2013.5776]. [PMID: 24382114].
[67]
Kazantsev, A.G.; Thompson, L.M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat. Rev. Drug Discov., 2008, 7(10), 854-868. [http://dx.doi.org/ 10.1038/nrd2681]. [PMID: 18827828].
[68]
Santo, L.; Hideshima, T.; Kung, A.L.; Tseng, J.C.; Tamang, D.; Yang, M.; Jarpe, M.; van Duzer, J.H.; Mazitschek, R.; Ogier, W.C.; Cirstea, D.; Rodig, S.; Eda, H.; Scullen, T.; Canavese, M.; Bradner, J.; Anderson, K.C.; Jones, S.S.; Raje, N. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood, 2012, 119(11), 2579-2589. [http://dx.doi.org/10.1182/blood-2011-10-387365]. [PMID: 22262760].
[69]
Novotny-Diermayr, V.; Sangthongpitag, K.; Hu, C.Y.; Wu, X.; Sausgruber, N.; Yeo, P.; Greicius, G.; Pettersson, S.; Liang, A.L.; Loh, Y.K.; Bonday, Z.; Goh, K.C.; Hentze, H.; Hart, S.; Wang, H.; Ethirajulu, K.; Wood, J.M. SB939, a novel potent and orally active histone deacetylase inhibitor with high tumor exposure and efficacy in mouse models of colorectal cancer. Mol. Cancer Ther., 2010, 9(3), 642-652. [http://dx.doi.org/10.1158/1535-7163.MCT-09-0689]. [PMID: 20197387].
[70]
Zorzi, A.P.; Bernstein, M.; Samson, Y.; Wall, D.A.; Desai, S.; Nicksy, D.; Wainman, N.; Eisenhauer, E.; Baruchel, S. A phase I study of histone deacetylase inhibitor, pracinostat (SB939), in pediatric patients with refractory solid tumors: IND203 a trial of the NCIC IND program/C17 pediatric phase I consortium. Pediatr. Blood Cancer, 2013, 60(11), 1868-1874. [http://dx.doi.org/ 10.1002/pbc.24694]. [PMID: 23893953].
[71]
Mandl-Weber, S.; Meinel, F.G.; Jankowsky, R.; Oduncu, F.; Schmidmaier, R.; Baumann, P. The novel inhibitor of histone deacetylase resminostat (RAS2410) inhibits proliferation and induces apoptosis in multiple myeloma (MM) cells. Br. J. Haematol., 2010, 149(4), 518-528. [http://dx.doi.org/10.1111/j.1365-2141.2010.08124.x]. [PMID: 20201941].
[72]
Tambo, Y.; Hosomi, Y.; Sakai, H.; Nogami, N.; Atagi, S.; Sasaki, Y.; Kato, T.; Takahashi, T.; Seto, T.; Maemondo, M.; Nokihara, H.; Koyama, R.; Nakagawa, K.; Kawaguchi, T.; Okamura, Y.; Nakamura, O.; Nishio, M.; Tamura, T. Phase I/II study of docetaxel combined with resminostat, an oral hydroxamic acid HDAC inhibitor, for advanced non-small cell lung cancer in patients previously treated with platinum-based chemotherapy. Invest. New Drugs, 2017, 35(2), 217-226. [http://dx.doi.org/10.1007/s10637-017-0435-2]. [PMID: 28138828].
[73]
Buggy, J.J.; Cao, Z.A.; Bass, K.E.; Verner, E.; Balasubramanian, S.; Liu, L.; Schultz, B.E.; Young, P.R.; Dalrymple, S.A. CRA-024781: A novel synthetic inhibitor of histone deacetylase enzymes with antitumor activity in vitro and in vivo. Mol. Cancer Ther., 2006, 5(5), 1309-1317. [http://dx.doi.org/10.1158/1535-7163.MCT-05-0442]. [PMID: 16731764].
[74]
Child, F.; Ortiz-Romero, P.L.; Alvarez, R.; Bagot, M.; Stadler, R.; Weichenthal, M.; Alves, R.; Quaglino, P.; Beylot-Barry, M.; Cowan, R.; Geskin, L.J.; Pérez-Ferriols, A.; Hellemans, P.; Elsayed, Y.; Phelps, C.; Forslund, A.; Kamida, M.; Zinzani, P.L. Phase II multicentre trial of oral quisinostat, a histone deacetylase inhibitor, in patients with previously treated stage IB-IVA mycosis fungoides/Sézary syndrome. Br. J. Dermatol., 2016, 175(1), 80-88. [http://dx.doi.org/10.1111/bjd.14427]. [PMID: 26836950].
[75]
Arts, J.; King, P.; Mariën, A.; Floren, W.; Beliën, A.; Janssen, L.; Pilatte, I.; Roux, B.; Decrane, L.; Gilissen, R.; Hickson, I.; Vreys, V.; Cox, E.; Bol, K.; Talloen, W.; Goris, I.; Andries, L.; Du Jardin, M.; Janicot, M.; Page, M.; van Emelen, K.; Angibaud, P. JNJ-26481585, A novel “second-generation” oral histone deacetylase inhibitor, shows broad-spectrum preclinical antitumoral activity. Clin. Cancer Res., 2009, 15(22), 6841-6851. [http://dx.doi.org/ 10.1158/1078-0432.CCR-09-0547]. [PMID: 19861438].
[76]
Kouraklis, G.; Theocharis, S. Histone deacetylase inhibitors: a novel target of anticancer therapy.(review). Oncol. Rep., 2006, 15(2), 489-494. [PMID: 16391874].
[77]
Moffat, D.; Patel, S.; Day, F.; Belfield, A.; Donald, A.; Rowlands, M.; Wibawa, J.; Brotherton, D.; Stimson, L.; Clark, V.; Owen, J.; Bawden, L.; Box, G.; Bone, E.; Mortenson, P.; Hardcastle, A.; van Meurs, S.; Eccles, S.; Raynaud, F.; Aherne, W. Discovery of 2-(6-[(6-fluoroquinolin-2-yl) methyl] amino bicyclo [3.1.0] hex-3-yl)-Nhydroxypyrimidine-5-carboxamide (CHR-3996), A class I selective orally active histone deacetylase inhibitor. J. Med. Chem., 2010, 53, 8663-8678. [http://dx.doi.org/10.1021/jm101177s]. [PMID: 21080647].
[78]
Banerji, U.; van Doorn, L.; Papadatos-Pastos, D.; Kristeleit, R.; Debnam, P.; Tall, M.; Stewart, A.; Raynaud, F.; Garrett, M.D.; Toal, M.; Hooftman, L.; De Bono, J.S.; Verweij, J.; Eskens, F.A. A phase I pharmacokinetic and pharmacodynamic study of CHR-3996, an oral class I selective histone deacetylase inhibitor in refractory solid tumors. Clin. Cancer Res., 2012, 18(9), 2687-2694. [http://dx.doi.org/10.1158/1078-0432.CCR-11-3165]. [PMID: 22553374].
[79]
Ossenkoppele, G.J.; Lowenberg, B.; Zachee, P.; Vey, N.; Breems, D.; Van de Loosdrecht, A.A.; Davidson, A.H.; Wells, G.; Needham, L.; Bawden, L.; Toal, M.; Hooftman, L.; Debnam, P.M. A phase I first-in-human study with tefinostat - a monocyte/macrophage targeted histone deacetylase inhibitor - in patients with advanced haematological malignancies. Br. J. Haematol., 2013, 162(2), 191-201. [http://dx.doi.org/10.1111/bjh.12359]. [PMID: 23647373].
[80]
Jacob, A.; Oblinger, J.; Bush, M.L.; Brendel, V.; Santarelli, G.; Chaudhury, A.R.; Kulp, S.; La Perle, K.M.; Chen, C.S.; Chang, L.S.; Welling, D.B. Preclinical validation of AR42, a novel histone deacetylase inhibitor, as treatment for vestibular schwannomas. Laryngoscope, 2012, 122(1), 174-189. [http://dx.doi.org/10.1002/lary.22392]. [PMID: 22109824].
[81]
Pili, R.; Salumbides, B.; Zhao, M.; Altiok, S.; Qian, D.; Zwiebel, J.; Carducci, M.A.; Rudek, M.A. Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br. J. Cancer, 2012, 106(1), 77-84. [http://dx.doi.org/10.1038/bjc.2011.527]. [PMID: 22134508].
[82]
Galloway, T.J.; Wirth, L.J.; Colevas, A.D.; Gilbert, J.; Bauman, J.E.; Saba, N.F.; Raben, D.; Mehra, R.; Ma, A.W.; Atoyan, R.; Wang, J.; Burtness, B.; Jimeno, A. A phase I study of CUDC-101, a multitarget inhibitor of HDACs, EGFR, and HER2, in combination with chemoradiation in patients with head and neck squamous cell carcinoma. Clin. Cancer Res., 2015, 21(7), 1566-1573. [http://dx.doi.org/10.1158/1078-0432.CCR-14-2820]. [PMID: 25573383].
[83]
Mottamal, M.; Zheng, S.; Huang, T.L.; Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 2015, 20(3), 3898-3941. [http://dx.doi.org/10.3390/molecules20033898]. [PMID: 25738536].
[84]
Fleming, C.L.; Ashton, T.D.; Gaur, V.; McGee, S.L.; Pfeffer, F.M. Improved synthesis and structural reassignment of MC1568: A class IIa selective HDAC inhibitor. J. Med. Chem., 2014, 57(3), 1132-1135. [http://dx.doi.org/10.1021/jm401945k]. [PMID: 24450497].
[85]
Lee, H.Y.; Tsai, A.C.; Chen, M.C.; Shen, P.J.; Cheng, Y.C.; Kuo, C.C.; Pan, S.L.; Liu, Y.M.; Liu, J.F.; Yeh, T.K.; Wang, J.C.; Chang, C.Y.; Chang, J.Y.; Liou, J.P. Azaindolylsulfonamides, with a more selective inhibitory effect on histone deacetylase 6 activity, exhibit antitumor activity in colorectal cancer HCT116 cells. J. Med. Chem., 2014, 57(10), 4009-4022. [http://dx.doi.org/ 10.1021/jm401899x]. [PMID: 24766560].
[86]
Di Pompo, G.; Salerno, M.; Rotili, D.; Valente, S.; Zwergel, C.; Avnet, S.; Lattanzi, G.; Baldini, N.; Mai, A. Novel histone deacetylase inhibitors induce growth arrest, apoptosis, and differentiation in sarcoma cancer stem cells. J. Med. Chem., 2015, 58(9), 4073-4079. [http://dx.doi.org/10.1021/acs.jmedchem.5b00126]. [PMID: 25905694].
[87]
Yang, F.; Zhang, T.; Wu, H.; Yang, Y.; Liu, N.; Chen, A.; Li, Q.; Li, J.; Qin, L.; Jiang, B.; Wang, X.; Pang, X.; Yi, Z.; Liu, M.; Chen, Y. Design and optimization of novel hydroxamate-based histone deacetylase inhibitors of Bis-substituted aromatic amides bearing potent activities against tumor growth and metastasis. J. Med. Chem., 2014, 57(22), 9357-9369. [http://dx.doi.org/ 10.1021/jm5012148]. [PMID: 25360834].
[88]
Abeywickrama, C.; Bradner, J.E.; Ponnala, S. Dana-farber cancer institute. selective inhibitors for histone deacetylase 6 and method thereof US, 20150197497, August 16 2015.
[89]
Qin, H-T.; Li, H-Q.; Liu, F. Trustees of boston university. selective histone deacetylase 8 inhibitors US, 20150352079, December 10 2015.
[90]
Dominguez, C.; Muñoz-Sanjuán, I.; Maillard, M.; Raphy, G.; Haughan, A.F.; Luckhurst, C.A.; Jarvis, R.E.; Bürli, R.W.; Breccia, P.; Wishart, G.; Hughes, S.J.; Allen, D.R.; Penrose, S.D. CHDI Foundation Inc.Histone deacetylase inhibitors and compositions and methods of use thereof US, 20160031863, February 4 2016.
[91]
Dominguez, C.; Muñoz-Sanjuán, I.; Maillard, M.; Raphy, G.; Haughan, A.F.; Luckhurst, C.A.; Jarvis, R.E.; Bürli, R.W.; Wishart, G.; Hughes, S.J.; Allen, D.R.; Penrose, S.D. Breccia, P. CHDI Foundation Inc. Histone deacetylase inhibitors and compositions and methods of use thereof US, 20160039745, February 11 2016.
[92]
Chen, Y.; Wang, X.; Xiang, W.; He, L.; Tang, M.; Wang, F.; Wang, T.; Yang, Z.; Yi, Y.; Wang, H.; Niu, T.; Zheng, L.; Lei, L.; Li, X.; Song, H.; Chen, L. Development of purine-based hydroxamic acid derivatives: potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities. J. Med. Chem., 2016, 59(11), 5488-5504. [http://dx.doi.org/10.1021/ acs.jmedchem.6b00579]. [PMID: 27186676].
[93]
Chou, C.J.; Herman, D.; Gottesfeld, J.M. Pimelic diphenylamide 106 is a slow, tight-binding inhibitor of class I histone deacetylases. J. Biol. Chem., 2008, 283(51), 35402-35409. [http://dx.doi.org/ 10.1074/jbc.M807045200]. [PMID: 18953021].
[94]
Khan, N.; Jeffers, M.; Kumar, S.; Hackett, C.; Boldog, F.; Khramtsov, N.; Qian, X.; Mills, E.; Berghs, S.C.; Carey, N.; Finn, P.W.; Collins, L.S.; Tumber, A.; Ritchie, J.W.; Jensen, P.B.; Lichenstein, H.S.; Sehested, M. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J., 2008, 409(2), 581-589. [http://dx.doi.org/ 10.1042/BJ20070779]. [PMID: 17868033].
[95]
Wagner, F.F.; Weïwer, M.; Steinbacher, S.; Schomburg, A.; Reinemer, P.; Gale, J.P.; Campbell, A.J.; Fisher, S.L.; Zhao, W.N.; Reis, S.A.; Hennig, K.M.; Thomas, M.; Müller, P.; Jefson, M.R.; Fass, D.M.; Haggarty, S.J.; Zhang, Y.L.; Holson, E.B. Kinetic and structural insights into the binding of histone deacetylase 1 and 2 (HDAC1, 2) inhibitors. Bioorg. Med. Chem., 2016, 24(18), 4008-4015. [http://dx.doi.org/10.1016/j.bmc.2016.06.040]. [PMID: 27377864].
[96]
Gojo, I.; Jiemjit, A.; Trepel, J.B.; Sparreboom, A.; Figg, W.D.; Rollins, S.; Tidwell, M.L.; Greer, J.; Chung, E.J.; Lee, M.J.; Gore, S.D.; Sausville, E.A.; Zwiebel, J.; Karp, J.E. Phase 1 and pharmacologic study of MS-275, A histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood, 2007, 109(7), 2781-2790. [PMID: 17179232].
[97]
Bonfils, C.; Kalita, A.; Dubay, M.; Siu, L.L.; Carducci, M.A.; Reid, G.; Martell, R.E.; Besterman, J.M.; Li, Z. Evaluation of the pharmacodynamic effects of MGCD0103 from preclinical models to human using a novel HDAC enzyme assay. Clin. Cancer Res., 2008, 14(11), 3441-3449. [http://dx.doi.org/10.1158/1078-0432.CCR-07-4427]. [PMID: 18519775].
[98]
Blum, K.A.; Advani, A.; Fernandez, L.; Van Der Jagt, R.; Brandwein, J.; Kambhampati, S.; Kassis, J.; Davis, M.; Bonfils, C.; Dubay, M.; Dumouchel, J.; Drouin, M.; Lucas, D.M.; Martell, R.E.; Byrd, J.C. Phase II study of the histone deacetylase inhibitor MGCD0103 in patients with previously treated chronic lymphocytic leukaemia. Br. J. Haematol., 2009, 147(4), 507-514. [http://dx.doi.org/10.1111/j.1365-2141.2009.07881.x]. [PMID: 19747365].
[99]
Garcia-Manero, G.; Assouline, S.; Cortes, J.; Estrov, Z.; Kantarjian, H.; Yang, H.; Newsome, W.M.; Miller, W.H., Jr; Rousseau, C.; Kalita, A.; Bonfils, C.; Dubay, M.; Patterson, T.A.; Li, Z.; Besterman, J.M.; Reid, G.; Laille, E.; Martell, R.E.; Minden, M. Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood, 2008, 112(4), 981-989. [http://dx.doi.org/10.1182/blood-2007-10-115873]. [PMID: 18495956].
[100]
Holson, E.; Wagner, F.F.; Haggarty, S.J.; Zhang, Y-L.; Lundh, M.; Wagner, B.; Lewis, M.C. The general hospital corporation d/b/a massachusetts general hospital. inhibitors of histone deacetylase US, 20150191427, August 9, 2015.
[101]
Harrington, P. 4-carboxy-benzylamino derivatives as histone deacetylase inhibitors US, 20130137690, May 30 2013.
[102]
Malvaez, M.; McQuown, S.C.; Rogge, G.A.; Astarabadi, M.; Jacques, V.; Carreiro, S.; Rusche, J.R.; Wood, M.A. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc. Natl. Acad. Sci. USA, 2013, 110(7), 2647-2652. [http://dx.doi.org/10.1073/pnas.1213364110]. [PMID: 23297220].
[103]
Grigg, R.E.; Inman, M.; Packham, G. Cancer research technology Ltd. N-(2-aminophenyl) benzamide derivatives as histone deacetylase inhibitors US, 20140135327, February 6, 2014.
[104]
Marson, C.M.; Matthews, C.J.; Atkinson, S.J.; Lamadema, N.; Thomas, N.S. Potent and selective inhibitors of histone deacetylase-3 containing chiral oxazoline capping groups and a N-(2-Aminophenyl)-benzamide binding unit. J. Med. Chem., 2015, 58(17), 6803-6818. [http://dx.doi.org/10.1021/ acs.jmedchem.5b00545]. [PMID: 26287310].
[105]
Pavlik, C.M.; Wong, C.Y.B.; Ononye, S.; Lopez, D.D.; Engene, N.; McPhail, K.L.; Gerwick, W.H.; Balunas, M.J. Santacruzamate A, a potent and selective histone deacetylase inhibitor from the Panamanian marine cyanobacterium cf. Symploca sp. J. Nat. Prod., 2013, 76(11), 2026-2033. [http://dx.doi.org/10.1021/np400198r]. [PMID: 24164245].
[106]
Balunas, M.J. PAVLIK, C.M.; Gerwick, W.H. University of connecticut. santacruzamate a composition and analogs and methods of use W0, 2014018913, January 30 2014.
[107]
Jacques, V.; Rusche, J.R.; Peet, N.P.; Singh, J. Repligen corporation. histone deacetylase inhibitor US, 20140051680, February 20 2014.
[108]
Jia, H.; Pallos, J.; Jacques, V.; Lau, A.; Tang, B.; Cooper, A.; Syed, A.; Purcell, J.; Chen, Y.; Sharma, S.; Sangrey, G.R.; Darnell, S.B.; Plasterer, H.; Sadri-Vakili, G.; Gottesfeld, J.M.; Thompson, L.M.; Rusche, J.R.; Marsh, J.L.; Thomas, E.A. Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease. Neurobiol. Dis., 2012, 46(2), 351-361. [http://dx.doi.org/10.1016/j.nbd.2012.01.016]. [PMID: 22590724].
[109]
Wong, J.C.; Tang, G.; Wu, X.; Liang, C.; Zhang, Z.; Guo, L.; Peng, Z.; Zhang, W.; Lin, X.; Wang, Z.; Mei, J.; Chen, J.; Pan, S.; Zhang, N.; Liu, Y.; Zhou, M.; Feng, L.; Zhao, W.; Li, S.; Zhang, C.; Zhang, M.; Rong, Y.; Jin, T.G.; Zhang, X.; Ren, S.; Ji, Y.; Zhao, R.; She, J.; Ren, Y.; Xu, C.; Chen, D.; Cai, J.; Shan, S.; Pan, D.; Ning, Z.; Lu, X.; Chen, T.; He, Y.; Chen, L. Pharmacokinetic optimization of class-selective histone deacetylase inhibitors and identification of associated candidate predictive biomarkers of hepatocellular carcinoma tumor response. J. Med. Chem., 2012, 55(20), 8903-8925. [http://dx.doi.org/10.1021/jm3011838]. [PMID: 23061376].
[110]
Valente, S.; Trisciuoglio, D.; De Luca, T.; Nebbioso, A.; Labella, D.; Lenoci, A.; Bigogno, C.; Dondio, G.; Miceli, M.; Brosch, G.; Del Bufalo, D.; Altucci, L.; Mai, A. 1,3,4-Oxadiazole-containing histone deacetylase inhibitors: anticancer activities in cancer cells. J. Med. Chem., 2014, 57(14), 6259-6265. [http://dx.doi.org/ 10.1021/jm500303u]. [PMID: 24972008].
[111]
Cole, K.E.; Dowling, D.P.; Boone, M.A.; Phillips, A.J.; Christianson, D.W. Structural basis of the antiproliferative activity of largazole, a depsipeptide inhibitor of the histone deacetylases. J. Am. Chem. Soc., 2011, 133(32), 12474-12477. [http://dx.doi.org/ 10.1021/ja205972n]. [PMID: 21790156].
[112]
Li, X.; Tu, Z.; Li, H.; Liu, C.; Li, Z.; Sun, Q.; Yao, Y.; Liu, J.; Jiang, S. Biological evaluation of new largazole analogues: alteration of macrocyclic scaffold with click chemistry. ACS Med. Chem. Lett., 2012, 4(1), 132-136. [http://dx.doi.org/10.1021/ml300371t]. [PMID: 24900575].
[113]
Chen, F.; Chai, H.; Su, M.B.; Zhang, Y.M.; Li, J.; Xie, X.; Nan, F.J. Potent and orally efficacious bisthiazole-based histone deacetylase inhibitors. ACS Med. Chem. Lett., 2014, 5(6), 628-633. [http://dx.doi.org/10.1021/ml400470s]. [PMID: 24944733].
[114]
Gong, C.J.; Gao, A.H.; Zhang, Y.M.; Su, M.B.; Chen, F.; Sheng, L.; Zhou, Y.B.; Li, J.Y.; Li, J.; Nan, F.J. Design, synthesis and biological evaluation of bisthiazole-based trifluoromethyl ketone derivatives as potent HDAC inhibitors with improved cellular efficacy. Eur. J. Med. Chem., 2016, 112, 81-90. [http://dx.doi.org/ 10.1016/j.ejmech.2016.02.003]. [PMID: 26890114].
[115]
Suzuki, T.; Kouketsu, A.; Matsuura, A.; Kohara, A.; Ninomiya, S.; Kohda, K.; Miyata, N. Thiol-based SAHA analogues as potent histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(12), 3313-3317. [http://dx.doi.org/10.1016/j.bmcl.2004.03.063]. [PMID: 15149697].
[116]
Nishino, N.; Jose, B.; Okamura, S.; Ebisusaki, S.; Kato, T.; Sumida, Y.; Yoshida, M. Cyclic tetrapeptides bearing a sulfhydryl group potently inhibit histone deacetylases. Org. Lett., 2003, 5(26), 5079-5082. [http://dx.doi.org/10.1021/ol036098e]. [PMID: 14682769].
[117]
Wen, J.; Niu, Q.; Liu, J.; Bao, Y.; Yang, J.; Luan, S.; Fan, Y.; Liu, D.; Zhao, L. Novel thiol-based histone deacetylase inhibitors bearing 3-phenyl-1H-pyrazole-5-carboxamide scaffold as surface recognition motif: Design, synthesis and SAR study. Bioorg. Med. Chem. Lett., 2016, 26(2), 375-379. [http://dx.doi.org/ 10.1016/j.bmcl.2015.12.007]. [PMID: 26706171].
[118]
Suzuki, T.; Kouketsu, A.; Itoh, Y.; Hisakawa, S.; Maeda, S.; Yoshida, M.; Nakagawa, H.; Miyata, N. Highly potent and selective histone deacetylase 6 inhibitors designed based on a small-molecular substrate. J. Med. Chem., 2006, 49(16), 4809-4812. [http://dx.doi.org/10.1021/jm060554y]. [PMID: 16884291].
[119]
Giannini, G.; Vesci, L.; Battistuzzi, G.; Vignola, D.; Milazzo, F.M.; Guglielmi, M.B.; Barbarino, M.; Santaniello, M.; Fantò, N.; Mor, M.; Rivara, S.; Pala, D.; Taddei, M.; Pisano, C.; Cabri, W. ST7612AA1, a thioacetate-ω(γ-lactam carboxamide) derivative selected from a novel generation of oral HDAC inhibitors. J. Med. Chem., 2014, 57(20), 8358-8377. [http://dx.doi.org/ 10.1021/jm5008209]. [PMID: 25233084].
[120]
Vesci, L.; Bernasconi, E.; Milazzo, F.M.; De Santis, R.; Gaudio, E.; Kwee, I.; Rinaldi, A.; Pace, S.; Carollo, V.; Giannini, G.; Bertoni, F. Preclinical antitumor activity of ST7612AA1: a new oral thiol-based histone deacetylase (HDAC) inhibitor. Oncotarget, 2015, 6(8), 5735-5748. [http://dx.doi.org/ 10.18632/oncotarget.3240]. [PMID: 25671299].
[121]
Battistuzzi, G.; Giannini, G. Synthesis of ST7612AA1, A novel oral HDAC inhibitor, via radical thioacetic acid addition. Curr. Bioact. Compd., 2016, 12(4), 282-288. [http://dx.doi.org/10.2174/ 1573407212666160504160556]. [PMID: 27917100].
[122]
Millard, C.J.; Watson, P.J.; Celardo, I.; Gordiyenko, Y.; Cowley, S.M.; Robinson, C.V.; Fairall, L.; Schwabe, J.W.R.; Class, I.; Class, I. HDACs share a common mechanism of regulation by inositol phosphates. Mol. Cell, 2013, 51(1), 57-67. [http://dx.doi.org/ 10.1016/j.molcel.2013.05.020]. [PMID: 23791785].
[123]
Watson, P.J.; Fairall, L.; Santos, G.M.; Schwabe, J.W. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature, 2012, 481(7381), 335-340. [http://dx.doi.org/10.1038/nature10728]. [PMID: 22230954].
[124]
Nielsen, T.K.; Hildmann, C.; Dickmanns, A.; Schwienhorst, A.; Ficner, R. Crystal structure of a bacterial class 2 histone deacetylase homologue. J. Mol. Biol., 2005, 354(1), 107-120. [http://dx.doi.org/10.1016/j.jmb.2005.09.065]. [PMID: 16242151].
[125]
Krauze, A.V.; Myrehaug, S.D.; Chang, M.G.; Holdford, D.J.; Smith, S.; Shih, J.; Tofilon, P.J.; Fine, H.A.; Camphausen, K. A phase 2 study of concurrent radiation therapy, temozolomide, and the histone deacetylase inhibitor valproic acid for patients with glioblastoma. Int. J. Radiat. Oncol. Biol. Phys., 2015, 92(5), 986-992. [http://dx.doi.org/10.1016/j.ijrobp.2015.04.038]. [PMID: 26194676].
[126]
Tassara, M.; Döhner, K.; Brossart, P.; Held, G.; Götze, K.; Horst, H.A.; Ringhoffer, M.; Köhne, C.H.; Kremers, S.; Raghavachar, A.; Wulf, G.; Kirchen, H.; Nachbaur, D.; Derigs, H.G.; Wattad, M.; Koller, E.; Brugger, W.; Matzdorff, A.; Greil, R.; Heil, G.; Paschka, P.; Gaidzik, V.I.; Göttlicher, M.; Döhner, H.; Schlenk, R.F. Valproic acid in combination with all-trans retinoic acid and intensive therapy for acute myeloid leukemia in older patients. Blood, 2014, 123(26), 4027-4036. [http://dx.doi.org/10.1182/blood-2013-12-546283]. [PMID: 24797300].
[127]
Aviram, A.; Zimrah, Y.; Shaklai, M.; Nudelman, A.; Rephaeli, A. Comparison between the effect of butyric acid and its prodrug pivaloyloxymethylbutyrate on histones hyperacetylation in an HL-60 leukemic cell line. Int. J. Cancer, 1994, 56(6), 906-909. [http://dx.doi.org/10.1002/ijc.2910560625]. [PMID: 8119779].
[128]
Kusaczuk, M.; Krętowski, R.; Bartoszewicz, M.; Cechowska-Pasko, M. Phenylbutyrate-a pan-HDAC inhibitor-suppresses proliferation of glioblastoma LN-229 cell line. Tumour Biol., 2016, 37(1), 931-942. [http://dx.doi.org/10.1007/s13277-015-3781-8]. [PMID: 26260271].
[129]
Reiter, L.A.; Robinson, R.P.; McClure, K.F.; Jones, C.S.; Reese, M.R.; Mitchell, P.G.; Otterness, I.G.; Bliven, M.L.; Liras, J.; Cortina, S.R.; Donahue, K.M.; Eskra, J.D.; Griffiths, R.J.; Lame, M.E.; Lopez-Anaya, A.; Martinelli, G.J.; McGahee, S.M.; Yocum, S.A.; Lopresti-Morrow, L.L.; Tobiassen, L.M.; Vaughn-Bowser, M.L. Pyran-containing sulfonamide hydroxamic acids: potent MMP inhibitors that spare MMP-1. Bioorg. Med. Chem. Lett., 2004, 14(13), 3389-3395. [http://dx.doi.org/10.1016/ j.bmcl.2004.04.083]. [PMID: 15177439].
[130]
Farkas, E.; Katz, Y.; Bhusare, S.; Reich, R.; Röschenthaler, G.V.; Königsmann, M.; Breuer, E. Carbamoylphosphonate-based matrix metalloproteinase inhibitor metal complexes: Solution studies and stability constants. Towards a zinc-selective binding group. J. Biol. Inorg. Chem., 2004, 9(3), 307-315. [http://dx.doi.org/10.1007/s 00775-004-0524-5]. [PMID: 14762707].
[131]
O’Brien, E.C.; Farkas, E.; Gil, M.J.; Fitzgerald, D.; Castineras, A.; Nolan, K.B. Metal complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid and benzohydroxamic acid. Crystal and molecular structure of [Cu(phen)2(Cl)]Cl x H2Sha, a model for a peroxidase-inhibitor complex. J. Inorg. Biochem., 2000, 79(1-4), 47-51. [http://dx.doi.org/10.1016/S0162-0134(99)00245-7]. [PMID: 10830846].
[132]
Suzuki, T.; Miyata, N. Non-hydroxamate histone deacetylase inhibitors. Curr. Med. Chem., 2005, 12(24), 2867-2880. [http://dx.doi.org/10.2174/092986705774454706]. [PMID: 16305476].
[133]
Zhang, L.; Zhang, J.; Jiang, Q.; Zhang, L.; Song, W. Zinc binding groups for histone deacetylase inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 714-721. [http://dx.doi.org/ 10.1080/14756366.2017.1417274]. [PMID: 29616828].
[134]
Roche, J.; Bertrand, P. Inside HDACs with more selective HDAC inhibitors. Eur. J. Med. Chem., 2016, 121, 451-483. [http://dx.doi.org/10.1016/j.ejmech.2016.05.047]. [PMID: 27318122].
[135]
Hu, E.; Dul, E.; Sung, C.M.; Chen, Z.; Kirkpatrick, R.; Zhang, G.F.; Johanson, K.; Liu, R.; Lago, A.; Hofmann, G.; Macarron, R.; de los Frailes, M.; Perez, P.; Krawiec, J.; Winkler, J.; Jaye, M. Identification of novel isoform-selective inhibitors within class I histone deacetylases. J. Pharmacol. Exp. Ther., 2003, 307(2), 720-728. [http://dx.doi.org/10.1124/jpet.103.055541]. [PMID: 12975486].
[136]
Kleinschek, A.; Meyners, C.; Digiorgio, E.; Brancolini, C.; Meyer-Almes, F.J. Potent and selective non-hydroxamate histone deacetylase 8 inhibitors. ChemMedChem, 2016, 11(23), 2598-2606. [http://dx.doi.org/10.1002/cmdc.201600528]. [PMID: 27860422].
[137]
Ononye, S.N.; VanHeyst, M.D.; Oblak, E.Z.; Zhou, W.; Ammar, M.; Anderson, A.C.; Wright, D.L. Tropolones as lead-like natural products: the development of potent and selective histone deacetylase inhibitors. ACS Med. Chem. Lett., 2013, 4(8), 757-761. [http://dx.doi.org/10.1021/ml400158k]. [PMID: 24900743].
[138]
Patil, V.; Sodji, Q.H.; Kornacki, J.R.; Mrksich, M.; Oyelere, A.K. 3-Hydroxypyridin-2-thione as novel zinc binding group for selective histone deacetylase inhibition. J. Med. Chem., 2013, 56(9), 3492-3506. [http://dx.doi.org/10.1021/jm301769u]. [PMID: 23547652].
[139]
Attenni, B.; Ontoria, J.M.; Cruz, J.C.; Rowley, M.; Schultz-Fademrecht, C.; Steinkühler, C.; Jones, P. Histone deacetylase inhibitors with a primary amide zinc binding group display antitumor activity in xenograft model. Bioorg. Med. Chem. Lett., 2009, 19(11), 3081-3084. [http://dx.doi.org/10.1016/j.bmcl.2009.04.011]. [PMID: 19410459].
[140]
Valente, S.; Conte, M.; Tardugno, M.; Nebbioso, A.; Tinari, G.; Altucci, L.; Mai, A. Developing novel non-hydroxamate histone deacetylase inhibitors: the chelidamic warhead. MedChemComm, 2012, 3, 298-304. [http://dx.doi.org/10.1039/C1MD00249J].
[141]
Wang, Y.; Stowe, R.L.; Pinello, C.E.; Tian, G.; Madoux, F.; Li, D.; Zhao, L.Y.; Li, J.L.; Wang, Y.; Wang, Y.; Ma, H.; Hodder, P.; Roush, W.R.; Liao, D. Identification of histone deacetylase inhibitors with benzoylhydrazide scaffold that selectively inhibit class I histone deacetylases. Chem. Biol., 2015, 22(2), 273-284. [http://dx.doi.org/10.1016/j.chembiol.2014.12.015]. [PMID: 25699604].
[142]
McClure, J.J.; Zhang, C.; Inks, E.S.; Peterson, Y.K.; Li, J.; Chou, C.J. Development of allosteric hydrazide-containing class I histone deacetylase inhibitors for use in acute myeloid leukemia. J. Med. Chem., 2016, 59(21), 9942-9959. [http://dx.doi.org/ 10.1021/acs.jmedchem.6b01385]. [PMID: 27754681].
[143]
Goracci, L.; Deschamps, N.; Randazzo, G.M.; Petit, C.; Dos Santos Passos, C.; Carrupt, P.A.; Simões-Pires, C.; Nurisso, A. A rational approach for the identification of non-hydroxamate hdac6-selective inhibitors. Sci. Rep., 2016, 6, 29086. [http://dx.doi.org/ 10.1038/srep29086]. [PMID: 27404291].
[144]
Lobera, M.; Madauss, K.P.; Pohlhaus, D.T.; Wright, Q.G.; Trocha, M.; Schmidt, D.R.; Baloglu, E.; Trump, R.P.; Head, M.S.; Hofmann, G.A.; Murray-Thompson, M.; Schwartz, B.; Chakravorty, S.; Wu, Z.; Mander, P.K.; Kruidenier, L.; Reid, R.A.; Burkhart, W.; Turunen, B.J.; Rong, J.X.; Wagner, C.; Moyer, M.B.; Wells, C.; Hong, X.; Moore, J.T.; Williams, J.D.; Soler, D.; Ghosh, S.; Nolan, M.A. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol., 2013, 9(5), 319-325. [http://dx.doi.org/10.1038/nchembio.1223]. [PMID: 23524983].
[145]
Hou, X.; Du, J.; Liu, R.; Zhou, Y.; Li, M.; Xu, W.; Fang, H. Enhancing the sensitivity of pharmacophore-based virtual screening by incorporating customized ZBG features: A case study using histone deacetylase 8. J. Chem. Inf. Model., 2015, 55(4), 861-871. [http://dx.doi.org/10.1021/ci500762z]. [PMID: 25757142].
[146]
Gong, C.J.; Gao, A.H.; Zhang, Y.M.; Su, M.B.; Chen, F.; Sheng, L.; Zhou, Y.B.; Li, J.Y.; Li, J.; Nan, F.J. Design, synthesis and biological evaluation of bisthiazole-based trifluoromethyl ketone derivatives as potent HDAC inhibitors with improved cellular efficacy. Eur. J. Med. Chem., 2016, 112, 81-90. [http://dx.doi.org/ 10.1016/j.ejmech.2016.02.003]. [PMID: 26890114].
[147]
Li, Y.; Woster, P.M. Discovery of a new class of histone deacetylase inhibitors with a novel zinc binding group. MedChemComm, 2015, 6(4), 613-618. [http://dx.doi.org/10.1039/C4MD00401A]. [PMID: 26005563].
[148]
Kemp, M.M.; Wang, Q.; Fuller, J.H.; West, N.; Martinez, N.M.; Morse, E.M.; Weïwer, M.; Schreiber, S.L.; Bradner, J.E.; Koehler, A.N. A novel HDAC inhibitor with a hydroxy-pyrimidine scaffold. Bioorg. Med. Chem. Lett., 2011, 21(14), 4164-4169. [http://dx.doi.org/10.1016/j.bmcl.2011.05.098]. [PMID: 21696956].
[149]
Zhou, J.; Li, M.; Chen, N.; Wang, S.; Luo, H.B.; Zhang, Y.; Wu, R. Computational design of a time-dependent histone deacetylase 2 selective inhibitor. ACS Chem. Biol., 2015, 10(3), 687-692. [http://dx.doi.org/10.1021/cb500767c]. [PMID: 25546141].
[150]
Boskovic, Z.V.; Kemp, M.M.; Freedy, A.M.; Viswanathan, V.S.; Pop, M.S.; Fuller, J.H.; Martinez, N.M.; Figueroa Lazú, S.O.; Hong, J.A.; Lewis, T.A.; Calarese, D.; Love, J.D.; Vetere, A.; Almo, S.C.; Schreiber, S.L.; Koehler, A.N. Figueroa, Lazú, S.O.; Hong, J.A.; Lewis, T.A.; Calarese, D.; Love, J.D.; Vetere, A.; Almo, S.C.; Schreiber, S.L.; Koehler, A.N. Inhibition of zinc-dependent histone deacetylases with a chemically triggered electrophile. ACS Chem. Biol., 2016, 11(7), 1844-1851. [http://dx.doi.org/10.1021/acschembio.6b00012]. [PMID: 27064299].
[151]
Orlikova, B.; Schnekenburger, M.; Zloh, M.; Golais, F.; Diederich, M.; Tasdemir, D. Natural chalcones as dual inhibitors of HDACs and NF-κB. Oncol. Rep., 2012, 28(3), 797-805. [http://dx.doi.org/10.3892/or.2012.1870]. [PMID: 22710558].
[152]
Berger, A.; Venturelli, S.; Kallnischkies, M.; Böcker, A.; Busch, C.; Weiland, T.; Noor, S.; Leischner, C.; Weiss, T.S.; Lauer, U.M.; Bischoff, S.C.; Bitzer, M. Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J. Nutr. Biochem., 2013, 24(6), 977-985. [http://dx.doi.org/ 10.1016/j.jnutbio.2012.07.001]. [PMID: 23159065].
[153]
Senawong, T.; Misuna, S.; Khaopha, S.; Nuchadomrong, S.; Sawatsitang, P.; Phaosiri, C.; Surapaitoon, A.; Sripa, B. Histone deacetylase (HDAC) inhibitory and antiproliferative activities of phenolic-rich extracts derived from the rhizome of Hydnophytum formicarum Jack.: sinapinic acid acts as HDAC inhibitor. BMC Complement. Altern. Med., 2013, 13, 232. [http://dx.doi.org/10.1186/1472-6882-13-232]. [PMID: 24053181].
[154]
Venturelli, S.; Berger, A.; Böcker, A.; Busch, C.; Weiland, T.; Noor, S.; Leischner, C.; Schleicher, S.; Mayer, M.; Weiss, T.S.; Bischoff, S.C.; Lauer, U.M.; Bitzer, M. Resveratrol as a pan-HDAC inhibitor alters the acetylation status of histone [corrected] proteins in human-derived hepatoblastoma cells. PLoS One, 2013, 8(8), e73097. [http://dx.doi.org/10.1371/journal.pone.0073097]. [PMID: 24023672].
[155]
McKnight, G.S.; Hager, L.; Palmiter, R.D. Butyrate and related inhibitors of histone deacetylation block the induction of egg white genes by steroid hormones. Cell, 1980, 22(2 Pt 2), 469-477. [http://dx.doi.org/10.1016/0092-8674(80)90357-8]. [PMID: 7448870].
[156]
Losson, H.; Schnekenburger, M.; Dicato, M.; Diederich, M. Natural compound histone deacetylase inhibitors (hdaci): synergy with inflammatory signaling pathway modulators and clinical applications in cancer. Molecules, 2016, 21(11), E1608. [http://dx.doi.org/10.3390/molecules21111608]. [PMID: 27886118].
[157]
Ryu, H.W.; Lee, D.H.; Shin, D.H.; Kim, S.H.; Kwon, S.H. Aceroside VIII is a new natural selective HDAC6 inhibitor that synergistically enhances the anticancer activity of HDAC inhibitor in HT29 cells. Planta Med., 2015, 81(3), 222-227. [http://dx.doi.org/10.1055/s-0034-1396149]. [PMID: 25590368].
[158]
Jones, P.; Altamura, S.; Chakravarty, P.K.; Cecchetti, O.; De Francesco, R.; Gallinari, P.; Ingenito, R.; Meinke, P.T.; Petrocchi, A.; Rowley, M.; Scarpelli, R.; Serafini, S.; Steinkühler, C. A series of novel, potent, and selective histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(23), 5948-5952. [http://dx.doi.org/10.1016/j.bmcl.2006.09.002]. [PMID: 16987657].
[159]
Maulucci, N.; Chini, M.G.; Micco, S.D.; Izzo, I.; Cafaro, E.; Russo, A.; Gallinari, P.; Paolini, C.; Nardi, M.C.; Casapullo, A.; Riccio, R.; Bifulco, G.; Riccardis, F.D. Molecular insights into azumamide e histone deacetylases inhibitory activity. J. Am. Chem. Soc., 2007, 129(10), 3007-3012. [http://dx.doi.org/10.1021/ja0686256]. [PMID: 17311384].
[160]
De Schepper, S.; Bruwiere, H.; Verhulst, T.; Steller, U.; Andries, L.; Wouters, W.; Janicot, M.; Arts, J.; Van Heusden, J. Inhibition of histone deacetylases by chlamydocin induces apoptosis and proteasome-mediated degradation of survivin. J. Pharmacol. Exp. Ther., 2003, 304(2), 881-888. [http://dx.doi.org/10.1124/jpet.102.042903]. [PMID: 12538846].
[161]
Itazaki, H.; Nagashima, K.; Sugita, K.; Yoshida, H.; Kawamura, Y.; Yasuda, Y.; Matsumoto, K.; Ishii, K.; Uotani, N.; Nakai, H.; Terui, A.; Yoshimatsu, S.; Ikenishi, Y.; Nakagawa, Y. Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents. J. Antibiot. (Tokyo), 1990, 43(12), 1524-1532. [http://dx.doi.org/10.7164/antibiotics.43.1524]. [PMID: 2276972].
[162]
Li, L.; Dai, H.J.; Ye, M.; Wang, S.L.; Xiao, X.J.; Zheng, J.; Chen, H.Y.; Luo, Y.H.; Liu, J. Lycorine induces cell-cycle arrest in the G0/G1 phase in K562 cells via HDAC inhibition. Cancer Cell Int., 2012, 12(1), 49. [http://dx.doi.org/10.1186/1475-2867-12-49]. [PMID: 23176676].
[163]
Parolin, C.; Calonghi, N.; Presta, E.; Boga, C.; Caruana, P.; Naldi, M.; Andrisano, V.; Masotti, L.; Sartor, G. Mechanism and stereoselectivity of HDAC I inhibition by (R)-9-hydroxystearic acid in colon cancer. Biochim. Biophys. Acta, 2012, 1821(10), 1334-1340. [http://dx.doi.org/10.1016/j.bbalip.2012.07.007]. [PMID: 22814230].
[164]
Ghosh, A.K.; Kulkarni, S. Enantioselective total synthesis of (+)-largazole, A potent inhibitor of histone deacetylase. Org. Lett., 2008, 10(17), 3907-3909. [http://dx.doi.org/10.1021/ol8014623]. [PMID: 18662003].
[165]
Druesne, N.; Pagniez, A.; Mayeur, C.; Thomas, M.; Cherbuy, C.; Duée, P.H.; Martel, P.; Chaumontet, C. Diallyl disulfide (DADS) increases histone acetylation and p21(waf1/cip1) expression in human colon tumor cell lines. Carcinogenesis, 2004, 25(7), 1227-1236. [http://dx.doi.org/10.1093/carcin/bgh123]. [PMID: 14976134].
[166]
Lea, M.A.; Rasheed, M.; Randolph, V.M.; Khan, F.; Shareef, A.; desBordes, C. Induction of histone acetylation and inhibition of growth of mouse erythroleukemia cells by S-allylmercaptocysteine. Nutr. Cancer, 2002, 43(1), 90-102. [http://dx.doi.org/ 10.1207/S15327914NC431_11]. [PMID: 12467140].
[167]
Porter, N.J.; Christianson, D.W. Binding of the microbial cyclic tetrapeptide trapoxin A to the class I histone deacetylase HDAC8. ACS Chem. Biol., 2017, 12(9), 2281-2286. [http://dx.doi.org/ 10.1021/acschembio.7b00330]. [PMID: 28846375].