Phytochemical Profiles and Antibacterial Activities of Hydroalcoholic Extracts of Origanum vulgare and Hypericum perforatum and Carvacrol and Hypericin as a Promising Anti-Staphylococcus aureus

Page: [923 - 932] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Objectives: Staphylococcus aureus, a Gram-positive bacteria, is ranked second among the causes of hospital infections and is one of the three main causes of food poisoning. In recent times, the spread of antibiotic resistance in S. aureus has become very worrisome. Therefore, research for new effective drugs is important. The present study aims to investigate the phytochemical profiles and antibacterial effects of hydroalcoholic extracts of Origanum vulgare (Lamiaceae family) and Hypericum perforatum (Clusiaceae family) and their active compounds on S. aureus (ATCC 12600) in vitro.

Methods: The identification of phytochemical compounds in both plants was performed by Highperformance liquid chromatography (HPLC), headspace-solid-phase microextraction (HS-SPME) and Fourier-transform infrared spectroscopy (FTIR). To investigate microbial susceptibility, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and disc diffusion method (DAD) were used. Finally, the results of the study were compared with methicillin.

Results: Of the 42 combinations of O. vulgare, carvacrol (48%) and of the 38 combinations of H. perforatum, hypericin (46.2%) were the most abundant. The MIC, MBC and DAD of O. vulgare and H. perforatum, carvacrol, hypericin and methicillin were 625, 625, 312.5, 78.12 and 384 µg/mL, 10000, 10000, 2500, 2500 and 384 µg/mL, and 15.66 ± 4.49, 12.66 ± 0.47 and 22 ± 0.81 mm, respectively.

Conclusion: Due to the significant effects of O. vulgare and H. perforatum and their active components against S. aureus, it is expected that in the future, hypericin, carvacrol and their derivatives can be used as effective antibacterial agents against S. aureus.

Keywords: Origanum vulgare, Hypericum perforatum, carvacrol, hypericin, antibacterial susceptibility, Staphylococcus aureus.

Graphical Abstract

[1]
Habibipour, R.; Rajabi, M. Antibacterial effect of extracts of arctium lappa and artemesia absinthium in laboratory conditions. J. Herbmed. Pharmacol., 2015, 4(4), 133-137.
[2]
Usman, H.; Kaigama, A.U.; Ibisagba, O.O.; Fulata, A.M.; Ahmed, I.A. Phytoconstituents evaluation and antimicrobial efficacy of the crude flavonoids and saponins rootbark extracts of Terminalia avicennioides and Ficus polita. J. Herbmed. Pharmacol, 2018, 7(2), 106-111.
[3]
Kapil, A.; Sharma, A.T.P. Paniker’s Textbook of Microbiology, 9th Edition.; Universities Press, 2013, pp. 199-207.
[4]
Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus Infections: Epidemiology, Pathophysiology. Clin. Manifest. Manag, 2015, 28(3), 603-661.
[5]
Waldvogel, F.A. Staphylococcus aureus. In: In principles and practice of infectious diseases. Philadelphia Pennsyl vania, USA, 2000, pp. 2069-92.
[6]
Chambers, H.F.; Deleo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol., 2010, 7(9), 629-641.
[7]
Lowy, F.D. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Invest., 2003, 111(9), 1265-1273.
[8]
Id, M.S.; Maria, E.; Id, V.; Salehi, B.; Sharifi-Rad, J. Plants of the Genus Zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules, 2017, 22(12), 1-20.
[9]
Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed. Pharmacol, 2018, 7(1), 1-7.
[10]
Wang, T.; Yang, Li. Q Kia Shun, B. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci, 2017, 13(1), 12-23.
[11]
Moradi, F.; Sewell, R.D.E.; Lorigooini, Z.; Rafieian-Kopaei, M. Immunosuppression-lipid Metabolism interplay and medicinal plants in atherosclerosis: A review. Curr. Pharm. Des., 2018, 24, 1-5.
[12]
Savini, I.; Arnone, R.; Catani, M.V.A.L. Origanum vulgare induces apoptosis in human colon cancer caco 2 cells. Nutr. Cancer, 2009, 61(3), 381-389.
[13]
Aligiannis, N.; Kalpoutzakis, E.; Mitaku, S.; Chinou, I.B. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem., 2001, 49(9), 4168-4170.
[14]
Danin, A.K.I. Origanum jordanicum (Labiatae), a new species from Jordan, notes on the other species of Origanum sect. Campanulaticalyx Willdenowia, 1996, 25, 601-611.
[15]
Zargari, A. Medicinal Plants. Tehran Uni. Publication; Tehran: IRN, 1992.
[16]
Sahin, F.; Güllüce, M.; Daferera, D.; Sökmen, A.; Sökmen, M.; Polissiou, M.; Agar, G.; Ozer, H. Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the eastern anatolia region of turkey. Food Control, 2004, 15(7), 549-557.
[17]
Simić, A.; Soković, M.D.; Ristić, M.; Grujić-Jovanović, S.; Vukojević, J.; Marin, P.D. The chemical composition of some lauraceae essential oils and their antifungal activities. Phytother. Res., 2004, 18(9), 713-717.
[18]
Dakhili, M.; Zahraei, T.; Godarzi, A.K. Evaluation of antimicrobial effects of essential oil of four herbs on Salmonella typhimurium. J. Med. Plants, 2007, 5(20), 21-26.
[19]
Lambert, R.J.W.; Skandamis, P.N.; Coote, P.J.; Nychas, G.J.E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol., 2001, 91(3), 453-462.
[20]
Shariat, A.; Hosseini, E.P.R. Antimicrobial effect of aqueous extracts of nettle and marangoon on Salmonella typhi, Pseudomonas aeruginosa and Escherichia coli. J. Sci. Technol. Innovat, 2012, 92(4), 15-19.
[21]
Ghasemi Pirbalouti, A. Medicinal and aromatic herbs, recognition and evaluation; Islamic Azad Uni., Shahrekord Branch: Sharekord, Iran, 2009, pp. 451-455.
[22]
Khaledi, M.; Asadi-Samani, M.; Mahmoodi-Kouhi, A.; Gholipour, A. Antibacterial effect of the hydroalcoholic extracts of four iranian medicinal plants on Staphylococcus aureus and Acinetobacter baumanii. Intern. J. Pharmac. Phytopharmac. Res, 2017, 7(2), 10-14.
[23]
Hashemi, P.; Yarahmadi, A.; Shamizadeh, M.; Khademi, K. Comparison of headspace solvent microextraction, hydrodistillation solvent microextraction, and solid-phase microextraction for the study of volatile components of Kelussia odoratissima Mozaff. by GC-MS. Acta Chromatogr., 2012, 24(1), 97-109.
[24]
Rashidipour, M.; Heydari, R.; Feizbakhsh, A.; Hashemi, P. Rapid screening of oleuropein from olive leaves using matrix solid-phase dispersion and high-performance liquid chromatography. J. AOAC Int., 2014, 97(4), 1109-1113.
[25]
CLSI Wayne P. Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically; approved standardM7-A6, Wayne, PA, USA; , 2014.
[26]
Ma, Y.; Xu, Y.; Yestrepsky, B.D.; Sorenson, R.J.; Chen, M.; Larsen, S.D.; Sun, H. Novel inhibitors of Staphylococcus aureus virulence gene expression and biofilm formation. PLoS One, 2012, 7(10)e47255
[27]
Matsuura, H.; Chiji, H.; Asakawa, C.; Amano, M.; Yoshihara, T.; Mizutani, J. DPPH radical scavengers from dried leaves of oregano (Origanum vulgare). Biosci. Biotechnol. Biochem., 2003, 67(11), 2311-2316.
[28]
Rodríguez-Meizoso, I.; Marin, F.R.; Herrero, M.; Señorans, F.J.; Reglero, G.; Cifuentes, A. et al. Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. Chemical and functional characterization. J. Pharmac. Biomed. Analysis, 2006, 41(5), 1560-1565.
[29]
Youdim, K.; Deans, S.G. Effect of thyme oil and thymol dietary supplementation on the antioxidant status and fatty acid composition of the ageing rat brain. Br. J. Nutr., 2000, 83(1), 87-93.
[30]
Dorman, H.J.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, 88(2), 308-316.
[31]
Mueller, M.; Lukas, B.; Novak, J.; Simoncini, T.; Genazzani, A.R.J.A. Oregano: a source for peroxisome proliferator-activated receptor gamma antagonists. J. Agric. Food Chem., 2008, 56(24), 11621-11630.
[32]
Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen bacillus cereus the phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol., 2002, 68(4), 1561-1568.
[33]
Ben Arfa, A.; Combes, S.; Preziosi-Belloy, L.; Gontard, N.; Chalier, P. Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol., 2006, 43(2), 149-154.
[34]
Jaimand, K.; Rezaee, M.B.; Behrad, Z.; Mirza, M.; Mozaffarian, V.; Azady, R.; Naderi, M.; Golipur, M.; Bahmanzadegan, A.; Meshkizadeh, S.K.S. Determination of hypericine content in nine species of Hypericum. Iran. J. Med. Aromat. Plants,, 2014, 30(1), 10-18.
[35]
Chatterjee, S.S.; Bhattacharya, S.K.; Wonnemann, M.; Singer, A.; Müller, W.E. Hyperforin as a possible antidepressant component of hypericum extracts. Life Sci., 1998, 63(6), 499-510.
[36]
Saddiqe, Z.; Naeem, I.; Maimoona, A. A review of the antibacterial activity of Hypericum perforatum L. J. Ethnopharmacol., 2010, 131(3), 511-521.
[37]
Dadgar, T.; Ghaemi, E.; Bazvari, M. Antibacterial effect of 20 species of medicinal plants resistant to Staphylococcus aureus. J. Gorgan. Uni. Med. Sci, 2008, 1(21), 55-62.
[38]
Yeşilada, E.; Gürbüz, I.; Shibata, H. Screening of Turkish anti-ulcerogenic folk remedies for anti-Helicobacter pylori activity. J. Ethnopharmacol., 1999, 66(3), 289-293.
[39]
Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol., 1999, 86(6), 985-990.
[40]
Ulubelen, A.; Miski, M.; Johansson, C.; Lee, E.; Mabry, T.J.; Matlin, S.A. Terpenoids from Salvia palaestina. Phytochemistry, 1985, 24(6), 1386-1387.
[41]
Chakraborty, A.; Brantner, A.H. Antibacterial steroid alkaloids from the stem bark of Holarrhena pubescens. J. Ethnopharmacol., 1999, 68(1-3), 339-344.
[42]
Ankli, A.; Heilmann, J.; Heinrich, M.; Sticher, O. Cytotoxic cardenolides and antibacterial terpenoids from Crossopetalum gaumeri. Phytochemistry, 2000, 54(5), 531-537.
[43]
Al Akeel, R.; Al-Sheikh, Y.; Mateen, A.; Syed, R.; Janardhan, K.; Gupta, V.C. Evaluation of antibacterial activity of crude protein extracts from seeds of six different medical plants against standard bacterial strains. Saudi J. Biol. Sci., 2014, 21(2), 147-151.
[44]
Ndhlala, A.R.; Amoo, S.O.; Ncube, B.; Moyo, M.; Nair, J.J.V.S.J. 16-Antibacterial, antifungal, and antiviral activities of African medicinal plants. In: Medicinal Plant Research in Africa: Pharmacology and chemistry. Victor Kuete; Elsevier: Oxford, 2013, pp. 621-659.
[45]
Tsopmo, A.; Awah, F.M. 12-Lignans and stilbenes from African medicinal plants. Medicinal Plant Research in Africa;Elsevier, Oxford, UK,; , 2013, pp. 435-478.
[46]
Talei, G.R.; Mohammadi, M.; Bahmani, M.; Kopaei, M.R. Synergistic effect of Carum copticum and Mentha piperita essential oils with ciprofloxacin, vancomycin, and gentamicin on gram-negative and gram-positive bacteria. Int. J. Pharm. Investig., 2017, 7(2), 82-87.
[47]
Holton, J.; Basset, C. Bactericidal and anti adhesive properties of culinary and medicinal plants against Helicobacter pylori. World J. Gastroenterol., 2005, 11(47), 1-10.
[48]
Ahmad, S.; Ahmad, S.; Bibi, A.; Ishaq, M.S.; Afridi, M.S.; Kanwal, F.; Zakir, M.; Fatima, F. Phytochemical analysis, antioxidant activity, fatty acids composition, and functional group analysis of Heliotropium bacciferum. Sci. World. J., 2014, 1-8.
[49]
Janakiraman, N. Sahaya-Sathish, S.; Johnson, M. UV-VIS and FTIR spectroscopic studies on Peristrophe bicalyculata (RETZ.). Nees. Asian J. Pharm. Clin. Res., 2011, 4(4), 125-129.
[50]
Ullah, N.; Rehman, A.; Ahmad, S.; Samad, N.; Andaleeb, H.; Ahmad, W.; Ahmad, K.; Haroon, H.; Maqbool, S.; Altaf, A.; Raza, N. Antimicrobial assay and minimum inhibitory concentration values of Cistanche tubulosa. Int. J. Curr. Microbiol. Appl. Sci., 2016, 5(2), 380-388.
[51]
Hayashi, M.A.; Bizerra, F.C.; Da Silva, P.I. Antimicrobial compounds from natural sources. Front. Microbiol., 2013, 4, 3389.
[52]
Mozaffarian, V.A. A Dictionary of Iranian Plant Names, 1th Edition.; Farhang Moaser, 2006, pp. 198-515.
[53]
Wang, T.Y.; Li, Q.; Bi, K.S.H. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci., 2017, 13(1), 12-23.
[54]
Torki, A.; Khalaji-Pirbalouty, V.; Lorigooini, Z.; Rafieian-kopaei, M.; Sadeghimanesh, A.; Rabiei, Z. Anchusa italica extract: phytochemical and neuroprotective evaluation on global cerebral ischemia and reperfusion. Braz. J. Pharm. Sci., 2018, 54(1), 4-7.
[55]
Nazarian-Samani, Z.; Sewell, R.D.E.; Lorigooini, Z.; Rafieian-Kopaei, M. Medicinal plants with multiple effects on diabetes mellitus and its complications: A systematic review. Curr. Diab. Rep., 2018, 18, 72.
[56]
Rouhi-Boroujeni, H.; Heidarian, E.; Rouhi-Boroujeni, H.; Deris, F.; Rafieian-Kopaei, M. Medicinal plants with multiple effects on cardiovascular diseases: A systematic review. Curr. Pharm. Des., 2017, 23(7), 999-1015.
[57]
Kazemi, S.; Shirzad, H.; Rafieian-Kopaei, M. Recent findings in molecular basis of inflammation and anti-inflammatory plants. Curr. Pharm. Des., 2018, 24(14), 1551-1562.
[58]
Bahmani, M.; Sarrafchi, A.; Shirzad, H.; Asgari, S.; Rafieian-Kopaei, M. Cardiovascular toxicity of cyclooxygenase inhibitors and promising natural substitutes. Curr. Pharm. Des., 2017, 23(6), 952-960.
[59]
Saloufou, K.; Boyode, P.; Simalou, O.; Eloh, K.; Idoh, K.; Melila, M.; Toundou, O.; Kpegba, K.; Agbonon, A. Chemical composition and antioxidant activities of different parts of Ficus sur. J. Herbmed. Pharmacol., 2018, 7(3), 185-192.