Advancement of Lipid-Based Nanocarriers and Combination Application with Physical Penetration Technique

Page: [312 - 324] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

On account of the advantages of transdermal delivery and the application situation of transcutaneous technology in transdermal delivery, the article critically comments on nanosystems as permeation enhancement model. Nanosystems possess great potential for transcutaneous drug delivery. This review focuses on recent advances in lipid-based nanocarriers, including liposome, transfersomes, ethosomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers and combination application of the lipid-based nanocarriers with microneedle, iontophoresis, electroporation and sonophoresis in the field for the development of the transdermal drug delivery system.

We attempted to give an overview of lipid-based nanocarriers with the aim to improve transdermal and dermal drug delivery. A special focus is given to the nanocarrier composition, characteristic and interaction mechanisms through the skin. Recent combination applications of lipid-based nanocarriers with the physical penetration technology demonstrate the superiority of the combined use of nanocarriers and physical methods in drug penetration enhancement compared to their single use. In the future, lipidbased nanocarriers will play a greater role in the field of transdermal and dermal drug delivery.

Keywords: Transdermal drug delivery system, enhancement techniques, lipid-based nanocarriers, physical penetration technique, combination application, microneedle.

Graphical Abstract

[1]
Chen, G.; Hao, B.; Ju, D.; Liu, M.; Zhao, H.; Du, Z.; Xia, J. Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under microneedles on rats with collagen-induced arthritis. Acta Pharm. Sin. B, 2015, 5(6), 569-576.
[2]
El-Nabarawi, M.A.; Bendas, E.R.; El, R.R.; Abary, M.Y. Transdermal drug delivery of paroxetine through lipid-vesicular formulation to augment its bioavailability. Int. J. Pharm., 2013, 443(1-2), 307-317.
[3]
Carbone, C.; Leonardi, A.; Cupri, S.; Puglisi, G.; Pignatello, R. Pharmaceutical and biomedical applications of lipid-based nanocarriers. Pharm. Pat. Anal., 2014, 3(2), 199-215.
[4]
Zhai, Y.; Zhai, G. Advances in lipid-based colloid systems as drug carrier for topic delivery. J. Control. Release, 2014, 193, 90-99.
[5]
Salehiabar, M.; Nosrati, H.; Javani, E.; Aliakbarzadeh, F.; Kheiri, M.H.; Davaran, S.; Danafar, H. Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. Int. J. Biol. Macromol., 2018, 115, 83-89.
[6]
Nosrati, H.; Sefidi, N.; Sharafi, A.; Danafar, H.; Kheiri, M.H. Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem., 2018, 76, 501-509.
[7]
Nosrati, H.; Abbasi, R.; Charmi, J.; Rakhshbahar, A.; Aliakbarzadeh, F.; Danafar, H.; Davaran, S. Folic acid conjugated bovine serum albumin: An efficient smart and tumor targeted biomacromolecule for inhibition folate receptor positive cancer cells. Int. J. Biol. Macromol., 2018, 117, 1125-1132.
[8]
Nosrati, H.; Salehiabar, M.; Manjili, H.K.; Danafar, H.; Davaran, S. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int. J. Biol. Macromol., 2018, 108, 909-915.
[9]
Nomani, A.; Nosrati, H.; Manjili, H.K.; Khesalpour, L.; Danafar, H. Preparation and characterization of copolymeric polymersomes for protein delivery. Drug Res. (Stuttg.), 2017, 67(8), 458-465.
[10]
Nosrati, H.; Adinehvand, R.; Manjili, H.K.; Rostamizadeh, K.; Danafar, H. Synthesis, characterization, and kinetic release study of methotrexate loaded mPEG-PCL polymersomes for inhibition of MCF-7 breast cancer cell line. Pharm. Dev. Technol., 2019, 24(1), 89-98.
[11]
Rostamizadeh, K.; Manafi, M.; Nosrati, H.; Kheiri, M.H.; Danafar, H. Methotrexate-conjugated mPEG–PCL copolymers: A novel approach for dual triggered drug delivery. New J. Chem., 2018, 42(8), 5937-5945.
[12]
Nosrati, H.; Salehiabar, M.; Davaran, S.; Danafar, H.; Manjili, H.K. Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev. Ind. Pharm., 2017, 1-9.
[13]
Nosrati, H.; Rashidi, N.; Danafar, H.; Manjili, H.K. Anticancer activity of tamoxifen loaded tyrosine decorated biocompatible Fe3O4 magnetic nanoparticles against breast cancer cell lines. J. Inorg. Organomet. Polym. Mater., 2018, 28(3), 1178-1186.
[14]
Nosrati, H.; Mojtahedi, A.; Danafar, H.; Kheiri, M.H. Enzymatic stimuli-responsive methotrexate-conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition. J. Biomed. Mater. Res. Part A, 2018, 106(6), 1646-1654.
[15]
Nosrati, H.; Salehiabar, M.; Attari, E.; Davaran, S.; Danafar, H.; Manjili, H.K. Green and one-pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation. Appl. Organomet. Chem., 2018, 32(2), e4069.
[16]
Nosrati, H.; Salehiabar, M.; Kheiri, M.H.; Davaran, S.; Danafar, H. Theranostic nanoparticles based on magnetic nanoparticles: Design, preparation, characterization, and evaluation as novel anticancer drug carrier and MRI contrast agent. Drug Dev. Ind. Pharm., 2018, 44(10), 1668-1678.
[17]
Nosrati, H.; Salehiabar, M.; Attari, E.; Davaran, S.; Danafar, H.; Manjili, H.K. Green and one-pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation. Appl. Organomet. Chem., 2018, 32(2), e4069.
[18]
Salehiabar, M.; Nosrati, H.; Davaran, S.; Danafar, H.; Manjili, H. Facile synthesis and characterization of L-Aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug Res., 2018, 68(5), 280-285.
[19]
Nosrati, H.; Adibtabar, M.; Sharafi, A.; Danafar, H.; Hamidreza, K.M. PAMAM-modified citric acid-coated magnetic nanoparticles as pH sensitive biocompatible carrier against human breast cancer cells. Drug Dev. Ind. Pharm., 2018, 44(8), 1377-1384.
[20]
Ariga, K.; Kawakami, K.; Ebara, M.; Kotsuchibashi, Y.; Ji, Q.; Hill, J.P. Bioinspired nanoarchitectonics as emerging drug delivery systems. J. Chem., 2014, 38, 5149-5163.
[21]
Huang, Y.; Wu, S.; Deng, W.; Xu, G.; Hu, F.; Hill, J.P.; Wei, W.; Su, S.; Shrestha, L.K.; Sato, O.; Wu, M.; Hong, M.; Ariga, K. Selective CO2 capture and high proton conductivity of a functional star-of-david catenane metal-organic framework. Adv. Mater., 2017, 29(42), 1703301.
[22]
Komiyama, M.; Yoshimoto, K.; Sisido, M.; Ariga, K. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull. Chem. Soc. Japan., 2017, 90(9), 967-1004.
[23]
Zhang, N.; Wu, Y.; Xing, R.; Xu, B.; Guoliang, D.; Wang, P. Effect of ultrasound-enhanced transdermal drug delivery efficiency of nanoparticles and brucine. BioMed Res. Int., 2017, 2017, 3273816.
[24]
Henry, S.; McAllister, D.V.; Allen, M.G.; Prausnitz, M.R. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci., 1999, 88(9), 948.
[25]
Lin, H.; Xie, Q.; Huang, X.; Ban, J.; Wang, B.; Wei, X.; Chen, Y.; Lu, Z. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery. Int. J. Nanomedicine, 2018, 13, 831-842.
[26]
Musa, M.N.; David, S.R.; Zulkipli, I.N.; Mahadi, A.H.; Chakravarthi, S.; Rajabalaya, R. Development and evaluation of exemestane-loaded lyotropic liquid crystalline gel formulations. Bioimpacts, 2017, 7(4), 227-239.
[27]
Henry, S.; McAllister, D.V.; Allen, M.G.; Prausnitz, M.R. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci., 1999, 88(9), 948.
[28]
Pamornpathomkul, B.; Niyomtham, N.; Yingyongnarongkul, B.E.; Prasitpuriprecha, C.; Rojanarata, T.; Ngawhirunpat, T.; Opanasopit, P. Cationic niosomes for enhanced skin immunization of plasmid DNA-encoding ovalbumin via hollow microneedles. AAPS PharmSciTech, 2018, 19(1), 481-488.
[29]
Verbaan, F.J.; Bal, S.M.; Dj, V.D.B.; Groenink, W.H.; Verpoorten, H.; Lüttge, R.; Bouwstra, J.A. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J. Control. Release, 2007, 117(2), 238-245.
[30]
Nguyen, J.; Ita, K.B.; Morra, M.J.; Popova, I.E. The influence of solid microneedles on the transdermal delivery of selected antiepileptic drugs. Pharmaceutics, 2016, 8(4), E33.
[31]
Shakya, A.K.; Lee, C.H.; Gill, H.S. Cutaneous vaccination with coated microneedles prevents development of airway allergy. J. Control. Release, 2017, 265, 75-82.
[32]
Kim, S.; Dangol, M.; Kang, G.; Lahiji, S.F.; Yang, H.; Jang, M.; Ma, Y.; Li, C.; Lee, S.G.; Kim, C.H.; Choi, Y.W.; Kim, S.J.; Ryu, J.H.; Baek, J.H.; Koh, J.; Jung, H. Enhanced transdermal delivery by combined application of dissolving microneedle patch on serum-treated skin. Mol. Pharm., 2017, 14(6), 2024-2031.
[33]
Amodwala, S.; Kumar, P.; Thakkar, H.P. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: A patient friendly approach to manage arthritis. Eur. J. Pharm. Sci., 2017, 104, 114-123.
[34]
Zhou, C.P.; Liu, Y.L.; Wang, H.L.; Zhang, P.X.; Zhang, J.L. Transdermal delivery of insulin using microneedle rollers in vivo. Int. J. Pharm., 2010, 392(1-2), 127-133.
[35]
van der Maaden, K.; Heuts, J.; Camps, M.; Pontier, M.; Terwisscha, V.S.A.; Jiskoot, W.; Ossendorp, F.; Bouwstra, J. Hollow microneedle-mediated micro-injections of a liposomal HPV E743-63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. J. Control. Release, 2018, 269, 347-354.
[36]
Kalia, Y.N.; Naik, A.; Garrison, J.; Guy, R.H. Iontophoretic drug delivery. Adv. Drug Deliv. Rev., 2004, 56(5), 619-658.
[37]
Manabe, E.; Numajiri, S.; Sugibayashi, K.; Morimoto, Y. Analysis of skin permeation-enhancing mechanism of iontophoresis using hydrodynamic pore theory. J. Control. Release, 2000, 66(2-3), 149-158.
[38]
Kalia, Y.N.; Naik, A.; Garrison, J.; Guy, R.H. Iontophoretic drug delivery. Adv. Drug Deliv. Rev., 2004, 56(5), 619-658.
[39]
Jadoul, A.; Bouwstra, J.; Preat, V.V. Effects of iontophoresis and electroporation on the stratum corneum. Review of the biophysical studies. Adv. Drug Deliv. Rev., 1999, 35(1), 89-105.
[40]
Manabe, E.; Numajiri, S.; Sugibayashi, K.; Morimoto, Y. Analysis of skin permeation-enhancing mechanism of iontophoresis using hydrodynamic pore theory. J. Control. Release, 2000, 66(2-3), 149-158.
[41]
Lemos, C.N.; de Souza, J.G.; Simao, P.S.; Lopez, R.F. Iontophoresis improved growth reduction of invasive squamous cell carcinoma in topical photodynamic therapy. PLoS One, 2016, 11(1), e145922.
[42]
Krishnan, G.; Roberts, M.S.; Grice, J.; Anissimov, Y.G.; Moghimi, H.R.; Benson, H.A. Iontophoretic skin permeation of peptides: An investigation into the influence of molecular properties, iontophoretic conditions and formulation parameters. Drug Deliv. Transl. Res., 2014, 4(3), 222-232.
[43]
Kalaria, D.R.; Singhal, M.; Patravale, V.; Merino, V.; Kalia, Y.N. Simultaneous controlled iontophoretic delivery of pramipexole and rasagiline in vitro and in vivo: Transdermal polypharmacy to treat Parkinson’s disease. Eur. J. Pharm. Biopharm., 2018, 127, 204-212.
[44]
Chen, F.; Wang, H.; Hou, H.M. Applications of electroporation in transdermal drug delivery. Chin. J. Pharm., 2004, 35(3), 174-179.
[45]
Charoo, N.A.; Rahman, Z.; Repka, M.A.; Murthy, S.N. Electroporation: an avenue for transdermal drug delivery. Curr. Drug Deliv., 2010, 7(2), 125-136.
[46]
Dubey, S.; Kalia, Y.N. Electrically-assisted delivery of an anionic protein across intact skin: Cathodal iontophoresis of biologically active ribonuclease T1. J. Control. Release, 2011, 152(3), 356-362.
[47]
Komuro, M.; Suzuki, K.; Kanebako, M.; Kawahara, T.; Otoi, T.; Kitazato, K.; Inagi, T.; Makino, K.; Toi, M.; Terada, H. Novel iontophoretic administration method for local therapy of breast cancer. J. Control. Release, 2013, 168(3), 298-306.
[48]
Saluja, S.; Kasha, P.C.; Paturi, J.; Anderson, C.; Morris, R.; Banga, A.K. A novel electronic skin patch for delivery and pharmacokinetic evaluation of donepezil following transdermal iontophoresis. Int. J. Pharm., 2013, 453(2), 395-399.
[49]
Djabri, A.; Guy, R.H.; Delgado-Charro, M.B. Transdermal iontophoresis of ranitidine: An opportunity in paediatric drug therapy. Int. J. Pharm., 2012, 435(1), 27-32.
[50]
Gurumurthy, C.B.; Takahashi, G.; Wada, K.; Miura, H.; Sato, M.; Ohtsuka, M. GONAD: A novel CRISPR/Cas9 genome editing method that does not require ex vivo handling of embryos. Curr. Protoc. Hum. Genet., 2016, 88, 15-18.
[51]
Djabri, A.; Guy, R.H.; Delgado-Charro, M.B. Transdermal iontophoresis of ranitidine: An opportunity in paediatric drug therapy. Int. J. Pharm., 2012, 435(1), 27-32.
[52]
Dubey, S.; Kalia, Y.N. Electrically-assisted delivery of an anionic protein across intact skin: Cathodal iontophoresis of biologically active ribonuclease T1. J. Control. Release, 2011, 152(3), 356-362.
[53]
Iqbal, B.; Ali, J.; Baboota, S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int. J. Dermatol., 2018, 57(6), 646-660.
[54]
Qingfu, W.; Yufeng, M.; Yueshan, Y.; Huimin, Y.; Yan, S.; Qingxue, Q.; Haoyun, Z.; Chuilin, D.U.; Hu, H.; Zongting, S.; Yinze, Q.; Lei, Z.; Jun, Z.; Lili, Y.; Song, L. Influence of low-frequency ultrasound for enhancing permeation of chinese medicinal on cytokines in rabbits with knee osteoarthritis. J. Beijing Uni. Tradit. Chin. Med., 2013, 36(2), 108-112.
[55]
Schoellhammer, C.M.; Blankschtein, D.; Langer, R. Skin permeabilization for transdermal drug delivery: Recent advances and future prospects. Expert Opin. Drug Deliv., 2014, 11(3), 393-407.
[56]
Boucaud, A.; Machet, L.; Arbeille, B.; Machet, M.C.; Sournac, M.; Mavon, A.; Patat, F.; Vaillant, L. In vitro study of low-frequency ultrasound-enhanced transdermal transport of fentanyl and caffeine across human and hairless rat skin. Int. J. Pharm., 2001, 228(1-2), 69-77.
[57]
Schoellhammer, C.M.; Blankschtein, D.; Langer, R. Skin permeabilization for transdermal drug delivery: Recent advances and future prospects. Expert Opin. Drug Deliv., 2014, 11(3), 393-407.
[58]
Shuwaili, A.H.A.L.; Rasool, B.K.; Abdulrasool, A.A. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur. J. Pharm. Biopharm., 2016, 102, 101-114.
[59]
Mahmood, S.; Mandal, U.K.; Chatterjee, B. Transdermal delivery of raloxifene HCl via ethosomal system: Formulation, advanced characterizations and pharmacokinetic evaluation. Int. J. Pharm., 2018, 542(1-2), 36-46.
[60]
Millart, E.; Lesieur, S.; Faivre, V. Superparamagnetic lipid-based hybrid nanosystems for drug delivery. Expert Opin. Drug Deliv., 2018, 15(5), 523-540.
[61]
Yang, M.; Gu, Y.; Yang, D.; Tang, X.; Liu, J. Development of triptolide-nanoemulsion gels for percutaneous administration: physicochemical, transport, pharmacokinetic and pharmacodynamic characteristics. J. Nanobiotechnology, 2017, 15(1), 88.
[62]
Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release, 2018, 270, 203-225.
[63]
Qi, J.; Lu, Y.; Wu, W. Absorption, disposition and pharmacokinetics of solid lipid nanoparticles. Curr. Drug Metab., 2012, 13(4), 418-428.
[64]
Guo, T.; Zhang, Y.; Zhao, J.; Zhu, C.; Feng, N. Nanostructured lipid carriers for percutaneous administration of alkaloids isolated from Aconitum sinomontanum. J. Nanobiotechnology, 2015, 13, 47.
[65]
Barenholz, Y.C.; Peer, D. Liposomes, lipid biophysics, and sphingolipid research: From basic to translation research. Chem. Phys. Lipids, 2012, 165(4), 363-364.
[66]
Gabizon, A.; Papahadjopoulos, D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc. Natl. Acad. Sci. USA, 1988, 85(18), 6949-6953.
[67]
Ngan, C.L.; Basri, M.; Lye, F.F.; Fard, M.H.; Tripathy, M.; Karjiban, R.A.; Abdul-Malek, E. Comparison of process parameter optimization using different designs in nanoemulsion-based formulation for transdermal delivery of fullerene. Int. J. Nanomedicine, 2014, 9, 4375-4386.
[68]
Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv., 2016, 23(9), 3319-3329.
[69]
Tang, J.; Zhang, L.; Fu, H.; Kuang, Q.; Gao, H.; Zhang, Z.; He, Q. A detachable coating of cholesterol-anchored PEG improves tumor targeting of cell-penetrating peptide-modified liposomes. Acta Pharm. Sin. B, 2014, 4(1), 67-73.
[70]
Dai, M.; Wu, C.; Fang, H.M.; Li, L.; Yan, J.B.; Zeng, D.L.; Zhu, T. Thermo-responsive magnetic liposomes for hyperthermia-triggered local drug delivery. J. Microencapsul., 2017, 34(4), 408-415.
[71]
Needham, D.; Park, J.Y.; Wright, A.M.; Tong, J. Materials characterization of the low temperature sensitive liposome (LTSL): Effects of the lipid composition (lysolipid and DSPE-PEG2000) on the thermal transition and release of doxorubicin. Faraday Discuss., 2013, 161, 515-534, 563-589.
[72]
Wen, M.M.; Farid, R.M.; Kassem, A.A. Nano-proniosomes enhancing the transdermal delivery of mefenamic acid. J. Liposome Res., 2014, 24(4), 280-289.
[73]
Wang, J.; Wei, Y.; Fei, Y.R.; Fang, L.; Zheng, H.S.; Mu, C.F.; Li, F.Z.; Zhang, Y.S. Preparation of mixed monoterpenes edge activated PEGylated transfersomes to improve the in vivo transdermal delivery efficiency of sinomenine hydrochloride. Int. J. Pharm., 2017, 533(1), 266-274.
[74]
Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm. Sin. B, 2016, 6(4), 287-296.
[75]
Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes - novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release, 2000, 65(3), 403-418.
[76]
Yang, L.; Wu, L.; Wu, D.; Shi, D.; Wang, T.; Zhu, X. Mechanism of transdermal permeation promotion of lipophilic drugs by ethosomes. Int. J. Nanomedicine, 2017, 12, 3357-3364.
[77]
Bhosale, S.S.; Avachat, A.M. Design and development of ethosomal transdermal drug delivery system of valsartan with preclinical assessment in Wistar albino rats. J. Liposome Res., 2013, 23(2), 119-125.
[78]
Ali, A.; Ansari, V.A.; Ahmad, U.; Akhtar, J.; Jahan, A. Nanoemulsion: An advanced vehicle for efficient drug delivery. Drug Res. (Stuttg.), 2017, 67(11), 617-631.
[79]
Azeem, A.; Talegaonkar, S.; Negi, L.M.; Ahmad, F.J.; Khar, R.K.; Iqbal, Z. Oil based nanocarrier system for transdermal delivery of ropinirole: A mechanistic, pharmacokinetic and biochemical investigation. Int. J. Pharm., 2012, 422(1), 436-444.
[80]
Shin, K.; Gong, G.; Cuadrado, J.; Jeon, S.; Seo, M.; Choi, H.S.; Hwang, J.S.; Lee, Y.; Fernandez-Nieves, A.; Kim, J.W. Structurally stable attractive nanoscale emulsions with dipole-dipole interaction-driven interdrop percolation. Chemistry, 2017, 23(18), 4292-4297.
[81]
Khurana, S.; Bedi, P.M.; Jain, N.K. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem. Phys. Lipids, 2013, 175-176, 65-72.
[82]
Goto, P.L.; Siqueira-Moura, M.P.; Tedesco, A.C. Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells. Int. J. Pharm., 2017, 518(1-2), 228-241.
[83]
Peng, L.H.; Wei, W.; Shan, Y.H.; Chong, Y.S.; Yu, L.; Gao, J.Q. Sustained release of piroxicam from solid lipid nanoparticle as an effective anti-inflammatory therapeutics in vivo. Drug Dev. Ind. Pharm., 2017, 43(1), 55-66.
[84]
Iqbal, N.; Vitorino, C.; Taylor, K.M. How can lipid nanocarriers improve transdermal delivery of olanzapine? Pharm. Dev. Technol., 2017, 22(4), 587-596.
[85]
Pardeike, J.; Hommoss, A.; Muller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[86]
Raza, K.; Shareef, M.A.; Singal, P.; Sharma, G.; Negi, P.; Katare, O.P. Lipid-based capsaicin-loaded nano-colloidal biocompatible topical carriers with enhanced analgesic potential and decreased dermal irritation. J. Liposome Res., 2014, 24(4), 290-296.
[87]
Schwarz, J.C.; Baisaeng, N.; Hoppel, M.; Low, M.; Keck, C.M.; Valenta, C. Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int. J. Pharm., 2013, 447(1-2), 213-217.
[88]
Bhaskar, K.; Krishna, M.C.; Lingam, M.; Prabhakar, R.V.; Venkateswarlu, V.; Madhusudan, R.Y. Development of nitrendipine controlled release formulations based on SLN and NLC for topical delivery: In vitro and ex vivo characterization. Drug Dev. Ind. Pharm., 2008, 34(7), 719-725.
[89]
Chen, G.; Hao, B.; Ju, D.; Liu, M.; Zhao, H.; Du, Z.; Xia, J. Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under microneedles on rats with collagen-induced arthritis. Acta Pharm. Sin. B, 2015, 5(6), 569-576.
[90]
Andar, A.U.; Karan, R.; Pecher, W.T.; DasSarma, P.; Hedrich, W.D.; Stinchcomb, A.L.; DasSarma, S. Microneedle-assisted skin permeation by nontoxic bioengineerable gas vesicle nanoparticles. Mol. Pharm., 2017, 14(3), 953-958.
[91]
Kumar, A.; Li, X.; Sandoval, M.A.; Rodriguez, B.L.; Sloat, B.R.; Cui, Z. Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin. Int. J. Nanomedicine, 2011, 6, 1253-1264.
[92]
Seok, H.; Noh, J.Y.; Lee, D.Y.; Kim, S.J.; Song, C.S.; Kim, Y.C. Effective humoral immune response from a H1N1 DNA vaccine delivered to the skin by microneedles coated with PLGA-based cationic nanoparticles. J. Control. Release, 2017, 265, 66-74.
[93]
Vucen, S.R.; Vuleta, G.; Crean, A.M.; Moore, A.C.; Ignjatovic, N.; Uskokovic, D. Improved percutaneous delivery of ketoprofen using combined application of nanocarriers and silicon microneedles. J. Pharm. Pharmacol., 2013, 65(10), 1451-1462.
[94]
Gomaa, Y.A.; Garland, M.J.; McInnes, F.J.; Donnelly, R.F.; El-Khordagui, L.K.; Wilson, C.G. Microneedle/nanoencapsulation-mediated transdermal delivery: Mechanistic insights. Eur. J. Pharm. Biopharm., 2014, 86(2), 145-155.
[95]
Yan, L.; Raphael, A.P.; Zhu, X.; Wang, B.; Chen, W.; Tang, T.; Deng, Y.; Sant, H.J.; Zhu, G.; Choy, K.W.; Gale, B.K.; Prow, T.W.; Chen, X. Nanocomposite-strengthened dissolving microneedles for improved transdermal delivery to human skin. Adv. Healthc. Mater., 2014, 3(4), 555-564.
[96]
Bernardi, D.S.; Bitencourt, C.; Da, S.D.; Da, C.E.; Pereira-da-Silva, M.A.; Faccioli, L.H.; Lopez, R.F. Effective transcutaneous immunization using a combination of iontophoresis and nanoparticles. Nanomedicine, 2016, 12(8), 2439-2448.
[97]
Kigasawa, K.; Miyashita, M.; Kajimoto, K.; Kanamura, K.; Harashima, H.; Kogure, K. Efficient intradermal delivery of superoxide dismutase using a combination of liposomes and iontophoresis for protection against UV-induced skin damage. Biol. Pharm. Bull., 2012, 35(5), 781-785.
[98]
Toyoda, M.; Hama, S.; Ikeda, Y.; Nagasaki, Y.; Kogure, K. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis. Int. J. Pharm., 2015, 483(1-2), 110-114.
[99]
Charoenputtakun, P.; Li, S.K.; Ngawhirunpat, T. Iontophoretic delivery of lipophilic and hydrophilic drugs from lipid nanoparticles across human skin. Int. J. Pharm., 2015, 495(1), 318-328.
[100]
Takeuchi, I.; Fukuda, K.; Kobayashi, S.; Makino, K. Transdermal delivery of estradiol-loaded PLGA nanoparticles using iontophoresis for treatment of osteoporosis. Biomed. Mater. Eng., 2016, 27(5), 475-483.
[101]
Huber, L.A.; Pereira, T.A.; Ramos, D.N.; Rezende, L.C.; Emery, F.S.; Sobral, L.M.; Leopoldino, A.M.; Lopez, R.F. Topical skin cancer therapy using doxorubicin-loaded cationic lipid nanoparticles and lontophoresis. J. Biomed. Nanotechnol., 2015, 11(11), 1975-1988.
[102]
Atanasova, S.; Nikolova, B.; Murayama, S.; Stoyanova, E.; Tsoneva, I.; Zhelev, Z.; Aoki, I.; Bakalova, R. Electroinduced delivery of hydrogel nanoparticles in colon 26 cells, visualized by confocal fluorescence system. Anticancer Res., 2016, 36(9), 4601-4606.
[103]
Balazs, B.; Sipos, P.; Danciu, C.; Avram, S.; Soica, C.; Dehelean, C.; Varju, G.; Eros, G.; Budai-Szucs, M.; Berko, S.; Csanyi, E. ATR-FTIR and Raman spectroscopic investigation of the electroporation-mediated transdermal delivery of a nanocarrier system containing an antitumour drug. Biomed. Opt. Express, 2016, 7(1), 67-78.
[104]
Rastogi, R.; Anand, S.; Koul, V. Electroporation of polymeric nanoparticles: An alternative technique for transdermal delivery of insulin. Drug Dev. Ind. Pharm., 2010, 36(11), 1303-1311.
[105]
Rangsimawong, W.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. Mechanistic study of decreased skin penetration using a combination of sonophoresis with sodium fluorescein-loaded PEGylated liposomes with d-limonene. Int. J. Nanomedicine, 2015, 10, 7413-7423.
[106]
Rangsimawong, W.; Opanasopit, P.; Rojanarata, T.; Panomsuk, S.; Ngawhirunpat, T. Influence of sonophoresis on transdermal drug delivery of hydrophilic compound-loaded lipid nanocarriers. Pharm. Dev. Technol., 2017, 22(4), 597-605.
[107]
Zhai, Y.; Zhai, G. Advances in lipid-based colloid systems as drug carrier for topic delivery. J. Control. Release, 2014, 193, 90-99.
[108]
Gungor, S.; Rezigue, M. Nanocarriers mediated topical drug delivery for psoriasis treatment. Curr. Drug Metab., 2017, 18(5), 454-468.
[109]
Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm., 2018, 535(1-2), 1-17.