Antimicrobial Stewardship in the Neonatal Intensive Care Unit: An Update

Page: [47 - 52] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Neonates represent a vulnerable population for infections and neonatal sepsis is a major cause of mortality and morbidity worldwide. Therefore, antimicrobials are the most commonly prescribed drugs in the Neonatal Intensive Care Unit Setting but unfortunately are quite often used inappropriately with various short and long-term effects. The rational use of antimicrobials is of paramount importance in this population and structured antimicrobial stewardship interventions should be in place. These interventions are slightly different from those used in adults and older children due to the particularities of the neonatal medicine. The aim of this review is to provide an update in the field and identify areas for further consideration and future research.

Keywords: Antimicrobial stewardship, neonate, interventions, pathogens, Candida, therapeutic challenges.

[1]
Antimicrobial resistance: Global report on surveillance 2014. WHO2014; Available from: http://www.who.int/drugresistance/ documents/surveillancereport/en/
[2]
Bell BG, Schellevis F, Stobberingh E, Goossens H, Pringle M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis 2014; 14: 13.
[3]
Tzialla C, Borghesi A, Serra G, Stronati M, Corsello G. Antimicrobial therapy in neonatal intensive care unit. Ital J Pediatr 2015; 41: 27.
[4]
Cantey JB, Wozniak PS, Sanchez PJ. Prospective surveillance of antibiotic use in the neonatal intensive care unit: results from the SCOUT study. Pediatr Infect Dis J 2015; 34(3): 267-72.
[5]
Cotten CM, McDonald S, Stoll B, et al. The association of third-generation cephalosporin use and invasive candidiasis in extremely low birth-weight infants. Pediatrics 2006; 118(2): 717-22.
[6]
Kuppala VS, Meinzen-Derr J, Morrow AL, Schibler KR. Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants. J pediatr 2011; 159(5): 720-5.
[7]
Saiman L, Ludington E, Dawson JD, et al. Risk factors for Candida species colonization of neonatal intensive care unit patients. Pediatr Infect Dis J 2001; 20(12): 1119-24.
[8]
Cotten CM, Taylor S, Stoll B, et al. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatr 2009; 123(1): 58-66.
[9]
Lee JH, Hornik CP, Benjamin DK, et al. Risk factors for invasive candidiasis in infants >1500 g birth weight. Pediatr Infect Dis J 2013; 32(3): 222-6.
[10]
Tripathi N, Cotten CM, Smith PB. Antibiotic use and misuse in the neonatal intensive care unit. Clin perinatol 2012; 39(1): 61-8.
[11]
Penders J, Kummeling I, Thijs C. Infant antibiotic use and wheeze and asthma risk: A systematic review and meta-analysis. Eur Respir J 2011; 38(2): 295-302.
[12]
Stone PW, Gupta A, Loughrey M, et al. Attributable costs and length of stay of an extended-spectrum beta-lactamase-producing Klebsiella pneumoniae outbreak in a neonatal intensive care unit. Infect Control Hosp Epidemiol 2003; 24(8): 601-6.
[13]
Gupta A, Della-Latta P, Todd B, et al. Outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit linked to artificial nails. Infect Control Hosp Epidemiol 2004; 25(3): 210-5.
[14]
Verani JR, McGee L, Schrag SJ, et al. Prevention of perinatal group B streptococcal disease--revised guidelines from CDC, 2010. MMWR Recomm Rep 2010; 59(RR-10): 1-36.
[15]
Cotten CM. Antibiotic stewardship: reassessment of guidelines for management of neonatal sepsis. Clin Perinatol 2015; 42(1): 195-206.
[16]
Polin RA, Watterberg K, Benitz W, Eichenwald E. The conundrum of early-onset sepsis. Pediatrics 2014; 133(6): 1122-3.
[17]
Liem TB, Krediet TG, Fleer A, Egberts TC, Rademaker CM. Variation in antibiotic use in neonatal intensive care units in the Netherlands. J Antimicrob Chemother 2010; 65(6): 1270-5.
[18]
Spyridis N, Syridou G, Goossens H, et al. Variation in paediatric hospital antibiotic guidelines in Europe. Arch Dis Childhood 2016; 101(1): 72-6.
[19]
Engle WD, Jackson GL, Sendelbach D, et al. Neonatal pneumonia: comparison of 4 vs 7 days of antibiotic therapy in term and near-term infants. J Perinatol: Official J California Perinatal Association 2000; 20(7): 421-6.
[20]
Gkentzi D, Kortsalioudaki C, Cailes BC, et al. Epidemiology of infections and antimicrobial use in Greek Neonatal Units. Arch Dis Child Fetal Neonatal Ed 2018 Jun 28.; fetalneonatal-2018- 315024..
[21]
Osowicki J, Gwee A, Noronha J, et al. Australia-wide point prevalence survey of antimicrobial prescribing in neonatal units: How much and how good? Pediatr Infect Dis J 2015; 34(8): e185-90.
[22]
Lutsar I, Chazallon C, Carducci FI, et al. Current management of late onset neonatal bacterial sepsis in five European countries. Eur J Pediatr 2014; 173(8): 997-1004.
[23]
Amadeo B, Zarb P, Muller A, et al. European Surveillance of Antibiotic Consumption (ESAC) point prevalence survey 2008: paediatric antimicrobial prescribing in 32 hospitals of 21 European countries. J Antimicrob Chemother 2010; 65(10): 2247-52.
[24]
Alvarez P, Fuentes C, Garcia N, Modesto V. Evaluation of the duration of the antibiotic prophylaxis in paediatric postoperative heart surgery patients. Pediatr cardiol 2012; 33(5): 735-8.
[25]
Knoderer CA, Cox EG, Berg MD, Webster AH, Turrentine MW. Efficacy of limited cefuroxime prophylaxis in pediatric patients after cardiovascular surgery. Am J Health Syst Pharm 2011; 68(10): 909-14.
[26]
Dellit TH, Owens RC, McGowan JE, et al. Infectious diseases society of america and the society for healthcare epidemiology of america guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis 2007; 44(2): 159-77.
[27]
Hyun DY, Hersh AL, Namtu K, et al. Antimicrobial stewardship in pediatrics: how every pediatrician can be a steward. JAMA pediatr 2013; 167(9): 859-66.
[28]
Murki S, Jonnala S, Mohammed F, Reddy A. Restriction of cephalosporins and control of extended spectrum beta-lactamase producing gram negative bacteria in a neonatal intensive care unit. Indian Pediatr 2010; 47(9): 785-8.
[29]
de Araujo OR, da Silva DC, Diegues AR, et al. Cefepime restriction improves gram-negative overall resistance patterns in neonatal intensive care unit. BJID 2007; 11(2): 277-80.
[30]
Calil R, Marba ST, von Nowakonski A, Tresoldi AT. Reduction in colonization and nosocomial infection by multiresistant bacteria in a neonatal unit after institution of educational measures and restriction in the use of cephalosporins. Am J Infect Cont 2001; 29(3): 133-8.
[31]
Franz AR, Bauer K, Schalk A, et al. Measurement of interleukin 8 in combination with C-reactive protein reduced unnecessary antibiotic therapy in newborn infants: A multicenter, randomized, controlled trial. Pediatrics 2004; 114(1): 1-8.
[32]
Couto RC, Barbosa JA, Pedrosa TM, Biscione FM. C-reactive protein-guided approach may shorten length of antimicrobial treatment of culture-proven late-onset sepsis: an intervention study. J Br Soc Infect Dis 2007; 11(2): 240-5.
[33]
Stocker M, Fontana M, El Helou S, Wegscheider K, Berger TM. Use of procalcitonin-guided decision-making to shorten antibiotic therapy in suspected neonatal early-onset sepsis: prospective randomized intervention trial. Neonatology 2010; 97(2): 165-74.
[34]
Stocker M, van Herk W, El Helou S, Dutta S, Fontana MS, Schuerman FABA, et al. Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: A multicentre, randomised controlled trial (NeoPIns). Lancet 2017; 390(10097): 871-81.
[35]
Gkentzi D, Dimitriou G. Procalcitonin use for shorter courses of antibiotic therapy in suspected early-onset neonatal sepsis: Are we getting there? J Thorac Dis 2017; 9(12): 4899-902.
[36]
Labenne M, Michaut F, Gouyon B, Ferdynus C, Gouyon JB. A population-based observational study of restrictive guidelines for antibiotic therapy in early-onset neonatal infections. Pediatr Infect Dis J 2007; 26(7): 593-9.
[37]
Zingg W, Pfister R, Posfay-Barbe KM, Huttner B, Touveneau S, Pittet D. Secular trends in antibiotic use among neonates: 2001-2008. Pediatr Infect Dis J 2011; 30(5): 365-70.
[38]
Chiu CH, Michelow IC, Cronin J, Ringer SA, Ferris TG, Puopolo KM. Effectiveness of a guideline to reduce vancomycin use in the neonatal intensive care unit. Pediatr Infect Dis J 2011; 30(4): 273-8.
[39]
Schelonka RL, Chai MK, Yoder BA, Hensley D, Brockett RM, Ascher DP. Volume of blood required to detect common neonatal pathogens. J pediatr 1996; 129(2): 275-8.
[40]
Polin RA. Committee on F, Newborn. Management of neonates with suspected or proven early-onset bacterial sepsis. Pediatrics 2012; 129(5): 1006-15.
[41]
Connell TG, Rele M, Cowley D, Buttery JP, Curtis N. How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children’s hospital. Pediatrics 2007; 119(5): 891-6.
[42]
Stoll BJ, Hansen NI, Sanchez PJ, et al. Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics 2011; 127(5): 817-26.
[43]
Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 62(4): e1-e50.
[44]
Kumar Y, Qunibi M, Neal TJ, Yoxall CW. Time to positivity of neonatal blood cultures. Arch Dis Childhood Fetal Neonatal Ed 2001; 85(3): F182-6.
[45]
McDanel JS, Perencevich EN, Diekema DJ, et al. Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections among 122 hospitals. Clin Infect Dis 2015; 61(3): 361-7.
[46]
Rybak MJ, Lomaestro BM, Rotschafer JC, et al. Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis 2009; 49(3): 325-7.
[47]
Kim J, Walker SA, Iaboni DC, et al. Determination of vancomycin pharmacokinetics in neonates to develop practical initial dosing recommendations. Antimicrob Chemother 2014; 58(5): 2830-40.
[48]
Gwee A, Cranswick N, Metz D, et al. Neonatal vancomycin continuous infusion: still a confusion? Pediatr Infect Dis J 2014; 33(6): 600-5.
[49]
Zhao W, Lopez E, Biran V, Durrmeyer X, Fakhoury M, Jacqz-Aigrain E. Vancomycin continuous infusion in neonates: Dosing optimisation and therapeutic drug monitoring. Arch Dis Child 2013; 98(6): 449-53.
[50]
Shabaan AE, Nour I, Elsayed Eldegla H, Nasef N, Shouman B, Abdel-Hady H. Conventional Versus Prolonged Infusion of Meropenem in Neonates With Gram-negativeLate-onset Sepsis: A Randomized Controlled Trial. Pediatr Infect Dis J 2017; 36(4): 358-63.
[51]
Valcourt K, Norozian F, Lee H, Raszynski A, Torbati D, Totapally BR. Drug use density in critically ill children and newborns: analysis of various methodologies. Pediatr Crit Care Med 2009; 10(4): 495-9.