Isolation of Cardamonin and Pinostrobin Chalcone from the Rhizomes of Boesenbergia rotunda (L.) Mansf. and their Cytotoxic Effects on H-29 and MDA-MB-231 Cancer Cell Lines

Page: [341 - 348] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Breast cancer and human colon cancer are the most common types of cancer in females and males, respectively. Breast cancer is the most common type of cancer after lung and colon cancers. Natural products are an important source for drug discovery. Boesenbergia rotunda (L.) Mansf. is commonly known as finger root, belonging to the Zingiberaceae family.

Objective: The aim of this study to isolate some natural compounds from the rhizomes of B. rotunda (L.) Mansf., and to investigate their cytotoxicity against the human triple-negative breast cancer cell (MDA-MB-231) and HT-29 colon cancer cell lines.

Methods: The dried rhizomes of B. rotunda were extracted with methanol. The methanolic extract was further used for solvent-solvent extraction. Bioassay-guided extraction and isolation of the rhizomes of the B. rotunda exhibited cytotoxic properties of hexane and dichloromethane fractions.

Results: Six major chemical constituents, pinostrobin (1), pinostrobin chalcone (2), cardamonin (3), 4,5-dihydrokawain (4), pinocembrin (5), and alpinetin (6) were isolated from the rhizomes of the B. rotunda. All the chemical constituents were screened against the human triple-negative breast cancer cell (MDA-MB-231) and HT-29 colon cancer cell lines. The compound cardamonin (3) (IC50 = 5.62±0.61 and 4.44±0.66 µg/mL) and pinostrobin chalcone (2), (IC50 = 20.42±2.23 and 22.51±0.42 μg/mL) were found to be potent natural cytotoxic compounds against MDA-MB-231 and HT-29 colon cancer cell lines, respectively.

Conclusion: Cardamonin (3) and pinostrobin chalcone (2) were found to be the most potential natural compounds against breast cancer cell line MDA-MB-231 and colon cancer HT-29 cell line.

Keywords: B. rotund (L.) Mansf., cytotoxic effects, H-29 and MDA-MB-231 cancer cell lines, molecular docking studies, colon cancer, breast cancer.

Graphical Abstract

[1]
Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer, 2003, 3(10), 768-780.
[http://dx.doi.org/10.1038/nrc1189] [PMID: 14570043]
[2]
Sung, J.J.; Lau, J.Y.; Goh, K.L.; Leung, W.K. Increasing incidence of colorectal cancer in Asia: Implications for screening. Lancet Oncol., 2005, 6(11), 871-876.
[http://dx.doi.org/10.1016/S1470-2045(05)70422-8] [PMID: 16257795]
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[4]
Mcguire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv. Nutr., 2016, 7(2), 418-419.
[http://dx.doi.org/10.3945/an.116.012211] [PMID: 26980827]
[5]
Eng-Chong, T.; Yean-Kee, L.; Chin-Fei, C.; Choon-Han, H.; Sher-Ming, W.; Li-Ping, C.T.; Gen-Teck, F.; Khalid, N.; Abd Rahman, N.; Karsani, S.A.; Othman, S.; Othman, R.; Yusof, R. Boesenbergia rotunda: From ethnomedicine to drug discovery. Evid. Based Complement. Alternat. Med., 2012, 2012473637
[http://dx.doi.org/10.1155/2012/473637] [PMID: 23243448]
[6]
Chan, E.W.C.; Lim, Y.Y.; Wong, S.K. Antioxidant properties of ginger leaves: An overview. Free Radic. Antioxid., 2011, 1, 1-16.
[7]
Chahyadi, A.; Hartati, R.; Wirasutisna, K.R. Boesenbergia pandurata Roxb. An Indonesian medicinal plant: Phytochemistry, biological activity, plant biotechnology. International Seminar on Natural Product Medicines. Procedia Chem., 2014, 13, 13-37.
[http://dx.doi.org/10.1016/j.proche.2014.12.003]
[8]
Taweechaisupapong, S.; Singhara, S.; Lertsatitthanakorn, P.; Khunkitti, W. Antimicrobial effects of Boesenbergia pandurata and Piper sarmentosum leaf extracts on planktonic cells and biofilm of oral pathogens. Pak. J. Pharm. Sci., 2010, 23(2), 224-231.
[PMID: 20363704]
[9]
Suwito, H.; Jumina, M.; Kristanti, A.N.; Puspaningsih, N.N. Chalcones: Synthesis, structure diversity and pharmacological aspects. J. Chem. Pharm. Res., 2014, 6(5), 1076-1088.
[10]
Bakar, A.A.; Akhtar, M.N.; Mohd, A.N.; Yeap, S.K.; Quah, C.K.; Loh, W.S.; Alitheen, N.B.; Zareen, S.; Ul-Haq, Z.; Shah, S.A.A. Design, synthesis and docking studies of Flavokawain B type chalcones and their cytotoxic effects on MCF-7 and MDA-MB-231 cell lines. Molecules, 2018, 23(3, 616), 1-14.,
[11]
Abd, K.S.L.; Yaakob, H.; Zulkifli, R.M. Potential anti-dengue medicinal plants: A review. Springer, 2018, 67, 677-689.
[12]
Phukerd, U.; Soonwera, M. Larvicidal and pupicidal activities of essential oils from Zingiberaceae plants against Aedes aegypti (Linn.) And Culex quinquefasciatus say mosquitoes. Southeast Asian J. Trop. Med. Public Health, 2013, 44(5), 761-771.
[PMID: 24437311]
[13]
Sukari, M.A.; Ching, A.Y.L.; Lian, G.C.; Rahmani, M.; Khalid, K. Cytotoxic constituents from Boesenbergia Pandurata (Roxb.) Schltr. Nat. Prod. Sci., 2007, 13, 110-113.
[14]
Cheenpracha, S.; Karalai, C.; Ponglimanont, C.; Subhadhirasakul, S.; Tewtrakul, S. Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata. Bioorg. Med. Chem., 2006, 14(6), 1710-1714.
[http://dx.doi.org/10.1016/j.bmc.2005.10.019] [PMID: 16263298]
[15]
Tewtrakul, S.; Subhadhirasakul, S.; Karalai, C.; Ponglimanont, C.; Cheenpracha, S. Anti-inflammatory effects of compounds from Kaempferia parviflora and Boesenbergia pandurate. Food Chem., 2009, 115, 534-538.
[http://dx.doi.org/10.1016/j.foodchem.2008.12.057]
[16]
Veettil, S.K.; Lim, K.G.; Chaiyakunapruk, N.; Ching, S.M.; Abu Hassan, M.R. Colorectal cancer in Malaysia: Its burden and implications for a multiethnic country. Asian J. Surg., 2017, 40(6), 481-489.
[http://dx.doi.org/10.1016/j.asjsur.2016.07.005] [PMID: 27492344]
[17]
Voon, F.L.; Sulaiman, M.R.; Akhtar, M.N.; Idris, M.F.; Akira, A.; Perimal, E.K.; Israf, D.A.; Ming-Tatt, L. Cardamonin (2′,4′-dihydroxy-6′-methoxychalcone) isolated from Boesenbergia rotunda (L.) Mansf. Inhibits CFA-induced rheumatoid arthritis in rats. Eur. J. Pharmacol., 2017, 794, 127-134.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.009] [PMID: 27845065]
[18]
Itokawa, H.; Morita, M.; Mihashi, S. Phenolic compounds from the rhizomes of Alpznia speczosa. Phytochemistry, 1981, 20, 2503-2506.
[http://dx.doi.org/10.1016/0031-9422(81)83082-8]
[19]
Junior, W.A.R.; Gomes, D.B.; Zanchet, B.; Schönell, A.P.; Diel, K.A.P.; Banzato, T.P.A.; Ruiz, L.T.G.; Carvalho, J.E.; Neppel, A.; Barison, A.; Santos, C.A.M. Antiproliferative effects of pinostrobin and 5,6-dehydrokavain isolated from leaves of Alpinia zerumbet. Rev. Bras. Farmacogn., 2017, 27, 592-598.
[http://dx.doi.org/10.1016/j.bjp.2017.05.007]
[20]
Sirat, H.M.; Rahman, A.A.; Itokawa, H.; Morita, H. Constituents of the rhizomes of two Alpinia species of Malaysia. Planta Med., 1996, 62(2), 188-189.
[http://dx.doi.org/10.1055/s-2006-957857] [PMID: 17252439]
[21]
Ching, A.Y.L.; Wah, T.S.; Sukari, M.A.; Lian, G.E.C.; Rahmani, M.; Khalid, K. Characterization of flavonoid derivatives from Boesenbergia Rotunda (L.). Malays. J. Anal. Sci., 2007, 11, 154-159.
[22]
Lin, C.T.; Senthil Kumar, K.J.; Tseng, Y.H.; Wang, Z.J.; Pan, M.Y.; Xiao, J.H.; Chien, S.C.; Wang, S.Y. Anti-inflammatory activity of Flavokawain B from Alpinia pricei Hayata. J. Agric. Food Chem., 2009, 57(14), 6060-6065.
[http://dx.doi.org/10.1021/jf900517d] [PMID: 19537711]
[23]
Morikawa, T.; Funakoshi, K.; Ninomiya, K.; Yasuda, D.; Miyagawa, K.; Matsuda, H.; Yoshikawa, M. Medicinal foodstuffs. XXXIV. Structures of new prenylchalcones and prenylflavanones with TNF-α and aminopeptidase N inhibitory activities from Boesenbergia rotunda. Chem. Pharm. Bull. (Tokyo), 2008, 56(7), 956-962.
[http://dx.doi.org/10.1248/cpb.56.956] [PMID: 18591809]
[24]
Jiang, R.W.; He, Z.D.; But, P.P.H.; Chan, Y.M.; Ma, S.C.; Mak, T.C.W. A novel 1:1 complex of potassium mikanin-3-O-sulfate with methanol. Chem. Pharm. Bull. (Tokyo), 2001, 49(9), 1166-1169.
[http://dx.doi.org/10.1248/cpb.49.1166] [PMID: 11558604]
[25]
Atun, S.; Arianingrum, R.; Sulistyowati, E.; Aznam, N. Isolation and antimutagenic activity of some flavanone compounds from Kaempferia rotund. Int. J. Chem. Anal. Sci., 2013, 4, 3-8.
[http://dx.doi.org/10.1016/j.ijcas.2013.03.004]
[26]
Abu, N.; Akhtar, M.N.; Yeap, S.K.; Lim, K.L.; Ho, W.Y.; Zulfadli, A.J.; Omar, A.R.; Sulaiman, M.R.; Abdullah, M.P.; Alitheen, N.B. Flavokawain A induces apoptosis in MCF-7 and MDA-MB231 and inhibits the metastatic process in vitro. Plos One, 2014, 9(10)e105244
[http://dx.doi.org/10.1371/journal.pone.0105244] [PMID: 25286005]
[27]
Zamrus, S.N.H.; Akhtar, M.N.; Yeap, S.K.; Quah, C.K.; Loh, W.S.; Alitheen, N.B.; Zareen, S.; Tajuddin, S.N.; Hussin, Y.; Shah, S.A.A. Design, synthesis and cytotoxic effects of curcuminoids on hela, K562, MCF-7 and MDA-MB-231 cancer cell lines. Chem. Cent. J., 2018, 12(1), 31-37.
[http://dx.doi.org/10.1186/s13065-018-0398-1] [PMID: 29556774]
[28]
Akhtar, M.N.; Zareen, S.; Yeap, S.K.; Ho, W.Y.; Lo, K.M.; Hasan, A.; Alitheen, N.B. Total synthesis, cytotoxic effects of damnacanthal, nordamnacanthal and related anthraquinone analogues. Molecules, 2013, 18(8), 10042-10055.
[http://dx.doi.org/10.3390/molecules180810042] [PMID: 23966087]
[29]
Akhtar, M.N.; Salim, L.Z.A.; Yeap, S.K.; Abu, N.; Zareen, S.; Lo, K.M.; Bakar, A.A.; Alitheen, N.B. Synthesis and cytotoxic effects of (E)-3-(2,3-dimethoxyphenyl)-1-(5-methylfuran-2-yl) prop-2-en-1-one in MDA-MB231 and MCF-7 breast cancer cell line. Phytochem. Lett., 2017, 19, 145-150.
[http://dx.doi.org/10.1016/j.phytol.2016.12.022]
[30]
Molecular Operating Environment (MOE). Chemical Computing Group Inc., 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7.08, 2016
[31]
Halgren, T. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem., 1996, 490-519.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490: AID-JCC1>3.0.CO;2-P]
[32]
Lagunin, A.; Stepanchikova, A.; Filimonov, D.V. Poroikov PASS: Prediction of activity spectra for biologically active substances. Bioinformatics, 2000, 16, 747-748.
[http://dx.doi.org/10.1093/bioinformatics/16.8.747]
[33]
Yang, X.H.; Sladek, T.L.; Liu, X.; Butler, B.R.; Froelich, C.J.; Thor, A.D. Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res., 2001, 61(1), 348-354.
[PMID: 11196185]
[34]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[35]
Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res., 2015, 43(W1)W443-7
[http://dx.doi.org/10.1093/nar/gkv315] [PMID: 25873628]