Current Pharmaceutical Analysis

Author(s): Fatma Ağın*

DOI: 10.2174/1573412915666190114154434

Voltammetric Determination of Guaifenesin in Pharmaceuticals and Urine Samples Based on Poly(Bromocresol Purple) Modified Glassy Carbon Electrode

Page: [633 - 639] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Introduction: The electro-oxidation behavior of expectorant drug Guaifenesin (GUF) was studied on poly(bromocresol purple) modified Glassy Carbon Electrode (GCE) by Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) methods.

Materials and Methods: GCE was modified with electropolymerization of Bromocresol Purple (BP) monomer for sensitive determination of GUF with voltammetric methods. The oxidation process of GUF showed irreversible and diffusion controlled behavior. The linearity has been obtained in the range from 1.00 × 10-7 to 2.00 × 10-5 M with the limit of detection 3.658 × 10-9 M for DPV in 0.1 M phosphate buffer solution (PBS) at pH 3.0.

Results and Conclusion: Fully validated differential pulse voltammetry was successfully applied for the determination of GUF in pharmaceutical dosage forms and urine samples obtained satisfying results.

Keywords: Determination, guaifenesin, modified glassy carbon electrode, pharmaceuticals, poly(bromocresol purple), urine, voltammetry.

Graphical Abstract

[1]
Sherrington, L.A.; Sherrington, A. Guaifenesin. Analytical Profiles of Drug Substances and Excipients, 1998, 1998(25), 121-164.
[http://dx.doi.org/10.1016/S0099-5428(08)60754-6]
[2]
Vasudevan, M.; Ravisankar, S.; Sathiyanarayanan, A.; Chandan, R.S. Simultaneous estimation of phenylpropanolamine HCl, guaiphenesin and diphenylpyraline HCl in syrups by LC. J. Pharm. Biomed. Anal., 2000, 24(1), 25-31.
[http://dx.doi.org/10.1016/S0731-7085(00)00385-X] [PMID: 11108536]
[3]
Wilcox, M.L.; Stewart, J.T. HPLC determination of guaifenesin with selected medications on underivatized silica with an aqueous-organic mobile phase. J. Pharm. Biomed. Anal., 2000, 23(5), 909-916.
[http://dx.doi.org/10.1016/S0731-7085(00)00359-9] [PMID: 11022915]
[4]
Elkady, E.F. Simultaneous determination of diclofenac potassium and methocarbamol in ternary mixture with guaifenesin by reversed phase liquid chromatography. Talanta, 2010, 82(4), 1604-1607.
[http://dx.doi.org/10.1016/j.talanta.2010.07.024] [PMID: 20801380]
[5]
Patil, H.; Sonawane, S.; Gide, P. Determination of guaifenesin from spiked human plasma using RP-HPLC with UV detection. J. Anal. Chem., 2014, 69(4), 390-394.
[http://dx.doi.org/10.1134/S1061934814040030]
[6]
Sharaf, M.H.M.; Stiff, D.D. Determination of guaifenesin in human serum by capillary gas chromatography and electron capture detection. J. Pharm. Biomed. Anal., 2004, 35(4), 801-806.
[http://dx.doi.org/10.1016/j.jpba.2004.01.028] [PMID: 15193724]
[7]
Sailaja, G.; Babu, H.B. A Validated High Performance Liquid Chromatography Method for the Simultaneous Analysis of Guaifenesin, Ambroxol and Loratidine in Bulk and Liquid Dosage form. J. Appl. Pharm. Sci., 2015, 5(12), 61-66.
[http://dx.doi.org/10.7324/JAPS.2015.501210]
[8]
Hegazy, M.A.; Boltia, S.A.; Fayed, A.S.; Musaed, A. Advanced chemometrics manipulation of UV-spectroscopic data for determination of three co-formulated drugs along with their impurities in different formulations using variable selection and regression model updating. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 202(202), 359-367.
[http://dx.doi.org/10.1016/j.saa.2018.05.038] [PMID: 29803974]
[9]
Abdallah, O.S. Spectrophotometric method for quantitation of guaifenesin and dropropizine in their dosage forms. Int. J. Anal. Chem. Article ID, 2010, 704564, 1-5.
[10]
Zaabal, M.; Doulache, M.; Bakırhan, N.K.; Kaddour, S.; Saidat, B.; Ozkan, S.A. A Facile Strategy for Construction of Sensor for Detection of Ondansetron and Investigation of its Redox Behavior and Thermodynamic Parameters. Electroanalysis, 2018, 30.
[11]
Hadi, M. Electrochemical determination of guaifenesin in a pharmaceutical formulation and human urine based on an anodized nanocrystalline graphite-like pyrolytic carbon film electrode. Anal. Methods, 2015, 7(20), 8778-8785.
[http://dx.doi.org/10.1039/C5AY02142A]
[12]
Gholivand, M.B.; Khodadadian, M. Simultaneous voltammetric determination of theophylline and guaifenesin using a multiwalled carbon nanotube‐ıonic liquid modified glassy carbon electrode. Electroanalysis, 2014, 26(9), 1975-1983.
[http://dx.doi.org/10.1002/elan.201400218]
[13]
Gholivand, M.B.; Azadbakht, A.; Pashabadi, A. An Electrochemical sensor based on carbon nanotube bimetallic au-pt ınorganic-organic nanofiber hybrid nanocomposite electrode applied for detection of guaifenesin. Electroanalysis, 2011, 23(12), 2771-2779.
[http://dx.doi.org/10.1002/elan.201100381]
[14]
Tapsoba, I.; Belgaied, J.E.; Boujlel, K. Voltammetric assay of Guaifenesin in pharmaceutical formulation. J. Pharm. Biomed. Anal., 2005, 38(1), 162-165.
[http://dx.doi.org/10.1016/j.jpba.2004.11.056] [PMID: 15907635]
[15]
Lei, W.; Si, W.; Xu, Y.; Gu, Z.; Hao, Q. Conducting polymer composites with graphene for use in chemical sensors and biosensors. Mikrochim. Acta, 2014, 181(7-8), 707-722.
[http://dx.doi.org/10.1007/s00604-014-1160-6]
[16]
Shrestha, S.; Mascarenhas, R.J.; D’Souza, O.J.; Satpati, A.K.; Mekhalif, Z.; Dhason, A.; Martis, P. Amperometric sensor based on multi-walled carbon nanotube and poly (Bromocresol purple) modified carbon paste electrode for the sensitive determination of L-tyrosine in food and biological samples. J. Electroanal. Chem. , 2016, 2016(778), 32-40.
[http://dx.doi.org/10.1016/j.jelechem.2016.08.010]
[17]
Guha, K.S.; Mascarenhas, R.J.; Thomas, T.; D’Souza, O.J. Differential pulse anodic stripping voltammetric determination of Hg2+ at poly(Eriochrome Black T)-modified carbon paste electrode. Ionics, 2014, 20(6), 849-856.
[http://dx.doi.org/10.1007/s11581-013-1040-9]
[18]
Roy, P.R.; Okajima, T.; Ohsaka, T. Simultaneous electroanalysis of dopamine and ascorbic acid using poly (N,N-dimethylaniline)-modified electrodes. Bioelectrochemistry, 2003, 59(1-2), 11-19.
[http://dx.doi.org/10.1016/S1567-5394(02)00156-1] [PMID: 12699814]
[19]
Wang, Y.; Tong, L. Electrochemical sensor for simultaneous determination of uric acid, xanthine and hypoxanthine based on poly (bromocresol purple) modified glassy carbon electrode. Sens. Actuators B Chem., 2010, 150(1), 43-49.
[http://dx.doi.org/10.1016/j.snb.2010.07.044]
[20]
Zhang, R.; Liu, S.; Wang, L.; Yang, G. Electroanalysis of ascorbic acid using poly(bromocresol purple) film modified glassy carbon electrode. Measurement, 2013, 46(3), 1089-1093.
[http://dx.doi.org/10.1016/j.measurement.2012.11.007]
[21]
Yang, G.; Yan, J.; Qi, F.; Sun, C. High sensitivity and reproducibility of a bismuth/poly(bromocresol purple) film modified glassy carbon electrode for determination of trace amount of cadmium by differential pulse anodic stripping voltammetry. Electroanalysis, 2010, 22(22), 2729-2738.
[http://dx.doi.org/10.1002/elan.201000260]
[22]
Koçak, S.; Aslışen, B. Hydrazine oxidation at gold nanoparticles and poly(bromocresol purple) carbon nanotube modified glassy carbon electrode. Sens. Actuators B Chem., 2014, 2014(196), 610-618.
[http://dx.doi.org/10.1016/j.snb.2014.02.061]
[23]
Ghica, M.E.; Brett, C.M.A. Poly(brilliant cresyl blue) modified glassy carbon electrodes: electrosynthesis, characterisation and application in biosensors. J. Electroanal. Chem., 2009, 629(1-2), 35-42.
[http://dx.doi.org/10.1016/j.jelechem.2009.01.019]
[24]
Laviron, E.; Roullier, L.; Degrand, C. A multilayer model for the study of space distributed redox modified redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction. J. Electroanal. Chem., 1980, 112(1), 11-23.
[http://dx.doi.org/10.1016/S0022-0728(80)80003-9]
[25]
Riley, C.M.; Rosanske, T.W. Development and validation of analytical methods; Elsevier Science Ltd.: New York, 1996.
[26]
Ermer, J.; Miller, J.H. Method validation in pharmaceutical analysis; Veinheim: Wiley-VCH: New York, 2005.
[http://dx.doi.org/10.1002/3527604685]