Fibrinolytic Activity of Two Polypeptide Chains from Human Plasminogen#

Page: [277 - 281] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Background: Plasminogen is a blood plasma glycoprotein of molecular weight about 92,000 Daltons. Physiologically, it incorporates into blood clots and after its activation by plasminogen activators to plasmin can perform a fibrinolytic function. Microplasmin is truncate polypeptide chain derivate of plasmin may be increase the fibrinolytic activity.

Objective: To study the amino acid sequence of two polypeptides chains derivate to the plasminogen with fibrinolytic activity.

Methods: The two polypeptides chains were prepared by isoelectric precipitation of human plasma in sodium borate buffer. The sample in a second step was subjected to affinity and ionic interchange chromatography and denaturalized electrophoresis was carried out on the sample previous heat 70ºC.

Results: Two polypeptide chains of 29.000 and 35.000 Daltons by autolysis controlled were obtained with 25 UI of fibrinolytic activity in fibrin plate.

Conclusion: Microplasmin was obtained with cleavage in different amino acid bounds and rearrangement of amino acids by autolysis with controlled alkaline precipitation.

Keywords: Plasminogen, plasmin, fibrinolytic activity, fibrin, amino acid sequence, microplasmin.

Graphical Abstract

[1]
De Marco, A.; Hochschwender, S.M.; Laursen, R.A.L.; Linas, M. Human plasminogen. Proton NMR studies on kringle 1. J. Biol. Chem., 1982, 257(21), 12716-12721.
[2]
Aisina, R.B.; Mukhametova, L.I. Structure and functions of plasminogen/plasmin system. Bioorg. Khim., 2014, 40(6), 642-657.
[3]
Law, R.H.; Abu-Ssaydeh, D.W.; Hisstock, J.C. New insights into the structure and function of the plasminogen/plasmin system. Curr. Opin. Struct. Biol., 2013, 23(6), 836-841.
[4]
Aguda, R.; Caronna, A.; Hunt, J.; Koepf, E.; Lindsay, M.; Miller, C.; Rebbeor, J.; Silverstein, R.; Stokes, K.; Zimmerman, T. Production and purification of TAL6003: A novel version of the protease plasmin. Protein Expr. Purif., 2013, 88(1), 41-46.
[5]
Nagai, N.; Demarsin, E.; Van Hoef, B.; Wouters, S.; Cingolani, D.; Laroche, Y.; Collen, D. Recombinant human microplasmin: Production and potential therapeutic properties. J. Thromb. Haemost., 2003, 1(2), 307-313.
[6]
Shi, G.Y.; Wu, H.L. Isolation and characterization of microplasminogen. J. Biol. Chem., 1988, 283(32), 17071-17075.
[7]
Wu, H.L.; Shi, G.Y.; Wohl, R.C.; Bender, M.L. Structure and formation of microplasmin. Proc. Natl. Acad. Sci. USA, 1987, 84(24), 8793-8795.
[8]
Liu, R.; Zhao, B.; Zhang, Y.; Gu, J.; Yu, M.; Song, H.; Min, Y.; Wei, M. High-level expression, purification, and enzymatic characterization of truncated human plasminogen (Lys531-Asn791) in the methylotrophic yeast Pichia pastoris. BMC Biotechnol., 2015, 15(50), 50.
[9]
Hunt, J.A.; Petteway, S.R., Jr; Scuderi, P.; Novokhatny, V. Simplified recombinant plasmin: production and functional comparison of a novel thrombolytic molecule with plasma-derived plasmin. Thromb. Haemost., 2008, 100(3), 413-419.
[10]
Jespersen, J.; Astrup, T. A study of the fibrin plate assay of fibrinolytic agents. Optimal conditions, reproducibility and precision. Haemostasis, 1983, 13(5), 301-315.
[11]
Choi, N.S.; Hahm, J.H.; Maeng, P.J.; Kim, S.H. Comparative study of enzyme activity and stability of bovine and human plasmins in electrophoretic reagents, beta-mercaptoethanol, DTT, SDS, Triton X-100, and urea. J. Biochem. Mol. Biol., 2005, 38(2), 177-181.