Effects of CYP2C8 and SLCO1B1 Genetic Polymorphisms on Repaglinide Pharmacokinetics: A Systematic Review and Meta-Analysis

Page: [266 - 274] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Objective: The purpose of this systematic review and meta-analysis was to summarize the potential impact of CYP2C8 and SLCO1B1 genetic polymorphisms on repaglinide pharmacokinetics.

Methods: A systematic search was conducted using electronic databases. Eligible studies reported data from pharmacokinetic evaluations of repaglinide in healthy adults according to different categories of CYP2C8 and SLCO1B1 genetic polymorphisms.

Results: Six studies including a total of 191 participants met the inclusion criteria. We noted that CYP2C8 *1/*3 carriers exhibited lower AUC(0-∞) (SMD: -0.77; 95%CI: -1.23 to -0.30; P=0.001) and Cmax (SMD: -0.94; 95%CI: - 1.41 to -0.47; P<0.001) than CYP2C8 *1/*1 carriers. There were no significant differences in AUC(0-∞), Cmax, t1/2 and mean change in blood glucose concentration between *1/*4 and *1/*1 carriers. Further, *3/*3 carriers had lower Cmax (SMD: -1.42; 95%CI: -2.66 to -0.17; P=0.026) than *1/*1 carriers. Additionally, *3/*3 carriers had lower Cmax than *1/*3 carriers (SMD: -1.20; 95%CI: -2.40 to -0.00; P=0.050). Finally, we noted that repaglinide pharmacokinetics did not differ by SLCO1B1 genotype.

Conclusion: The current systematic review and meta-analysis indicated that the genotype of CYP2C8, but not SLCO1B1, may affect repaglinide pharmacokinetics. However, because of the comparatively insufficient number of published studies included, our conclusions require support from additional studies.

Keywords: Repaglinide, T2DM, CYP2C8, SLCO1B1, metabolism, pharmacokinetics.

Graphical Abstract

[1]
Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract., 2010, 87, 4-14.
[2]
Shi, Y.; Hu, F.B. The global implications of diabetes and cancer. Lancet, 2014, 383, 1947-1948.
[3]
Nishimura, A.; Usui, S.; Kumashiro, N.; Uchino, H.; Yamato, A.; Yasuda, D.; Nagasawa, K.; Okubo, M.; Mori, Y.; Hirose, T. Efficacy and added to sitagliptin in Japanese patients with type 2 repaglinide safety of diabetes: A randomized 24-week open-label clinical trial. Endocr. J., 2016, 63, 1087-1098.
[4]
Yin, J. Deng, H.; Qin, S.; and metformin repaglinide Tang, W.; Zeng, L.; Zhou, B. Comparison of type 2 diabetes: a meta-analysis of randomized versus metformin alone for controlled trials. Diabetes Res. Clin. Pract., 2014, 105, e10-e15.
[5]
Natrass, M. Repaglinide: A novel oral antidiabetic agent. Hosp. Med., 2000, 61, 112-115.
[6]
Hatorp, V.; Hansen, K.T.; Thomsen, M.S. Influence of drugs interacting with CYP3A4 on the pharmacokinetics, pharmacodynamics and safety of the prandial glucose regulator repaglinide. J. Clin. Pharmacol., 2003, 43, 649-660.
[7]
Hatorp, V. Clinical pharmacokinetics and pharmacodynamics of repaglinide. Clin. Pharmacokinet., 2002, 41, 471-483.
[8]
Scott, L.J. Repaglinide: a review of its use in Type 2 diabetes mellitus. Drugs, 2012, 72, 249-272.
[9]
Konig, J.; Cui, Y.; Nies, A.T.; Keppler, D. A novel human organicanion transporting polypeptide localized to the basolateral 45 hepatocyte membrane. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 278, G156-G164.
[10]
Niemi, M.; Backman, J.T. kajosaari, L.I.; Leathart, J.B.; Neuvonen, M.; Daly, A.K.; Eichelbaum, M.; Kivistö, K.T.; Neuvonen, P.J. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin. Pharmacol. Ther., 2005, 77, 468-478.
[11]
Kirchheiner, J.; Roots, I.; Goldammer, M.; Rosenkranz, B.; Brockmöller, J. Effect of Genetic Polymorphisms in Cytochrome P450 (CYP) 2C9 and CYP2C8 on the Pharmacokinetics of Oral Antidiabetic Drugs. Clin. Pharmacokinet., 2005, 44, 1209-1225.
[12]
Bidstrup, T.B.; Bjørnsdottir, I.; Sidelmann, U.G.; Thomsen, M.S.; Hansen, K.T. CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br. J. Clin. Pharmacol., 2003, 56, 305-314.
[13]
Zhu, J.; Song, M.; Tan, H.Y.; Huang, L.H.; Huang, Z.J.; Liu, C.; Fu, Z.M.; Huang, Y.Y.; Tan, Z.R.; Chen, X.P.; Yuan, H.; Yang, G.P. Effect of pitavastatin in different SLCO1B1 backgrounds on repaglinide pharmacokinetics and pharmacodynamics in healthy Chinese male. Pak. J. Pharm. Sci., 2013, 2, 577-584.
[14]
Kalliokoski, A.; Backman, J.T.; Kurkinen, K.J.; Neuvonen, P.J.; Niemi, M. Effects of gemfibrozil and atorvastatin on the pharmacokinetics of repaglinide in relation to SLCO1B1 polymorphism. Clin. Pharmacol. Ther., 2008, 84, 488-496.
[15]
Niemi, M.; Schaeffeler, E.; Lang, T.; Fromm, M.F.; Neuvonen, M.; Kyrklund, C.; Backman, J.T.; Kerb, R.; Schwab, M.; Neuvonen, P.J.; Eichelbaum, M.; Kivistö, K.T. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics, 2004, 14, 429-440.
[16]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Open Med., 2009, 3, e123-e130.
[17]
The Ottawa Hospital Research Institute. The Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomized studies in meta-analysis. Ottawa Hospital Research Institute, 2000.http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm
[18]
DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials, 1986, 7, 177-188.
[19]
Ades, A.E.; Lu, G.; Higgins, J.P. The interpretation of random-effects meta-analysis in decision models. Med. Decis. Making, 2005, 25, 646-654.
[20]
Deeks, J.J.; Higgins, J.P.T.; Altman, D.G. Analyzing data and undertaking meta-analyses. In: Cochrane Handbook for Systematic Reviews of Interventions 5.1.0 chap 9; Higgins, J.; Green, S. Ed.; The Cochrane Collaboration 2011.
[21]
Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ, 2003, 327, 557-560.
[22]
Egger, M. Davey, Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ, 1997, 315, 629-634.
[23]
Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics, 1994, 50, 1088-1101.
[24]
Tomalik-Scharte, D.; Fuhr, U.; Hellmich, M.; Frank, D.; Doroshyenko, O.; Jetter, A.; Stingl, J.C. Effect of the CYP2C8 genotype on the pharmacokinetics and pharmacodynamics of repaglinide. Drug Metab. Dispos., 2011, 39, 927-932.
[25]
Niemi, M.; Leathart, J.B.; Neuvonen, M.; Backman, J.T.; Daly, A.K.; Neuvonen, P.J. Polymorphism in CYP2C8 is associated with reduced plasma concentrations of repaglinide. Clin. Pharmacol. Ther., 2003, 74, 380-387.
[26]
Kalliokoski, A.; Backman, J.T.; Neuvonen, P.J.; Niemi, M. Effects of the SLCO1B1*1B haplotype on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide. Pharmacogenet. Genomics, 2008, 18, 937-942.
[27]
Kalliokoski, A.; Neuvonen, M.; Neuvonen, P.J.; Niemi, M. Different Effects of SLCO1B1 polymorphism on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide. J. Clin. Pharmacol., 2008, 48, 311-321.
[28]
He, J.; Qiu, Z.; Li, N.; Yu, Y.; Lu, Y.; Han, D.; Li, T.; Zhao, D.; Sun, W.; Fang, F.; Zheng, J.; Fan, H.; Chen, X. Effects of SLCO1B1 polymorphisms on the pharmacokinetics and pharmacodynamics of repaglinide in healthy Chinese volunteers. Eur. J. Clin. Pharmacol., 2011, 67, 701-707.
[29]
Areosa, Sastre. A.; Vernooij, R.W.; González-Colaço, Harmand, M.; Martínez, G. Effect of the treatment of Type 2 diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst. Rev., 2017, 6, CD003804.
[30]
Zhu, Q.; Tong, Y.; Wu, T.; Li, J.; Tong, N. Comparison of the hypoglycemic effect of acarbose monotherapy in patients with type 2 diabetes meta-analysis. mellitus consuming an Eastern or Western diet: A systematic. Clin. Ther., 2013, 35, 880-899.
[31]
Li, C; Xia, J Zhang, G.; Wang, S.; Wang, L. Nateglinide for type 2 diabetes mellitus in China. repaglinide versus Acta Diabetol, 2009, 46, 325-333.
[32]
Soyama, A.; Hanioka, N.; Saito, Y.; Murayama, N.; Ando, M.; Ozawa, S.; Sawada, J. Amiodarone N-deethylation by CYP2C8 and its variants, CYP2C8*3 and CYP2C8 P404A. Pharmacol. Toxicol., 2002, 91, 174-178.