Copeptin in Preeclampsia Development

Page: [159 - 164] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: Preeclampsia complicates 2-8% of all pregnancies worldwide and is one of the leading causes of maternal and neonatal morbidity and mortality. It occurs after the 20th week of gestation and is characterized by high blood pressure, proteinuria or end-organ disease. The heterogeneous and multi-systemic nature of this disease has led to the elusive pathophysiology which delays timely diagnoses and the clinical treatment of those affected.

Objective: Despite the extensive investigations surrounding the inclusion of various potential markers for PE prediction, early diagnosis remains unresolved. Quantification of copeptin, a stable component of the arginine vasopressin (AVP) precursor is shown to be relatively reliable in confirming the circulating levels of AVP.

Conclusion: Elevated copeptin levels confirmed in pregnant women have also provided clinical support for its role in PE development. However, its clinical use in predicting disease severity in early-onset pre-eclampsia has been debatable. This review thus recapitulates the current literature surrounding copeptin and its potential as a risk indicator for PE development.

Keywords: Arginine vasopressin, copeptin, preeclampsia, pregnancy, biomarkers, high blood pressure.

Graphical Abstract

[1]
Nissaisorakarn P, Sharif S, Jim B. Hypertension in pregnancy: Defining blood pressure goals and the value of biomarkers for preeclampsia. Curr Cardiol Rep 2016; 18: 131.
[2]
Nakanishi S, Aoki S, Nagashima A, Seki K. Incidence and pregnancy outcomes of superimposed preeclampsia with or without proteinuria among women with chronic hypertension. Pregnancy Hypertens 2017; 7: 39-43.
[3]
Townsend R, O’Brien P, Khalil A. Current best practice in the management of hypertensive disorders in pregnancy. Integr Blood Press Control 2016; 9: 79-94.
[4]
Jeyabalan A. Epidemiology of preeclampsia: Impact of obesity. Nutr Rev 2013; 71(Suppl. 1): S18-25.
[5]
Al-Jameil N, Aziz Khan F, Fareed Khan M, Tabassum H. A brief overview of preeclampsia. J Clin Med Res 2014; 6(1): 1-7.
[6]
Staff AC. Circulating predictive biomarkers in preeclampsia. Pregnancy Hypertens 2011; 1(1): 28-42.
[7]
Founds S, Zeng X, Lykins D, Roberts J. Developing potential candidates of preclinical preeclampsia. Int J Mol Sci 2015; 16(11): 27208-27.
[8]
Warrington JP, George EM, Palei AC, Spradley FT, Granger JP. Recent advances in the understanding of the pathophysiology of preeclampsia. Hypertension 2013; 62(4): 666-73.
[9]
Kar M. Role of biomarkers in early detection of preeclampsia. J Clin Diagn Res 2014; 8: BE01-4.
[10]
Stepan H, Hund M, Gencay M, et al. A comparison of the diagnostic utility of the sFlt-1/PlGF ratio versus PlGF alone for the detection of preeclampsia/HELLP syndrome. Hypertens Pregnancy 2016; 35(3): 295-305.
[11]
Acestor N, Goett J, Lee A, et al. Towards biomarker-based tests that can facilitate decisions about prevention and management of preeclampsia in low-resource settings. Clin Chem Lab Med 2016; 54(1): 17-27.
[12]
Zulfikaroglu E, Islimye M, Tonguc EA, et al. Circulating levels of copeptin, a novel biomarker in pre-eclampsia. J Obstet Gynaecol Res 2011; 37(9): 1198-202.
[13]
Wellmann S, Benzing J, Fleischlin S, et al. Cardiovascular biomarkers in preeclampsia at triage. Fetal Diagn Ther 2014; 36(3): 202-7.
[14]
Santillan MK, Santillan DA, Scroggins SM, et al. Vasopressin in preeclampsia: A novel very early human pregnancy biomarker and clinically relevant mouse model. Hypertension 2014; 64(4): 852-9.
[15]
Foda AA, Abdel Aal IA. Maternal and neonatal copeptin levels at cesarean section and vaginal delivery. Eur J Obstet Gynecol Reprod Biol 2012; 165(2): 215-8.
[16]
Łukaszyk E, Małyszko J. Copeptin: Pathophysiology and potential clinical impact. Adv Med Sci 2015; 60(2): 335-41.
[17]
Voors AA, von Haehling S, Anker SD, et al. C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: Results from the OPTIMAAL study. Eur Heart J 2009; 30(10): 1187-94.
[18]
Yalta K, Yalta T, Sivri N, Yetkin E. Copeptin and cardiovascular disease: A review of a novel neurohormone. Int J Cardiol 2013; 167(5): 1750-9.
[19]
Yalta K, Sıvrı N, Yalta T, Geyik B, Aksoy Y, Yetkın E. Copeptin (C-terminal provasopressin): A promising marker of arrhythmogenesis in arrhythmia prone subjects? Int J Cardiol 2011; 148(1): 105.
[20]
Leeflang M, Cnossen J, van der Post J, Mol B, Khan K, ter Riet G. Accuracy of fibronectin tests for the prediction of pre-eclampsia: A systematic review. Eur J Obstet Gynecol Reprod Biol 2007; 133(1): 12.
[21]
Duhig KE, Shennan AH. Recent advances in the diagnosis and management of pre-eclampsia. F1000Prime Rep 2015; 7: 24.
[22]
Roberge S, Villa P, Nicolaides K, et al. Early administration of low-dose aspirin for the prevention of preterm and term preeclampsia: A systematic review and meta-analysis. Fetal Diagn Ther 2012; 31(3): 141-6.
[23]
Bolignano D, Cabassi A, Fiaccadori E, et al. Copeptin (CTproAVP), a new tool for understanding the role of vasopressin in pathophysiology. Clin Chem Lab Med 2014; 52(10): 1447-56.
[24]
Dobsa L, Edozien KC. Copeptin and its potential role in diagnosis and prognosis of various diseases. Biochem Med (Zagreb) 2013; 23(2): 172-90.
[25]
Jadli A, Sharma N, Damania K, et al. Promising prognostic markers of preeclampsia: New avenues in waiting. Thromb Res 2015; 136(2): 189-95.
[26]
Struck J, Morgenthaler N, Bergmann A. Copeptin, a stablepeptide derived from the vasopressin precursor, is elevated in serum of sepsis patients. Peptides 2005; 26: 2500-4.
[27]
Bankir L, Bichet D, Morgenthaler N. Vasopressin: Physiology, assessment and osmosensation. J Intern Med 2017; 282: 284-97.
[28]
Thibonnier M, Coles P, Thibonnier A, Shoham M. Molecular pharmacology and modeling of vasopressin receptors. Prog Brain Res 2002; 139: 179-96.
[29]
Serradeil-Le Gal C, Raufaste D, Marty E, Garcia C, Maffrand J, Le Fur G. Autoradiographic localization of vasopressin V1a receptors in the rat kidney using [3H]-SR 49059. Kidney Int 1996; 50: 499-505.
[30]
Björntorp P, Rosmond R. Hypothalamic origin of the metabolic syndrome X. Ann N Y Acad Sci 1999; 892: 297-307.
[31]
Canivell S, Ponte B, Pruijm M, et al. Canivell S, Ponte B, Pruijm M, et al. Plasma copeptin is associated with insulin resistance in a swiss population-based study. J Hypertens 2015; 33(1): 4B.05.
[32]
Enhörning S, Wang T, Nilsson P, et al. Plasma copeptin and the risk of diabetes mellitus. Circulation 2010; 18(121): 2102-8.
[33]
Gallo-Payet N, Guillon G. Regulation of adrenocortical function by vasopressinHorm Metab Res 1998; 30(06/07): 360-7
[34]
Grazzini E, Breton C, Derick S, et al. Vasopressin receptors in human adrenal medulla and pheochromocytoma. J Clin Endocrinol Metab 1999; 84(6): 2195-203.
[35]
Yeung EH, Liu A, Mills JL, et al. Increased levels of copeptin before clinical diagnosis of preeclampsia. Hypertension 2014; 64(6): 1362-7.
[36]
Akinlade KS, Adediji IO, Rahamon SK, Fawole AO, Tongo OO. Serum copeptin and pregnancy outcome in preeclampsia. Niger Med J 2015; 56(5): 362-8.
[37]
Cornelius D. Copeptin a new biomarker that is specific for preeclampsia? Hypertension 2014; 64(6): 1189-91.
[38]
Birdir C, Janssen K, Stanescu AD, et al. Maternal serum copeptin, MR-proANP and procalcitonin levels at 11-13 weeks gestation in the prediction of preeclampsia. Arch Gynecol Obstet 2015; 292(5): 1033-42.
[39]
Tuten A, Oncul M, Kucur M, et al. Maternal serum copeptin concentrations in early-and late-onset pre-eclampsia. Taiwan J Obstet Gynecol 2015; 54(4): 350-4.
[40]
Santillan M, Scroggins S, Nishimura T, et al. 779: First trimester urine copeptin predicts the development of preeclampsia. Am J Obstet Gynecol 2016; 214(1): S407.
[41]
Yeşil A, Kanawati A, Helvacıoğlu Ç, Kaya C, Özgün ÇG, Cengiz Hs. Identification of patients at risk for preeclampsia with the use of uterine artery Doppler velocimetry and copeptin. J Matern Fetal Neonatal Med 2016; 30(22): 2763-8.
[42]
Jadli A, Ghosh K, Satoskar P, Damania K, Bansal V, Shetty S. Combination of copeptin, placental growth factor and total annexin V microparticles for prediction of preeclampsia at 10e14 weeks of gestation. Placenta 2017; 58: 67-73.
[43]
Scroggins SM, Santillan DA, Lund JM, et al. Elevated vasopressin in pregnant mice induces t helper subset alterations consistent with human preeclampsia. Clin Sci 2018; 132(3): 419-36.