Lanthanum, Gallium and their Impact on Oxidative Stress

Page: [4280 - 4295] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

The role metals play in living organisms is well established and subject to extensive research. Some of them participate in electron-exchange reactions. Such reactions cause generation of free radicals that can adversely impact biological systems, as a result of oxidative stress. The impact of ‘non-biological’ metals on oxidative stress is also a worthy pursuit due to the crucial role they play in modern civilization. Lanthanides (Ln) are widely used in modern technology. As a result, human exposure to them is increasing. They have a number of established medical applications and are being extensively researched for their potential antiviral, anticancer and anti-inflammatory properties. The present review focuses on lanthanum (La) and its impact on oxidative stress. Another metal, widely used in modern high-tech is gallium (Ga). In some respects, it shows certain similarities to La, therefore it is a subject of the present review as well. Both metals exhibit ionic mimicry which allows them to specifically target malignant cells, initiating apoptosis that makes their simple salts and coordination complexes promising candidates for future anticancer agents.

Keywords: Lanthanum, gallium, oxidative stress, antioxidants, anticancer agents, apoptosis.

[1]
Roat-Malone, R.M. Bioinorganic chemistry-A Short Course. Washington College, Chestertown, MD. In John Wiley & Sons, Inc, Hoboken, New Jersey. 2003.
[2]
Frausto da Silva, J.J.R.; Williams, R.J.P. The biological chemistry of the elements: the inorganic chemistry of life; In: Clarendon Press: New York, 1991.
[3]
Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 2006, 141(2), 312-322.
[http://dx.doi.org/10.1104/pp.106.077073] [PMID: 16760481]
[4]
Kostova, I. Lanthanides as anticancer agents. Curr. Med. Chem. Anticancer Agents, 2005, 5(6), 591-602.
[http://dx.doi.org/10.2174/156801105774574694] [PMID: 16305481]
[5]
Patlevič, P.; Vašková, J.; Švorc, P., Jr; Vaško, L.; Švorc, P. Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr. Med. Res., 2016, 5(4), 250-258.
[http://dx.doi.org/10.1016/j.imr.2016.07.004] [PMID: 28462126]
[6]
Halliwell, B.; Gutteridge, J.M. Cellular responces to oxidative stress: adaptation, damage, repair, senescence and death: Chapter 4 in Free radicals in biology and medicine In: Univeristy Press, HaHalliwell, B.; Gutteridge, J.M.C., Eds.; 187-267. 2007, pp.
[7]
Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem., 2015, 97, 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[8]
Rajendran, P.; Nandakumar, N.; Rengarajan, T.; Palaniswami, R.; Gnanadhas, E.N.; Lakshminarasaiah, U.; Gopas, J.; Nishigaki, I. Antioxidants and human diseases. Clin. Chim. Acta, 2014, 436, 332-347.
[http://dx.doi.org/10.1016/j.cca.2014.06.004] [PMID: 24933428]
[9]
Wu, J.Q.; Kosten, T.R.; Zhang, X.Y. Free radicals, antioxidant defense systems, and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46, 200-206.
[http://dx.doi.org/10.1016/j.pnpbp.2013.02.015] [PMID: 23470289]
[10]
Sies, H. Oxidative stress: a concept in redox biology and medicine. Redox Biol., 2015, 4, 180-183.
[http://dx.doi.org/10.1016/j.redox.2015.01.002] [PMID: 25588755]
[11]
Bar-Or, D.; Bar-Or, R.; Rael, L.T.; Brody, E.N. Oxidative stress in severe acute illness. Redox Biol., 2015, 4, 340-345.
[http://dx.doi.org/10.1016/j.redox.2015.01.006] [PMID: 25644686]
[12]
Yousri, R.; Noaman, E.; El Shawi, O.; Fahmy, N.; Ghaz, M. Evaluation of antioxidant status and radioprotective activity of a novel anti-cancer drug in mice. JCT. J. Cancer Ther., 2011, 2, 616-628.
[http://dx.doi.org/10.4236/jct.2011.25083]
[13]
Sarosiek, K.A.; Letai, A. Directly targeting the mitochondrial pathway of apoptosis for cancer therapy using BH3 mimetics - recent successes, current challenges and future promise. FEBS J., 2016, 283(19), 3523-3533.
[http://dx.doi.org/10.1111/febs.13714] [PMID: 26996748]
[14]
European Society for Medical Oncology. ESMO Clinical Practice Guidelines., 2017.http://www.esmo.org/Guidelines
[15]
Fuchs-Tarlovsky, V. Role of antioxidants in cancer therapy. Nutrition, 2013, 29(1), 15-21.
[http://dx.doi.org/10.1016/j.nut.2012.02.014] [PMID: 22784609]
[16]
Hecht, F.; Pessoa, C.F.; Gentile, L.B.; Rosenthal, D.; Carvalho, D.P.; Fortunato, R.S. The role of oxidative stress on breast cancer development and therapy. Tumour Biol., 2016, 37(4), 4281-4291.
[http://dx.doi.org/10.1007/s13277-016-4873-9] [PMID: 26815507]
[17]
Thyagarajan-Sahu, A.; Sahu, R.P. Potential contribution of antioxidants to cancer therapy: immunomodulation and radiosensitization. Cancer Ther., 2017, 1-7.
[18]
Deuter, D. Antioxidants and Cancer therapy., 2017.http://awomanshealth.com/antioxidants-cancer-therapy/
[19]
Saeidnia, S.; Abdollahi, M. Antioxidants: friends or foe in prevention or treatment of cancer: the debate of the century. Toxicol. Appl. Pharmacol., 2013, 271(1), 49-63.
[http://dx.doi.org/10.1016/j.taap.2013.05.004] [PMID: 23680455]
[20]
Wang, B.; Yan, L.; Huo, W.; Lu, Q.; Cheng, Z.; Zhang, J.; Li, Z. Rare earth elements and hypertension risk among housewives: A pilot study in Shanxi Province, China. Environ. Pollut, 2017, 220(Pt B), 837-842.
[http://dx.doi.org/10.1016/j.envpol.2016.10.066] [PMID: 27816296]
[21]
Rim, K-T. Effects of rare earth elements on the environment and human health: a literature review. Toxicol. Environ. Health. Sci., 2016, 8(3), 189-200.
[22]
Misra, S.N.; Gagnani, M.A. M, I.D.; Shukla, R.S. Biological and clinical aspects of Lanthanide coordination compounds. Bioinorg. Chem. Appl., 2004, 2(3-4), 155-192.
[http://dx.doi.org/10.1155/S1565363304000111] [PMID: 18365075]
[23]
Evans, C.H. Biochemistry of Lanthanides. Plenum. Pres, 1990.
[http://dx.doi.org/10.1007/978-1-4684-8748-0]
[24]
David Van Horn, J. Electronic table of Shannon Ionic Radii., 2017.
[25]
Babula, P.; Adam, V.; Kizek, R. Lanthanides, Rare Earth Elements and Protective Thiols. Encyclopedia of Metalloproteins. Universky, V.N.; Kretsinger, R.H;, Permyakov, E.A., Ed.; Springer Science: New York. 2013, pp. 1143- 1149.
[26]
Evans, C.H. Biochemistry of Lanthanides. In. plenum. Pres, 1990.
[27]
Evans, C.H. Interesting and useful biochemical properties of lanthanides. Trends Biochem. Sci., 1983, 8(12), 445-449.
[http://dx.doi.org/10.1016/0968-0004(83)90032-4]
[28]
Moermond, C.T.; Tijink, J.; van Wezel, A.P.; Koelmans, A.A. Distribution, speciation, and bioavailability of lanthanides in the Rhine-Meuse estuary, The Netherlands. Environ. Toxicol. Chem., 2001, 20(9), 1916-1926.
[http://dx.doi.org/10.1002/etc.5620200909] [PMID: 11521817]
[29]
Wakabayashi, T.; Ymamoto, A.; Kazaana, A.; Nakano, Y.; Nojiri, Y.; Kashiwazaki, M. Antibacterial, antifungal and nematicidal activities of rare earth ions. Biol. Trace Elem. Res., 2016, 174(2), 464-470.
[http://dx.doi.org/10.1007/s12011-016-0727-y] [PMID: 27147430]
[30]
Buenzli, J-C.G. Met. Ions Biol. Syst., 2004, 42, 39.
[PMID: 15206099]
[31]
Corneillie, T.M.; Lee, K.C.; Whetstone, P.A.; Wong, J.P.; Meares, C.F. Irreversible engineering of the multielement-binding antibody 2D12.5 and its complementary ligands. Bioconjug. Chem., 2004, 15(6), 1392-1402.
[http://dx.doi.org/10.1021/bc049824m] [PMID: 15546207]
[32]
Brouwers, A.H.; van Eerd, J.E.M.; Frielink, C.; Oosterwijk, E.; Oyen, W.J.G.; Corstens, F.H.M.; Boerman, O.C. Optimization of radioimmunotherapy of renal cell carcinoma: labeling of monoclonal antibody cG250 with 131I, 90Y, 177Lu, or 186Re. J. Nucl. Med., 2004, 45(2), 327-337.
[PMID: 14960657]
[33]
André, J.P.; Geraldes, C.F.G.C.; Martins, J.A.; Merbach, A.E.; Prata, M.I.M.; Santos, A.C.; de Lima, J.J.P.; Tóth, E. Lanthanide(III) complexes of DOTA-glycoconjugates: a potential new class of lectin-mediated medical imaging agents. Chemistry, 2004, 10(22), 5804-5816.
[http://dx.doi.org/10.1002/chem.200400187] [PMID: 15472943]
[34]
Aime, S.; Cavallotti, C.; Cravotto, G.; Giovenzana, G.B.; Palmisano, G. Synthesis of new polyoxapolycarboxylic ligands for lanthanide(III) ions complexation. Tetrahedron Lett., 2004, 45(30), 5901.
[http://dx.doi.org/10.1016/j.tetlet.2004.05.132]
[35]
Platas-Iglesias, C.; Mato-Iglesias, M.; Djanashvili, K.; Muller, R.N.; Elst, L.V.; Peters, J.A.; de Blas, A.; Rodríguez-Blas, T. Lanthanide chelates containing pyridine units with potential application as contrast agents in magnetic resonance imaging. Chemistry, 2004, 10(14), 3579-3590.
[http://dx.doi.org/10.1002/chem.200306031] [PMID: 15252806]
[36]
Facchetti, A.; Abbotto, A.; Beverina, L.; Bradamante, S.; Mariani, P.; Stern, C.L.; Marks, T.J.; Vacca, A.; Pagani, G.A. Novel coordinating motifs for lanthanide(III) ions based on 5-(2-pyridyl)tetrazole and 5-(2-pyridyl-1-oxide)tetrazole. Potential new contrast agents. Chem. Commun. (Camb.), 2004, (15), 1770-1771.
[http://dx.doi.org/10.1039/B401919A] [PMID: 15278178]
[37]
Manning, H.C.; Goebel, T.; Thompson, R.C.; Price, R.R.; Lee, H.; Bornhop, D.J. Targeted molecular imaging agents for cellular-scale bimodal imaging. Bioconjug. Chem., 2004, 15(6), 1488-1495.
[http://dx.doi.org/10.1021/bc049904q] [PMID: 15546219]
[38]
Weibel, N.; Charbonnière, L.J.; Guardigli, M.; Roda, A.; Ziessel, R. Engineering of highly luminescent lanthanide tags suitable for protein labeling and time-resolved luminescence imaging. J. Am. Chem. Soc., 2004, 126(15), 4888-4896.
[http://dx.doi.org/10.1021/ja031886k] [PMID: 15080694]
[39]
White, G.F.; Litvinenko, K.L.; Meech, S.R.; Andrews, D.L.; Thomson, A. Multiphoton-excited luminescence of a lanthanide ion in a protein complex: Tb3+ bound to transferrin. J. Photochem. Photobiol. Sci., 2004, 3, 47.
[http://dx.doi.org/10.1039/b306760b]
[40]
Shukla, R.B. J. Magn. Reson., Ser. A, 113, 1995, 196.; Caravan P.; Mehrkhodavandi P. Orvig C. Inorg. Chem., 1997, 36, 1321.
[41]
Kell, D. B. J. Iron behaving badly: Inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflamatory and degenerative diseases. OBMC Med. Gen, 2009.
[http://dx.doi.org/10.1186/1755-8794-2-2]
[42]
Cho, M.; Ogechukwu, P.; Eze, O.P.; Xu, R. A brief review of the controversial role of iron in colorectal carcinogenesis. Clin. Exp. Pathol., 2013, 3(1), 137-141.
[http://dx.doi.org/10.4172/2161-0681.1000137]
[43]
He, X.; Zhang, Z.; Zhang, H.; Zhao, Y.; Chai, Z. Neurotoxicological evaluation of long-term lanthanum chloride exposure in rats. Toxicol. Sci., 2008, 103(2), 354-361.
[http://dx.doi.org/10.1093/toxsci/kfn046] [PMID: 18319242]
[44]
Zheng, H.L.; Zhao, Z.Q.; Zhang, C.G.; Feng, J.Z.; Ke, Z.L.; Su, M.J. Changes in lipid peroxidation, the redox system and ATPase activities in plasma membranes of rice seedling roots caused by lanthanum chloride. Biometals, 2000, 13(2), 157-163.
[http://dx.doi.org/10.1023/A:1009232821175] [PMID: 11016404]
[45]
Shi, P.; Chen, C.G.; Huang, Z.W. Effects of La3+ on the active oxygen-scavenging enzyme activities in cucumbes seedling leaves. Russ. J. Plant Physiol., 2005, 52(3), 294-297.
[http://dx.doi.org/10.1007/s11183-005-0044-3]
[46]
Huang, P.; Li, J.; Zhang, S.; Chen, C.; Han, Y.; Liu, N.; Xiao, Y.; Wang, H.; Zhang, M.; Yu, Q.; Liu, Y.; Wang, W. Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepatocytes: accumulation and oxidative damage. Environ. Toxicol. Pharmacol., 2011, 31(1), 25-32.
[http://dx.doi.org/10.1016/j.etap.2010.09.001] [PMID: 21787666]
[47]
Liu, J.X.; Wang, X.; Wang, R.J.; Li, D.B. [Protective effects of La (NO3)3 on ryegrass seedlings photosynthetic apparatus under NaHCO3 stress Ying Yong Sheng Tai Xue Bao, 2010, 21(11), 2836-2842.
[PMID: 21361007]
[48]
Yang, H.; Zhang, X.; Liu, H.; Cui, W.; Zhang, Q.; Li, Y.; Yu, Z.; Jia, X. Lanthanum nitrate genotoxicity evaluation: Ames test, mouse micronucleus assay, and chromosome aberration test. Mutat. Res., 2016, 810, 1-5.
[http://dx.doi.org/10.1016/j.mrgentox.2016.09.008] [PMID: 27776686]
[49]
Damment, S.J.; Beevers, C.; Gatehouse, D.G. Evaluation of the potential genotoxicity of the phosphate binder lanthanum carbonate. Mutagenesis, 2005, 20(1), 29-37.
[http://dx.doi.org/10.1093/mutage/gei003] [PMID: 15625069]
[50]
Kostova, I.; Traykova, M.; Rastogi, V.K. New lanthanide complexes with antioxidant activity. Med. Chem., 2008, 4(4), 371-378.
[http://dx.doi.org/10.2174/157340608784872181] [PMID: 18673150]
[51]
Martin, J.; Mladěnka, P.; Saso, L.; Kostova, I. Lanthanide(III) complexes are more active inhibitors of the Fenton reaction than pure ligands. Redox Rep., 2016, 21(2), 84-89.
[http://dx.doi.org/10.1179/1351000215Y.0000000031] [PMID: 26193444]
[52]
Wang, Q.; Yang, Z.Y.; Qi, G.F.; Qin, D.D. Synthesis, crystal structure, antioxidant activities and DNA-binding studies of the Ln(III) complexes with 7-methoxychromone-3-carbaldehyde-(4′-hydroxy) benzoyl hydrazone. Eur. J. Med. Chem., 2009, 44(6), 2425-2433.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.023] [PMID: 19038478]
[53]
Li, Y.; Yang, Z.Y.; Li, T.R.; Liu, Z.C.; Wang, B.D. Synthesis, characterization, DNA binding properties and antioxidant activity of Ln(III) complexes with Schiff base ligand derived from 3-carbaldehyde chromone and aminophenazone. J. Fluoresc., 2011, 21(3), 1091-1102.
[http://dx.doi.org/10.1007/s10895-010-0782-2] [PMID: 21161345]
[54]
Wang, Q.; Yang, Z.Y.; Qi, G.F.; Qin, D.D. Crystal structures, DNA-binding studies and antioxidant activities of the Ln(III) complexes with 7-methoxychromone- 3-carbaldehyde-isonicotinoyl hydrazone. Biometals, 2009, 22(6), 927-940.
[http://dx.doi.org/10.1007/s10534-009-9245-0] [PMID: 19404747]
[55]
Shen, L.; Lan, Z.; Sun, X.; Shi, L.; Liu, Q.; Ni, J. Proteomic analysis of lanthanum citrate-induced apoptosis in human cervical carcinoma SiHa cells. Biometals, 2010, 23(6), 1179-1189.
[http://dx.doi.org/10.1007/s10534-010-9368-3] [PMID: 20814718]
[56]
Kostova, I.; Momekov, I.; Tzanova, T.; Karaivanova, M. M. Synthesis, characterization, and cytotoxic activity of new lanthanum(iii) complexes of bis-coumarins. Bioinorg. Chem. Appl., 2006, 2006.
[http://dx.doi.org/10.1155/BCA/2006/25651]
[57]
Devirian, T.A.; Volpe, S.L. The physiological effects of dietary boron. Crit. Rev. Food Sci. Nutr., 2003, 43(2), 219-231.
[http://dx.doi.org/10.1080/10408690390826491] [PMID: 12705642]
[58]
Aftab, T.; Khan, M.M.A.; Idrees, M.; Naeem, M.; Ram, M. Boron induced oxidative stress, antioxidant defence, response and changes in artemisinin content in Artemisia annua. L. J. Agr. Crop. Sci., 2010, 196, 423-430.
[http://dx.doi.org/10.1111/j.1439-037X.2010.00427.x]
[59]
Cervilla, L.M.; Blasco, B.; Ríos, J.J.; Romero, L.; Ruiz, J.M. Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann. Bot., 2007, 100(4), 747-756.
[http://dx.doi.org/10.1093/aob/mcm156] [PMID: 17660516]
[60]
Molassiotis, A.; Sotiropoulos, T.; Tanou, G.; Diamantidis, G.; Therios, I. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ. Exp. Bot., 2006, 56, 54-62.
[http://dx.doi.org/10.1016/j.envexpbot.2005.01.002]
[61]
Nayak, P. Aluminum: impacts and disease. Environ. Res., 2002, 89(2), 101-115.
[http://dx.doi.org/10.1006/enrs.2002.4352] [PMID: 12123643]
[62]
Yu, L.; Zhai, Q.; Tian, F.; Liu, X.; Wang, G.; Zhao, J.; Zhang, H.; Narbad, A.; Chen, W. Potential of Lactobacillus plantarum CCFM639 in protecting against aluminum toxicity mediated by intestinal barrier function and oxidative stress. Nutrients, 2016, 8(12), 783.
[http://dx.doi.org/10.3390/nu8120783] [PMID: 27918411]
[63]
Kumar, V.; Gill, K.D. Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology, 2014, 41, 154-166.
[http://dx.doi.org/10.1016/j.neuro.2014.02.004] [PMID: 24560992]
[64]
Van Den Bossche, B.; Van de Wiele, C. Receptor imaging in oncology by means of nuclear medicine: current status. J. Clin. Oncol., 2004, 22(17), 3593-3607.
[http://dx.doi.org/10.1200/JCO.2004.10.216] [PMID: 15337810]
[65]
Onthank, D.C.; Liu, S.; Silva, P.J.; Barrett, J.A.; Harris, T.D.; Robinson, S.P.; Edwards, D.S. 90Y and 111In complexes of a DOTA-conjugated integrin alpha v beta 3 receptor antagonist: different but biologically equivalent. Bioconjug. Chem., 2004, 15(2), 235-241.
[http://dx.doi.org/10.1021/bc034108q] [PMID: 15025518]
[66]
Tanaka, A.; Hirata, M.; Kiyohara, Y.; Nakano, M.; Omae, K.; Shiratani, M.; Koga, K. Review of pulmonary toxicity of indium compounds to animals and humans. Thin Solid Films, 2010, 518, 2934-2936.
[http://dx.doi.org/10.1016/j.tsf.2009.10.123]
[67]
Tanaka, A. Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide. Toxicol. Appl. Pharmacol., 2004, 198(3), 405-411.
[http://dx.doi.org/10.1016/j.taap.2003.10.019] [PMID: 15276420]
[68]
Gottschling, B.C.; Maronpot, R.R.; Hailey, J.R.; Peddada, S.; Moomaw, C.R.; Klaunig, J.E.; Nyska, A. The role of oxidative stress in indium phosphide-induced lung carcinogenesis in rats. Toxicol. Sci., 2001, 64(1), 28-40.
[http://dx.doi.org/10.1093/toxsci/64.1.28] [PMID: 11606799]
[69]
Galván-Arzate, S.; Santamaría, A. Thallium toxicity. Toxicol. Lett., 1998, 99(1), 1-13.
[http://dx.doi.org/10.1016/S0378-4274(98)00126-X] [PMID: 9801025]
[70]
Kiliç, G.A.; Kutlu, M. Effects of exogenous metallothionein against thallium-induced oxidative stress in rat liver. Food Chem. Toxicol., 2010, 48(3), 980-987.
[http://dx.doi.org/10.1016/j.fct.2010.01.013] [PMID: 20079794]
[71]
Burton, J.D.; Culkin, F.; Riley, J.P. The Abundances of Gallium And Germanium in Terrestrial Materials., 1959.
[http://dx.doi.org/10.1016/0016-7037(59)90052-3]
[72]
Caul, H.J.; Smith, D.L.; Harold, J.; Caul, B.S. Alloys of gallium with powdered metals as possible replacement for dental amalgam. J. Am. Dent. Assoc., 1956, 53(3), 315-324.
[http://dx.doi.org/10.14219/jada.archive.1956.0187] [PMID: 13357247]
[73]
Bernstein, L.R. Pharmacol, Rev. Therapeutic gallium compounds. In: Curr. Top. Med. Chem, Jakupec, M.A.; Keppler, B.K., Eds.; 1575. 2005, 4p.
[74]
Chitambar, C.R. Medical applications and toxicities of gallium compounds. Int. J. Environ. Res. Public Health, 2010, 7(5), 2337-2361.
[http://dx.doi.org/10.3390/ijerph7052337] [PMID: 20623028]
[75]
Chitambar, C. R. Apoptotic Mechanisms of gallium nitrate: basic and clinical investigations. Oncol. Journ, 2004.
[76]
Vallabhajosula, S.R.; Harwig, J.F.; Wolf, W. The mechanism of tumor localization of gallium-67 citrate: role of transferrin binding and effect of tumor pH. Int. J. Nucl. Med. Biol., 1981, 8(4), 363-370.
[http://dx.doi.org/10.1016/0047-0740(81)90044-9] [PMID: 6948788]
[77]
Chitambar, C.R.; Seligman, P.A. Effects of different transferrin forms on transferrin receptor expression, iron uptake, and cellular proliferation of human leukemic HL60 cells. Mechanisms responsible for the specific cytotoxicity of transferrin-gallium. J. Clin. Invest., 1986, 78(6), 1538-1546.
[http://dx.doi.org/10.1172/JCI112746] [PMID: 3465751]
[78]
Chitambar, C.R.; Zivkovic, Z. Uptake of gallium-67 by human leukemic cells: demonstration of transferrin receptor-dependent and transferrin-independent mechanisms. Cancer Res., 1987, 47(15), 3929-3934.
[PMID: 3475168]
[79]
Kinuya, S.; Li, X.F.; Yokoyama, K.; Mori, H.; Shiba, K.; Watanabe, N.; Shuke, N.; Bunko, H.; Michigishi, T.; Tonami, N. Hypoxia as a factor for 67Ga accumulation in tumour cells. Nucl. Med. Commun., 2004, 25(1), 49-53.
[http://dx.doi.org/10.1097/00006231-200401000-00007] [PMID: 15061264]
[80]
Chitambar, C.R.; Zivkovic, Z. Uptake of gallium-67 by human leukemic cells: demonstration of transferrin receptor-dependent and transferrin-independent mechanisms. Cancer Res., 1987, 47(15), 3929-3934.
[PMID: 3475168]
[81]
Valiahdi, S.M.; Jakupec, M.A.; Marculescu, R.; Berger, W.; Rappersberger, K.; Keppler, B.K. Mol. Cancer Ther., 2007, 6, 3426S.
[82]
Perchellet, E.M.; Ladesich, J.B.; Collery, P.; Perchellet, J.P. Microtubule-disrupting effects of gallium chloride in vitro. Anticancer Drugs, 1999, 10(5), 477-488.
[http://dx.doi.org/10.1097/00001813-199906000-00008] [PMID: 10477168]
[83]
Johnston, G.S. Clinical applications of gallium in oncology. Int. J. Nucl. Med. Biol., 1981, 8(4), 249-255.
[http://dx.doi.org/10.1016/0047-0740(81)90030-9] [PMID: 6948781]
[84]
Chan, S.M.; Hoffer, P.B.; Maric, N.; Duray, P. Inhibition of gallium-67 uptake in melanoma by an anti-human transferrin receptor monoclonal antibody. J. Nucl. Med., 1987, 28(8), 1303-1307.
[PMID: 3475407]
[85]
Chitambar, C.R.; Matthaeus, W.G.; Antholine, W.E.; Graff, K.; O’Brien, W.J. Inhibition of leukemic HL60 cell growth by transferrin-gallium: effects on ribonucleotide reductase and demonstration of drug synergy with hydroxyurea. Blood, 1988, 72(6), 1930-1936.
[PMID: 3058232]
[86]
Yang, M.; Chitambar, C.R. Role of oxidative stress in the induction of metallothionein-2A and heme oxygenase-1 gene expression by the antineoplastic agent gallium nitrate in human lymphoma cells. Free Radic. Biol. Med., 2008, 45(6), 763-772.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.031] [PMID: 18586083]
[87]
Chitambar, C.R.; Purpi, D.P.; Woodliff, J.; Yang, M.; Wereley, J.P. Development of gallium compounds for treatment of lymphoma: gallium maltolate, a novel hydroxypyrone gallium compound, induces apoptosis and circumvents lymphoma cell resistance to gallium nitrate. J. Pharmacol. Exp. Ther., 2007, 322(3), 1228-1236.
[http://dx.doi.org/10.1124/jpet.107.126342] [PMID: 17600139]
[88]
Chitambar, C.R.; Zahir, S.A.; Ritch, P.S.; Anderson, T. Evaluation of continuous-infusion gallium nitrate and hydroxyurea in combination for the treatment of refractory non-Hodgkin’s lymphoma. Am. J. Clin. Oncol., 1997, 20(2), 173-178.
[http://dx.doi.org/10.1097/00000421-199704000-00015] [PMID: 9124195]
[89]
Crawford, E.D.; Saiers, J.H.; Baker, L.H.; Costanzi, J.H.; Bukowski, R.M. Gallium nitrate in advanced bladder carcinoma: Southwest Oncology Group study. Urology, 1991, 38(4), 355-357.
[http://dx.doi.org/10.1016/0090-4295(91)80152-W] [PMID: 1755146]
[90]
Seidman, A.D.; Scher, H.I.; Heinemann, M.H.; Bajorin, D.F.; Sternberg, C.N.; Dershaw, D.D.; Silverberg, M.; Bosl, G.J. Continuous infusion gallium nitrate for patients with advanced refractory urothelial tract tumors. Cancer, 1991, 68(12), 2561-2565.
[http://dx.doi.org/10.1002/1097-0142(19911215)68:12<2561:AID-CNCR2820681205>3.0.CO;2-G] [PMID: 1933802]
[91]
Seligman, P.A.; Crawford, E.D. Treatment of advanced transitional cell carcinoma of the bladder with continuous-infusion gallium nitrate. J. Natl. Cancer Inst., 1991, 83(21), 1582-1584.
[http://dx.doi.org/10.1093/jnci/83.21.1582] [PMID: 1960756]
[92]
Chitambar, C.R. Gallium compounds as antineoplastic agents. Curr. Opin. Oncol., 2004, 16(6), 547-552.
[http://dx.doi.org/10.1097/01.cco.0000142071.22226.d2] [PMID: 15627016]
[93]
Niesvizky, R. Gallium nitrate in multiple myeloma: prolonged survival in a cohort of patients with advanced-stage disease. Semin. Oncol., 2003, 30(2)(Suppl. 5), 20-24.
[http://dx.doi.org/10.1016/S0093-7754(03)00172-6] [PMID: 12776256]
[94]
Warrell, R.P., Jr; Lovett, D.; Dilmanian, F.A.; Schneider, R.; Heelan, R.T. Low-dose gallium nitrate for prevention of osteolysis in myeloma: results of a pilot randomized study. J. Clin. Oncol., 1993, 11(12), 2443-2450.
[http://dx.doi.org/10.1200/JCO.1993.11.12.2443] [PMID: 8246033]
[95]
Warrell, R.P., Jr; Alcock, N.W.; Bockman, R.S. Gallium nitrate inhibits accelerated bone turnover in patients with bone metastases. J. Clin. Oncol., 1987, 5(2), 292-298.
[http://dx.doi.org/10.1200/JCO.1987.5.2.292] [PMID: 3806170]
[96]
Warrell, R.P., Jr; Murphy, W.K.; Schulman, P.; O’Dwyer, P.J.; Heller, G. A randomized double-blind study of gallium nitrate compared with etidronate for acute control of cancer-related hypercalcemia. J. Clin. Oncol., 1991, 9(8), 1467-1475.
[http://dx.doi.org/10.1200/JCO.1991.9.8.1467] [PMID: 1906532]
[97]
Cvitkovic, F.; Armand, J.P.; Tubiana-Hulin, M.; Rossi, J.F.; Warrell, R.P. Jr. Randomized, double-blind, phase II trial of gallium nitrate compared with pamidronate for acute control of cancer-related hypercalcemia. Cancer J., 2006, 12(1), 47-53.
[http://dx.doi.org/10.1097/00130404-200601000-00009] [PMID: 16613662]
[98]
Betoulle, S.; Etienne, J.C.; Vernet, G. Acute immunotoxicity of gallium to carp (Cyprinus carpio L.). Bull. Environ. Contam. Toxicol., 2002, 68(6), 817-823.
[http://dx.doi.org/10.1007/s00128-002-0028-3] [PMID: 12012056]
[99]
Whitacre, C.; Apseloff, G.; Cox, K.; Matkovic, V.; Jewell, S.; Gerber, N. Suppression of experimental autoimmune encephalomyelitis by gallium nitrate. J. Neuroimmunol., 1992, 39(1-2), 175-181.
[http://dx.doi.org/10.1016/0165-5728(92)90186-O] [PMID: 1377710]
[100]
Matkovic, V.; Balboa, A.; Clinchot, D.; Whitacre, C.; Zwilling, B.; Brown, D.; Weisbrode, S.E.; Apseloff, G.; Gerber, N. Gallium prevents adjuvant arthritis in rats and interferes with macrophage/T-cell function in the immune response. Curr. Ther. Res. Clin. Exp., 1991, 50, 255-267.
[101]
Apseloff, G.; Hackshaw, K.V.; Whitacre, C.; Weisbrode, S.E.; Gerber, N. Gallium nitrate suppresses lupus in MRL/lpr mice. Naunyn Schmiedebergs Arch. Pharmacol., 1997, 356(4), 517-525.
[http://dx.doi.org/10.1007/PL00005085] [PMID: 9349640]
[102]
Orosz, C.G.; Wakely, E.; Bergese, S.D.; VanBuskirk, A.M.; Ferguson, R.M.; Mullet, D.; Apseloff, G.; Gerber, N. Prevention of murine cardiac allograft rejection with gallium nitrate. Comparison with anti-CD4 monoclonal antibody. Transplantation, 1996, 61(5), 783-791.
[http://dx.doi.org/10.1097/00007890-199603150-00019] [PMID: 8607184]
[103]
Kandil, E.; Aziz, N.A. Synergistic efficacy of γ-radiation together with gallium trichloride and/or doxorubicin against Ehrlich carcinoma in female mice. Tumour Biol., 2016, 37(2), 1825-1834.
[http://dx.doi.org/10.1007/s13277-015-3954-5] [PMID: 26318299]
[104]
Chitambar, C.R.; Purpi, D.P.; Woodliff, J.; Yang, M.; Wereley, J.P. Development of gallium compounds for treatment of lymphoma: gallium maltolate, a novel hydroxypyrone gallium compound, induces apoptosis and circumvents lymphoma cell resistance to gallium nitrate. J. Pharmacol. Exp. Ther., 2007, 322(3), 1228-1236.
[http://dx.doi.org/10.1124/jpet.107.126342] [PMID: 17600139]
[105]
Yang, M.; Chitambar, C.R. Role of oxidative stress in the induction of metallothionein-2A and heme oxygenase-1 gene expression by the antineoplastic agent gallium nitrate in human lymphoma cells. Free Radic. Biol. Med., 2008, 45(6), 763-772.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.031] [PMID: 18586083]
[106]
Bériault, R.; Hamel, R.; Chenier, D.; Mailloux, R.J.; Joly, H.; Appanna, V.D. The overexpression of NADPH-producing enzymes counters the oxidative stress evoked by gallium, an iron mimetic. Biometals, 2007, 20(2), 165-176.
[http://dx.doi.org/10.1007/s10534-006-9024-0] [PMID: 16900398]
[107]
Harrington, J.R.; Martens, R.J.; Cohen, N.D.; Bernstein, L.R. Antimicrobial activity of gallium against virulent Rhodococcus equi in vitro and in vivo. J. Vet. Pharmacol. Ther., 2006, 29(2), 121-127.
[http://dx.doi.org/10.1111/j.1365-2885.2006.00723.x] [PMID: 16515666]
[108]
Kaneko, Y.; Thoendel, M.; Olakanmi, O.; Britigan, B.E.; Singh, P.K. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J. Clin. Invest., 2007, 117(4), 877-888.
[http://dx.doi.org/10.1172/JCI30783] [PMID: 17364024]
[109]
Chang, H.F.; Wang, S.L.; Yeh, K.C. Effect of gallium exposure in arabidopsis thaliana is similar to aluminum stress. Environ. Sci. Technol., 2017, 51(3), 1241-1248.
[http://dx.doi.org/10.1021/acs.est.6b05760] [PMID: 28088849]
[110]
Stuehr, D.; Pou, S.; Rosen, G.M. Oxygen reduction by nitric-oxide synthases. J. Biol. Chem., 2001, 276(18), 14533-14536.
[http://dx.doi.org/10.1074/jbc.R100011200] [PMID: 11279231]
[111]
Cole, G.M.; Lim, G.P.; Yang, F.; Teter, B.; Begum, A.; Ma, Q.; Harris-White, M.E.; Frautschy, S.A. Prevention of Alzheimer’s disease: Omega-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol. Aging, 2005, 26(1)(Suppl. 1), 133-136.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.005] [PMID: 16266772]
[112]
Lipinski, B. Hydroxyl radical and its scavengers in health and disease. Oxidative Medicine and Cellular Longevity, 2011, 2011
[http://dx.doi.org/10.1155/2011/809696]
[113]
Bossmann, S.H.; Oliveros, E.; Kantor, M.; Niebler, S.; Bonfill, A.; Shahin, N.; Wörner, M.; Braun, A.M. New insights into the mechanisms of the thermal Fenton reactions occurring using different iron(II)-complexes. Water Sci. Technol., 2004, 49(4), 75-80.
[http://dx.doi.org/10.2166/wst.2004.0224] [PMID: 15077951]
[114]
Kuzkaya, N.; Weissmann, N.; Harrison, D.G.; Dikalov, S. Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: implications for uncoupling endothelial nitric oxide synthase. Biochem. Pharmacol., 2005, 70(3), 343-354.
[http://dx.doi.org/10.1016/j.bcp.2005.05.009] [PMID: 15963955]
[115]
Haenen, G.; Paquay, J.; Korthouwer, R.; Bast, A. Peroxynitrite scavenging by flavonoids. Biochem and Biobhys. Res. Comm., 236, 591-593.RC977016. 1997.
[http://dx.doi.org/10.1006/bbrc.1997.7016]
[116]
Tsuda, T.; Kato, Y.; Osawa, T. Mechanism for the peroxynitrite scavenging activity by anthocyanins. FEBS Lett., 2000, 484(3), 207-210.
[http://dx.doi.org/10.1016/S0014-5793(00)02150-5] [PMID: 11078880]
[117]
Goldstein, S.; Czapski, G. Reactivity of peroxynitrite versus simultaneous generation of (*) NO and O(2)(*)(-) toward NADH. Chem. Res. Toxicol., 2000, 13(8), 736-741.
[http://dx.doi.org/10.1021/tx000099n] [PMID: 10956061]
[118]
Heijnen, C.G.M.; Haenen, G.R.M.M.; van Acker, F.A.A.; van der Vijgh, W.J.F.; Bast, A. Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol. In Vitro, 2001, 15(1), 3-6.
[http://dx.doi.org/10.1016/S0887-2333(00)00053-9] [PMID: 11259863]
[119]
Reiter, R.J.; Melchiorri, D.; Sewerynek, E.; Poeggeler, B.; Barlow-Walden, L.; Chuang, J.; Ortiz, G.G.; Acuña-Castroviejo, D. A review of the evidence supporting melatonin’s role as an antioxidant. J. Pineal Res., 1995, 18(1), 1-11.
[http://dx.doi.org/10.1111/j.1600-079X.1995.tb00133.x] [PMID: 7776173]
[120]
Ushio-Fukai, M.; Nakamura, Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett., 2008, 266(1), 37-52.
[http://dx.doi.org/10.1016/j.canlet.2008.02.044] [PMID: 18406051]