ConBr, the Lectin from Canavalia brasiliensis Mart. Seeds: Forty Years of Research

Page: [600 - 613] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Lectins are defined as proteins or glycoproteins capable of specific and reversible binding to carbohydrates. Inside this group of proteins, the most well-studied lectins belong to the Leguminosae family, and inside this family, the Diocleinae subtribe includes the most characterized lectin Concanavalin A (ConA), as well as ConBr, the lectin from Canavalia brasiliensis, the subject of this review. Since 1979, several studies have been published in the literature regarding this lectin, from its isolation and characterization to its several biological activities. This year, 2019, will mark 40 years since researchers have begun to study ConBr and 100 years since the discovery of ConA, making 2019 a momentous year for lectinology. Owing to the abundance of studies involving ConBr, this review will focus on ConBr’s purification, physicochemical properties, functional and structural analyses, biological activities and biotechnological applications. This will give researchers a broad glimpse into the potential of this lectin, as well as it characteristics, as we look ahead to its expanding applications in glycomics and biotechnology.

Keywords: Canavalia brasiliensis, lectin, ConBr, biological activities, properties, lectinology.

Graphical Abstract

[1]
Summer, J.; Somers, G. Laboratory Experiments.In: Biological Chemistry., Academic Press: New York, . 1949.
[2]
Bittiger, H.; Schnebli, H. Concanavalin A as a tool; Wiley: London, 1976.
[3]
Cavada, B.S. Lectinas de Canavalia brasiliensis Mart. Isolamento, Caracterização Parcial e Comportamento Durante a Germinação. Master Dissertation. Federal University of Ceara: Brazil,. 1980.
[4]
Moreira, R.A.; Cavada, B.S. Lectin from Canavalia brasiliensis [MART.]. Isolation, characterization and behavior during germination. Biol. Plant., 1984, 26, 113-120.
[5]
Cavada, B.S.; Vieira, C.C.; de Almeida Silva, L.M.; de Oliveira, J.T.A.; de Azevedo Moreira, R. Comportamento da lectina de sementes de Canavalia brasiliensis mart. durante a germinação em presença de luz. Acta Bot. Bras., 1990, 4(2)(Suppl. 1), 13-20.
[6]
Nascimento, K.S.; Rosa, P.A.J.; Nascimento, K.S.; Cavada, B.S.; Azevedo, A.M.; Aires-Barros, M.R. Partitioning and recovery of Canavalia brasiliensis lectin by aqueous two-phase systems using design of experiments methodology. Separ. Purif. Tech., 2010, 75(1), 48-54.
[7]
Iqbal, M.; Tao, Y.; Xie, S.; Zhu, Y.; Chen, D.; Wang, X.; Huang, L.; Peng, D.; Sattar, A.; Shabbir, M.A.B.; Hussain, H.I.; Ahmed, S.; Yuan, Z. Aqueous Two-Phase System [ATPS]: An overview and advances in its applications. Biol. Proced. Online, 2016, 18, 18.
[8]
Nascimento, K.S.; Azevedo, A.M.; Cavada, B.S.; Aires-Barros, M.R. Partitioning of Canavalia brasiliensis lectin in polyethylene glycol – sodium citrate aqueous two-phase systems. Sep. Sci. Technol., 2010, 45(15), 2180-2186.
[9]
Moreira, R. deA.; Ainouz, I.L.; De Oliveira, J.T.; Cavada, B.S. Plant lectins, chemical and biological aspects. Mem. Inst. Oswaldo Cruz, 1991, 86(Suppl. 2), 211-218.
[10]
Rüdiger, H.; Gabius, H.J. Plant lectins: Occurrence, biochemistry, functions and applications. Glycoconj. J., 2001, 18(8), 589-613.
[11]
Ramos, M.V.; Grangeiro, T.B.; Cavada, B.S.; Shepherd, I.; Lopes, R.O. de M.; Sampaio, A.H. Carbohydrate/glycan-binding specificity of legume lectins in respect to their proposed biological functions. Braz. Arch. Biol. Technol., 2000, 43(4), 349-359.
[12]
Miguel, E.C.; Miguel, T.B.A.; Pireda, S.; Marques, J.B.C.; Da Cunha, M.; Cajazeiras, J.B.; Pereira-Junior, F.N.; Nascimento, K.S.; Cavada, B.S. Seed structure in Canavalia brasiliensis Mart. ex benth. [Leguminosae] and subcellular localization of ConBr lectin: Implications for ConBr biological functions. Flora – Morphol. Distribution Funct. Ecol. Plants, 2015, 215, 46-53.
[13]
Oliveira, A.S. Produção e caracterização físico-química e biológica da cadeia alfa da lectina recombinante de Canavalia brasiliensis.PhD Thesis. Federal University of Ceara: Brazil,. 2017.
[14]
Ramos, M.V.; Cavada, B.S.; Mazard, A.M.; Rougé, P. Interaction of diocleinae lectins with glycoproteins based in surface plasmon resonance. Mem. Inst. Oswaldo Cruz, 2002, 97(2), 275-279.
[15]
Cavada, B.S.; Barbosa, T.; Arruda, S.; Grangeiro, T.B.; Barral-Netto, M. Revisiting proteus: Do minor changes in lectin structure matter in biological activity? Lessons from and potential biotechnological uses of the diocleinae subtribe lectins. Curr. Protein Pept. Sci., 2001, 2(2), 123-135.
[16]
Grangeiro, T.B.; Schriefer, A.; Calvete, J.J.; Raida, M.; Urbanke, C.; Barral-Netto, M.; Cavada, B.S. Molecular cloning and characterization of ConBr, the lectin of Canavalia brasiliensis seeds. Eur. J. Biochem., 1997, 248(1), 43-48.
[17]
Carrington, D.M.; Auffret, A.; Hanke, D.E. Polypeptide ligation occurs during post-translational modification of concanavalin A. Nature, 1985, 313(5997), 64-67.
[18]
Herman, E.M.; Shannon, L.M.; Chrispeels, M.J. Concanavalin A is synthesized as a glycoprotein precursor. Planta, 1985, 165(1), 23-29.
[19]
Chrispeels, M.J.; Hartl, P.M.; Sturm, A.; Faye, L. Characterization of the endoplasmic reticulum-associated precursor of concanavalin A. partial amino acid sequence and lectin activity. J. Biol. Chem., 1986, 261(22), 10021-10024.
[20]
Faye, L.; Chrispeels, M.J. Transport and processing of the glycosylated precursor of concanavalin A in jack-bean. Planta, 1987, 170(2), 217-224.
[21]
Bowles, D.J. Posttranslational processing of concanavalin A precursors in jackbean cotyledons. J. Cell Biol., 1986, 102(4), 1284-1297.
[22]
Bowles, D.J.; Pappin, D.J. Traffic and assembly of concanavalin A. Trends Biochem. Sci., 1988, 13(2), 60-64.
[23]
Sanz-Aparicio, J.; Hermoso, J.; Grangeiro, T.B.; Calvete, J.J.; Cavada, B.S. The crystal structure of Canavalia brasiliensis lectin suggests a correlation between its quaternary conformation and its distinct biological properties from concanavalin A. FEBS Lett., 1997, 405(1), 114-118.
[24]
Argos, P.; Tsukihara, T.; Rossmann, M.G. A structural comparison of concanavalin A and tomato bushy stunt virus protein. J. Mol. Evol., 1980, 15(3), 169-179.
[25]
Chelvanayagam, G.; Heringa, J.; Argos, P. Anatomy and evolution of proteins displaying the viral capsid jellyroll topology. J. Mol. Biol., 1992, 228(1), 220-242.
[26]
Loris, R.; Hamelryck, T.; Bouckaert, J.; Wyns, L. Legume lectin structure. Biochim. Biophys. Acta, 1998, 1383(1), 9-36.
[27]
Bezerra, E.H.S.; Rocha, B.A.M.; Nagano, C.S.; de Arruda Bezerra, G.; de Moura, T.R.; Bezerra, M.J.B.; Benevides, R.G.; Sampaio, A.H.; Assreuy, A.M.S.; Delatorre, P.; Cavada, B.S. Structural analysis of ConBr reveals molecular correlation between the carbohydrate recognition domain and endothelial NO synthase activation. Biochem. Biophys. Res. Commun., 2011, 408(4), 566-570.
[28]
Lee, H.C.; Goroncy, A.K.; Peisach, J.; Cavada, B.S.; Grangeiro, T.B.; Ramos, M.V.; Sampaio, A.H.; Dam, T.K.; Brewer, C.F. Demonstration of a conserved histidine and two water ligands at the Mn2+ site in diocleinae lectins by pulsed EPR spectroscopy. Biochemistry, 2000, 39(9), 2340-2346.
[29]
Delatorre, P.; Rocha, B.A.M.; Souza, E.P.; Oliveira, T.M.; Bezerra, G.A.; Moreno, F.B.M.B.; Freitas, B.T.; Santi-Gadelha, T.; Sampaio, A.H.; Azevedo, W.F., Jr; Cavada, B.S. Structure of a lectin from Canavalia gladiata seeds: New structural insights for old molecules. BMC Struct. Biol., 2007, 7, 52.
[30]
Brinda, K.V.; Mitra, N.; Surolia, A.; Vishveshwara, S. Determinants of quaternary association in legume lectins. Protein Sci., 2004, 13(7), 1735-1749.
[31]
Sinha, S.; Gupta, G.; Vijayan, M.; Surolia, A. Subunit assembly of plant lectins. Curr. Opin. Struct. Biol., 2007, 17(5), 498-505.
[32]
Kamp, R.M.; Calvete, J.J. Methods in Proteome and Protein Analysis; Springer Science & Business Media, 2004.
[33]
Wah, D.A.; Romero, A.; Gallego del Sol, F.; Cavada, B.S.; Ramos, M.V.; Grangeiro, T.B.; Sampaio, A.H.; Calvete, J.J. Crystal structure of native and Cd/Cd-substituted Dioclea guianensis seed lectin. A novel manganese-binding site and structural basis of dimer-tetramer association. J. Mol. Biol., 2001, 310(4), 885-894.
[34]
Nagano, C.S.; Calvete, J.J.; Barettino, D.; Pérez, A.; Cavada, B.S.; Sanz, L. Insights into the structural basis of the pH-dependent dimer–tetramer equilibrium through crystallographic analysis of recombinant diocleinae lectins. Biochem. J., 2008, 409(2), 417-428.
[35]
Zamora-Caballero, S.; Pérez, A.; Sanz, L.; Bravo, J.; Calvete, J.J. Quaternary structure of Dioclea grandiflora lectin assessed by equilibrium sedimentation and crystallographic analysis of recombinant mutants. FEBS Lett., 2015, 589(18), 2290-2296.
[36]
Lin, S.S.; Levitan, I.B.; Concanavalin, A. A tool to investigate neuronal plasticity. Trends Neurosci., 1991, 14(7), 273-277.
[37]
Scherer, W.J.; Udin, S.B. Concanavalin A reduces habituation in the tectum of the frog. Brain Res., 1994, 667(2), 209-215.
[38]
Kirner, A.; Deutsch, S.; Weiler, E.; Polak, E.H.; Apfelbach, R. Concanavalin A application to the olfactory epithelium reveals different sensory neuron populations for the odour pair D- and L-carvone. Behav. Brain Res., 2003, 138(2), 201-206.
[39]
Suzuki, T.; Okumura-Noji, K. NMDA receptor subunits epsilon 1 [NR2A] and epsilon 2 [NR2B] are substrates for fyn in the postsynaptic density fraction isolated from the rat brain. Biochem. Biophys. Res. Commun., 1995, 216(2), 582-588.
[40]
Clark, R.A.; Gurd, J.W.; Bissoon, N.; Tricaud, N.; Molnar, E.; Zamze, S.E.; Dwek, R.A.; McIlhinney, R.A.; Wing, D.R. Identification of lectin-purified neural glycoproteins, GPs 180, 116, and 110, with NMDA and AMPA receptor subunits: Conservation of glycosylation at the synapse. J. Neurochem., 1998, 70(6), 2594-2605.
[41]
Barauna, S.C.; Kaster, M.P.; Heckert, B.T.; do Nascimento, K.S.; Rossi, F.M.; Teixeira, E.H.; Cavada, B.S.; Rodrigues, A.L.S.; Leal, R.B. Antidepressant-like effect of lectin from Canavalia brasiliensis [ConBr] administered centrally in mice. Pharmacol. Biochem. Behav., 2006, 85(1), 160-169.
[42]
Yankelevitch-Yahav, R.; Franko, M.; Huly, A.; Doron, R. The forced swim test as a model of depressive-like behavior. J. Vis. Exp., 2015, ( No. 97,)
[http://dx.doi.org/doi:10.3791/52587]
[43]
Guest, P.C.; Knowles, M.R.; Molon-Noblot, S.; Salim, K.; Smith, D.; Murray, F.; Laroque, P.; Hunt, S.P.; De Felipe, C.; Rupniak, N.M.; McAllister, G. Mechanisms of action of the antidepressants fluoxetine and the substance P antagonist L-000760735 are associated with altered neurofilaments and synaptic remodeling. Brain Res., 2004, 1002(1-2), 1-10.
[44]
Peng, L.; Gu, L.; Li, B.; Hertz, L. Fluoxetine and all other SSRIs are 5-HT2B agonists - importance for their therapeutic effects. Curr. Neuropharmacol., 2014, 12(4), 365-379.
[45]
Rieger, D.K.; Costa, A.P.; Budni, J.; Moretti, M.; Barbosa, S.G.R.; Nascimento, K.S.; Teixeira, E.H.; Cavada, B.S.; Rodrigues, A.L.S.; Leal, R.B. Antidepressant-like effect of Canavalia brasiliensis [ConBr] lectin in mice: Evidence for the involvement of the glutamatergic system. Pharmacol. Biochem. Behav., 2014, 122, 53-60.
[46]
Russi, M.A.; Vandresen-Filho, S.; Rieger, D.K.; Costa, A.P.; Lopes, M.W.; Cunha, R.M.S.; Teixeira, E.H.; Nascimento, K.S.; Cavada, B.S.; Tasca, C.I.; Leal, R.B. ConBr, a lectin from Canavalia brasiliensis seeds, protects against quinolinic acid-induced seizures in mice. Neurochem. Res., 2012, 37(2), 288-297.
[47]
Assreuy, A.M.; Shibuya, M.D.; Martins, G.J.; De Souza, M.L.; Cavada, B.S.; Moreira, R.A.; Oliveira, J.T.; Ribeiro, R.A.; Flores, C.A. Anti-inflammatory effect of glucose-mannose binding lectins isolated from brazilian beans. Mediators Inflamm., 1997, 6(3), 201-210.
[48]
Assreuy, A.M.S.; Fontenele, S.R.; de Freitas Pires, A.; Fernandes, D.C.; Rodrigues, N.V.; Bezerra, E.H.S.; Moura, T.R.; do Nascimento, K.S.; Cavada, B.S. Vasodilator effects of diocleinae lectins from the canavalia genus. Naunyn Schmiedebergs Arch. Pharmacol., 2009, 380(6), 509-521.
[49]
Menezes, G.B.; Rezende, R.M.; Pereira-Silva, P.E.M.; Klein, A.; Cara, D.C.; Francischi, J.N. Differential involvement of cyclooxygenase isoforms in neutrophil migration in vivo and in vitro. Eur. J. Pharmacol., 2008, 598(1-3), 118-122.
[50]
Barral-Netto, M.; Santos, S.B.; Barral, A.; Moreira, L.I.M.; Santos, C.F.; Moreira, R.A.; Oliveira, J.T.A.; Cavada, B.S. Human lymphocyte stimulation by legume lectins from the diocleae tribe. Immunol. Invest., 1992, 21(4), 297-303.
[51]
Rodriguez, D.; Cavada, B.S.; Abreu-de-Oliveira, J.T.; de-Azevedo-Moreira, R.; Russo, M. Differences in macrophage stimulation and leukocyte accumulation in response to intraperitoneal administration of glucose/mannose-binding plant lectins. Braz. J. Med. Biol. Res., 1992, 25(8), 823-826.
[52]
Gomes, J.C.; Rossi Ferreira, R.; Sousa Cavada, B.; Azevedo Moreira, R.; Oliveira, J.T.A. Histamine release induced by glucose [mannose]-specific lectins isolated from brazilian beans. comparison with concanavalin A. Agents Actions, 1994, 41(3-4), 132-135.
[53]
Ferreira, R.R.; Cavada, B.S.; Moreira, R.A.; Oliveira, J.T.; Gomes, J.C. Characteristics of the histamine release from hamster cheek pouch mast cells stimulated by lectins from brazilian beans and concanavalin A. Inflamm. Res., 1996, 45(9), 442-447.
[54]
Pinto, N.V.; Cavada, B.S.; Brito, L.F.; Pereira, R.I.; da Silva, M.T.L.; Castro, R.R.; de Freitas Pires, A.; Assreuy, A.M.S. Effects of canavalia lectins on acute inflammation in sensitized and non-sensitized rats. Inflammation, 2013, 36(3), 713-722.
[55]
Mollace, V. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol. Rev., 2005, 57(2), 217-252.
[56]
Andrade, J.L.; Arruda, S.; Barbosa, T.; Paim, L.; Ramos, M.V.; Cavada, B.S.; Barral-Netto, M. Lectin-induced nitric oxide production. Cell. Immunol., 1999, 194(1), 98-102.
[57]
de Freitas Pires, A.; Assreuy, A.M.S.; Lopes, É.A.B.; Celedônio, N.R.; Soares, C.E.A.; Rodrigues, N.V.F.C.; Sousa, P.L.; Benevides, R.G.; Nagano, C.S.; Cavada, B.S.; Leal-Cardoso, J.H.; Coelho-de-Souza, A.N.; Santos, C.F. Opioid-like antinociceptive effects of oral administration of a lectin purified from the seeds of Canavalia brasiliensis. Fundam. Clin. Pharmacol., 2013, 27(2), 201-209.
[58]
Iordache, F.; Ionita, M.; Mitrea, L.I.; Fafaneata, C.; Pop, A. Antimicrobial and antiparasitic activity of lectins. Curr. Pharm. Biotechnol., 2015, 16(2), 152-161.
[59]
Breitenbach Barroso Coelho, L.C.; Marcelino Dos Santos Silva, P.; Felix de Oliveira, W.; de Moura, M.C.; Viana Pontual, E.; Soares Gomes, F.; Guedes Paiva, P.M.; Napoleão, T.H.; Dos Santos Correia, M.T. Lectins as antimicrobial agents. J. Appl. Microbiol., 2018, 125(5), 1238-1252.
[60]
Gomes, B.S.; Siqueira, A.B.S.; de Cássia Carvalho Maia, R.; Giampaoli, V.; Teixeira, E.H.; Arruda, F.V.S.; do Nascimento, K.S.; de Lima, A.N.; Souza-Motta, C.M.; Cavada, B.S.; Porto, A.L. Antifungal activity of lectins against yeast of vaginal secretion. Braz. J. Microbiol., 2012, 43(2), 770-778.
[61]
Santiago, A.P.; Saavedra, E.; Pérez Campos, E.; Córdoba, F. Effect of plant lectins on Ustilago maydis in vitro. Cell. Mol. Life Sci., 2000, 57(13-14), 1986-1989.
[62]
Teixeira, E.H.; Napimoga, M.H.; Carneiro, V.A.; de Oliveira, T.M.; Cunha, R.M.S.; Havt, A.; Martins, J.L.; Pinto, V.P.T.; Gonçalves, R.B.; Cavada, B.S. In vitro inhibition of streptococci binding to enamel acquired pellicle by plant lectins. J. Appl. Microbiol., 2006, 101(1), 111-116.
[63]
Cavalcante, T.T.A.; Anderson Matias da Rocha, B.; Alves Carneiro, V.; Vassiliepe Sousa Arruda, F.; Fernandes do Nascimento, A.S.; Cardoso Sá, N.; do Nascimento, K.S.; Sousa Cavada, B.; Holanda Teixeira, E. Effect of lectins from diocleinae subtribe against oral streptococci. Molecules, 2011, 16(5), 3530-3543.
[64]
de Vasconcelos, M.A.; Cunha, C.O.; Arruda, F.V.S.; Carneiro, V.A.; Mercante, F.M.; do Nascimento Neto, L.G.; de Sousa, G.S.; Rocha, B.A.M.; Teixeira, E.H.; Cavada, B.S.; dos Santos, R.P. Lectin from Canavalia brasiliensis seeds [ConBr] is a valuable biotechnological tool to stimulate the growth of Rhizobium tropici in vitro. Molecules, 2012, 17(5), 5244-5254.
[65]
Souza, M.A.; Carvalho, F.C.; Ruas, L.P.; Ricci-Azevedo, R.; Roque-Barreira, M.C. The immunomodulatory effect of plant lectins: A review with emphasis on ArtinM properties. Glycoconj. J., 2013, 30(7), 641-657.
[66]
Ashraf, M.T.; Khan, R.H. Mitogenic lectins. Med. Sci. Monit., 2003, 9(11), RA265-RA269.
[67]
Barral-Netto, M.; Von Sohsten, R.L.; Teixeira, M.; dos Santos, W.L.; Pompeu, M.L.; Moreira, R.A.; Oliveira, J.T.; Cavada, B.S.; Falcoff, E.; Barral, A. In vivo protective effect of the lectin from Canavalia brasiliensis on BALB/c mice infected by Leishmania amazonensis. Acta Trop., 1996, 60(4), 237-250.
[68]
Black, C.D.; Kroczek, R.A.; Barbet, J.; Weinstein, J.N.; Shevach, E.M. Induction of IL-2 receptor expression in vivo: Response to concanavalin A. Cell. Immunol., 1988, 111(2), 420-432.
[69]
Reis, E.A.G.; Athanazio, D.A.; Cavada, B.S.; Teixeira, E.H.; de Paulo Teixeira Pinto, V.; Carmo, T.M.A.; Reis, A.; Trocolli, G.; Croda, J.; Harn, D.; Barral-Netto, M.; Reis, M.G. Potential immunomodulatory effects of plant lectins in Schistosoma mansoni infection. Acta Trop., 2008, 108(2-3), 160-165.
[70]
Silva, A.F.B.; Matos, M.P.V.; Ralph, M.T.; Silva, D.L.; de Alencar, N.M.; Ramos, M.V.; Lima-Filho, J.V. Comparison of immunomodulatory properties of mannose-binding lectins from Canavalia brasiliensis and Cratylia argentea in a mice model of salmonella infection. Int. Immunopharmacol., 2016, 31, 233-238.
[71]
Batista, J.; Ralph, M.T.; Vaz, R.V.; Souza, P.; Silva, A.B.; Nascimento, D.; Souza, L.T.; Ramos, M.V.; Mastroeni, P.; Lima-Filho, J.V. Plant lectins ConBr and CFL modulate expression toll-like receptors, pro-inflammatory cytokines and reduce the bacterial burden in macrophages infected with Salmonella enterica serovar typhimurium. Phytomedicine, 2017, 25, 52-60.
[72]
Shiba, T.; Tobe, K.; Koshio, O.; Yamamoto, R.; Shibasaki, Y.; Matsumoto, N.; Toyoshima, S.; Osawa, T.; Akanuma, Y.; Takaku, F. Concanavalin A-induced receptor aggregation stimulates the tyrosine kinase activity of the insulin receptor in intact cells. Biochem. J., 1990, 267(3), 787-794.
[73]
Rosen, O.M.; Herrera, R.; Olowe, Y.; Petruzzelli, L.M.; Cobb, M.H. Phosphorylation activates the insulin receptor tyrosine protein kinase. Proc. Natl. Acad. Sci. USA, 1983, 80(11), 3237-3240.
[74]
Cavada, B.S.; Iglesias, M.M.; Troncoso, M.F.; Teixeira, E.H.; Turyn, D.; Dominici, F.P. Glucose-mannose-binding lectins isolated from brazilian beans stimulate the autophosphorylation of the insulin receptor in vitro. Horm. Metab. Res., 2003, 35(2), 125-127.
[75]
Barbosa, T.; Arruda, S.; Cavada, B.; Grangeiro, T.B.; de Freitas, L.A.; Barral-Netto, M. In vivo lymphocyte activation and apoptosis by lectins of the diocleinae subtribe. Mem. Inst. Oswaldo Cruz, 2001, 96(5), 673-678.
[76]
Silva Fde, O.; Santos, Pd.; Figueirôa Ede, O.; de Melo, C.M.; de Andrade Lemoine Neves, J.K.; Arruda, F.V.; Cajazeiras, J.B.; do Nascimento, K.S.; Teixeira, E.H.; Cavada, B.S.; Porto, A.L.; Pereira, V.R. Antiproliferative effect of Canavalia brasiliensis lectin on B16F10 cells. Res. Vet. Sci., 2014, 96(2), 276-282.
[77]
Faheina-Martins, G.V.; da Silveira, A.L.; Ramos, M.V.; Marques-Santos, L.F.; Araujo, D.A.M. Influence of fetal bovine serum on cytotoxic and genotoxic effects of lectins in MCF-7 cells. J. Biochem. Mol. Toxicol., 2011, 25(5), 290-296.
[78]
Faheina-Martins, G.V.; da Silveira, A.L.; Cavalcanti, B.C.; Ramos, M.V.; Moraes, M.O.; Pessoa, C.; Araújo, D.A.M. Antiproliferative effects of lectins from Canavalia ensiformis and Canavalia brasiliensis in human leukemia cell lines. Toxicol. In Vitro, 2012, 26(7), 1161-1169.
[79]
Chang, C.P.; Yang, M.C.; Liu, H.S.; Lin, Y.S.; Lei, H.Y. Concanavalin A induces autophagy in hepatoma cells and has a therapeutic effect in a Murinein situhepatoma model. Hepatology, 2007, 45(2), 286-296.
[80]
Gastman, B.; Wang, K.; Han, J.; Zhu, Z.Y.; Huang, X.; Wang, G.Q.; Rabinowich, H.; Gorelik, E. A novel apoptotic pathway as defined by lectin cellular initiation. Biochem. Biophys. Res. Commun., 2004, 316(1), 263-271.
[81]
Suen, Y.K.; Fung, K.P.; Choy, Y.M.; Lee, C.Y.; Chan, C.W.; Kong, S.K. Concanavalin A induced apoptosis in murine macrophage PU5-1.8 cells through clustering of mitochondria and release of cytochrome c. Apoptosis, 2000, 5(4), 369-377.
[82]
Abreu, D.S.; Sousa, T.P.; Castro, C.B.; Sousa, M.N.V.; Silva, T.T.; Almeida-Neto, F.W.Q.; Queiros, M.V.A.; Rodrigues, B.S.F.; Oliveira, M.C.F.; Paulo, T.F.; Cavada, B.S.; Nascimento, K.S.; Temperini, M.L.A.; Diogenes, I.C.N. SAM of gliotoxin on gold: A natural product platform for sugar recognition based on the immobilization of Canavalia brasiliensis lectin (ConBr). Electrochim. Acta, 2017, 241, 116-123.
[83]
Castro, M.O.; de Santiago, M.Q.; Nascimento, K.S.; Sousa Cavada, B.; de Castro Miguel, E.; de Paula, A.J.; Ferreira, O.P. Hydrochar as protein support: Preservation of biomolecule properties with non-covalent immobilization. J. Mater. Sci., 2017, 52(23), 13378-13389.
[84]
Lord, J.M. The use of cytotoxic plant lectins in cancer therapy. Plant Physiol., 1987, 85(1), 1-3.
[85]
Hashim, O.H.; Jayapalan, J.J.; Lee, C.S. Lectins: An effective tool for screening of potential cancer biomarkers. PeerJ, 2017, 5, e3784.
[86]
De Mejía,E.G.; Prisecaru, V.I. Lectins as bioactive plant proteins: A potential in cancer treatment. Crit. Rev. Food Sci. Nutr., 2005, 45(6), 425-445.
[87]
Rosi, A.; Guidoni, L.; Luciani, A.M.; Mariutti, G.; Viti, V. RNA-lipid complexes released from the plasma membrane of human colon carcinoma cells. Cancer Lett., 1988, 39(2), 153-160.
[88]
Kaefer, C.; Komninou, E.R.; Campos, V.F.; de Leon, P.M.; Arruda, F.V.S.; Nascimento, K.S.; Teixeira, E.H.; Stefanello, F.M.; Barschak, A.G.; Deschamps, J.C.; Seixas, F.K.; Cavada, B.S.; Collares, T. Binding pattern and toxicological effects of lectins from genus canavalia on bovine sperm. Reprod. Toxicol., 2013, 38, 72-80.
[89]
Martins, A.M.C.; Monteiro, A.M.O.; Havt, A.; Barbosa, P.S.F.; Soares, T.F.; Evangelista, J.S.A.M.; de Menezes, D.B.; Fonteles, M.C.; Teixeira, E.H.; Pinto, V.P.T.; Nascimento, K.S.; Alencar, N.M.; Cavada, B.S.; Monteiro, H.S. Renal effects induced by the lectin from Vatairea macrocarpa seeds. J. Pharm. Pharmacol., 2005, 57(10), 1329-1333.
[90]
Havt, A.; Assreuy, A.M.S. Nascimento, N.R.F.do; Fonteles, M.C.; Pereira, L. de P.; Monteiro, S.M.N.; Barbosa, P.S.F.; Nascimento, K.S.; Cavada, B.S.; Martins, A.M.C.; Monteiro, H.S. The effect of Cratylia floribunda lectin on renal hemodynamics and ion transport. Braz. J. Pharm. Sci., 2015, 51(3), 755-761.
[91]
Teixeira, E.; Havt, A.; Barbosa, P.; Meneses, D.; Fonteles, M.; Monteiro, H.; Sampaio, A.; Cavada, B. Renal effects of the lectin from Canavalia brasiliensis seeds. Protein Pept. Lett., 2001, 8(6), 477-484.
[92]
Macedo, M.L.R.; Oliveira, C.F.R.; Oliveira, C.T. Insecticidal activity of plant lectins and potential application in crop protection. Molecules, 2015, 20(2), 2014-2033.
[93]
Reyes-Montaño, E.A.; Vega-Castro, N.A. Plant lectins with insecticidal and insectistatic activities.In Insecticides - Agriculture and Toxicology; Begum, G., Ed.; InTech, 2018.
[94]
Grangeiro, T.B. Clonagem, sequenciamento e expressão do gene da lectina (ConBr) de sementes de Canavalia brasiliensis. PhD Thesis.Federal University of Ceara: Brazil,. 1996.
[95]
Nogueira, N.A.P.; Grangeiro, M.B.; da Cunha, R.M.S.; Ramos, M.V.; Alves, M.A.O.; Teixeira, E.H.; Barral-Netto, M.; Calvete, J.J.; Cavada, B.S.; Grangeiro, T.B. Expression and purification of the recombinant ConBr [Canavalia brasiliensis lectin] produced in Escherichia coli cells. Protein Pept. Lett., 2002, 9(1), 59-66.
[96]
Carvalho, C.P.S.; Rocha, C.S.; Nepomuceno, D.R.; Oliveira, J.T.A.; Grangeiro, T.B. Expression of a Canavalia brasiliensis lectin (ConBr) precursor in Pichia pastoris. Protein Pept. Lett., 2008, 15(4), 327-332.
[97]
Dam, T.; Cavada, B.; Grangeiro, T.; Santos, C.; Ceccatto, V.; de Sousa, F.; Oscarson, S.; Brewer, C. Thermodynamic binding studies of lectins from the diocleinae subtribe to deoxy analogs of the core trimannoside of asparagine-linked oligosaccharides. J. Biol. Chem., 2000, 275, 16119-16126.
[98]
Dam, T.; Cavada, B.; Grangeiro, T.; Santos, C.; de Sousa, F.; Oscarson, S.; Brewer, C. Diocleinae lectins are A group of proteins with conserved binding sites for the core trimannoside of asparagine-linked oligosaccharides and differential specificities for complex carbohydrates. J. Biol. Chem., 1998, 273, 12082-12088.