In Vitro Metabolic Profiling of Periplogenin in Rat Liver Microsomes and its Associated Enzyme-kinetic Evaluation

Page: [504 - 512] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Periplogenin, an active ingredient in Cortex Periplocae, is widely noted for its multiple biological activities; however, the metabolism of this compound has been scarcely investigated. The present report proposed the in vitro metabolic profiling and reaction pathways of periplogenin in rat liver microsomes.

Method and Results: The metabolites of periplogenin in rat liver microsomes were analyzed. Two main metabolites, namely 14-hydroxy-3-oxo-14β-carda-4, 20 (22)-dienolide and 5, 14-dihydroxy-3-oxo-5β, 14β-card-20(22)-enolide were identified by HPLC-MSn, 1H-NMR and 13C-NMR. HPLC method was established for the simultaneous determination of periplogenin and its related metabolites (M0, M1 and M2), which was performed on Waters ODS column with a methanol-water solution (53:47, v/v) as mobile phase and descurainoside as an internal standard at 220 nm. The linearity ranges of M0, M1 and M2 were 0.64-820.51, 0.68-864.86 and 0.64-824.74 μM respectively with the regression coefficient (R2) above 0.9995. The limits of quantitation for these metabolites (M0, M1 and M2) were 0.18, 0.22 and 0.15 μM respectively. The developed method was also accurate (with relative errors of -3.6% to 3.2%) and precise (with relative standard deviations below 7.9%). The recoveries of the three analytes were above 85.7% with stability in the range of -2.4% to 3.6%. The enzyme-kinetic parameters of periplogenin including Vmax (6.08 ± 0.19 nmol/mg protein/min), Km (288.62 ± 14.54 μM) and Clint (21 ± 1.0 μL/min/mg protein) were calculated using nonlinear regression analysis.

Conclusion: These findings significantly highlighted the metabolic pathways of periplogenin and also provided some reference data for future pharmacokinetic and pharmacodynamic studies.

Keywords: Periplogenin, metabolism, rat liver microsomes, enzyme kinetics, LC-MSn, NMR.

Graphical Abstract

[1]
Zhu, Y.N.; Zhao, W.M.; Yang, Y.F.; Liu, Q.F.; Zhou, Y.; Tian, J.; Ni, J.; Fu, Y.F.; Zhong, X.G.; Tang, W.; Zhou, R.; He, P.L.; Li, X.Y.; Zuo, J.P. Periplocoside E, an effective compound from Periploca sepium Bge, inhibited T cell activation in vitro and in vivo. J. Pharmacol. Exp. Ther., 2006, 316(2), 662-669.
[http://dx.doi.org/10.1124/jpet.105.093732] [PMID: 16204471]
[2]
Itokawa, H.; Xu, J.; Takeya, K.; Watanabe, K.; Shoji, J. Studies on chemical constituents of antitumor fraction from Periploca sepium. II. Structures of new pregnane glycosides, periplocosides A, B and C. Chem. Pharm. Bull. (Tokyo), 1988, 36(3), 982-987.
[http://dx.doi.org/10.1248/cpb.36.982] [PMID: 3409416]
[3]
Zhao, L.; Shan, B.; Du, Y.; Wang, M.; Liu, L.; Ren, F.Z. Periplocin from Cortex periplocae inhibits cell growth and down-regulates survivin and c-myc expression in colon cancer in vitro and in vivo via β-catenin/TCF signaling. Oncol. Rep., 2010, 24(2), 375-383.
[PMID: 20596624]
[4]
Wang, L.; Lu, A.; Meng, F.; Cao, Q.; Shan, B. Inhibitory effects of lupeal acetate of Cortex periplocae on N-nitrosomethylbenzylamine-induced rat esophageal tumorigenesis. Oncol. Lett., 2012, 4(2), 231-236.
[http://dx.doi.org/10.3892/ol.2012.717] [PMID: 22844359]
[5]
Wang, X.Y.; Gao, X.M.; Liu, H.; Zhang, H.; Liu, Y.; Jiang, M.; Hu, L.M.; Zhang, B.L. Gene expression profiling of the proliferative effect of periplocin on mouse cardiac microvascular endothelial cells. Chin. J. Integr. Med., 2010, 16(1), 33-40.
[http://dx.doi.org/10.1007/s11655-010-0033-z] [PMID: 20131034]
[6]
Guo, H.; Mao, H.; Pan, G.; Zhang, H.; Fan, G.; Li, W.; Zhou, K.; Zhu, Y.; Yanagihara, N.; Gao, X. Antagonism of Cortex Periplocae extract-induced catecholamines secretion by Panax notoginseng saponins in cultured bovine adrenal medullary cells by drug combinations. J. Ethnopharmacol., 2013, 147(2), 447-455.
[http://dx.doi.org/10.1016/j.jep.2013.03.036] [PMID: 23524165]
[7]
Zhang, Y.W.; Bao, Y.L.; Wu, Y.; Yu, C.L.; Li, Y.X. 17βH-Periplogenin, a cardiac aglycone from the root bark of Periploca sepium Bunge. Acta Crystallogr. Sect. E Struct. Rep. Online, 2012, 68, 1582-1583.
[http://dx.doi.org/10.1107/S1600536812018521]
[8]
Lu, Z.; Song, Q.; Yang, J.; Zhao, X.; Zhang, X.; Yang, P.; Kang, J. Comparative proteomic analysis of anti-cancer mechanism by periplocin treatment in lung cancer cells. Cell. Physiol. Biochem., 2014, 33(3), 859-868.
[http://dx.doi.org/10.1159/000358658] [PMID: 24685647]
[9]
Zhao, L.; Shan, B.; Du, Y.; Wang, M.; Liu, L.; Ren, F.Z. Periplocin from Cortex periplocae inhibits cell growth and down-regulates survivin and c-myc expression in colon cancer in vitro and in vivo via beta-catenin/TCF signaling. Oncol. Rep., 2010, 24(2), 375-383.
[PMID: 20596624]
[10]
Panda, S.; Kar, A. Periplogenin, isolated from Lagenaria siceraria, ameliorates L-T4-induced hyperthyroidism and associated cardiovascular problems. Horm. Metab. Res., 2011, 43(3), 188-193.
[http://dx.doi.org/10.1055/s-0031-1271621] [PMID: 21287437]
[11]
Liang, S.; Deng, F.; Xing, H.; Wen, H.; Shi, X.; Martey, O.N.; Koomson, E.; He, X. P-glycoprotein- and organic anion-transporting polypeptide-mediated transport of periplocin may lead to drug-herb/drug-drug interactions. Drug Des. Devel. Ther., 2014, 8, 475-483.
[PMID: 24872678]
[12]
Xie, Y.S.; Ren, X.L.; Pan, G.X.; Gao, X.M.; Liu, C.X. The assessment of absorption of periplocin in situ via intestinal perfusion of rats by HPLC. Biomed. Chromatogr., 2008, 22(2), 196-201.
[http://dx.doi.org/10.1002/bmc.914] [PMID: 18059065]
[13]
Wan, J.Y.; Liu, P.; Wang, H.Y.; Qi, L.W.; Wang, C.Z.; Li, P.; Yuan, C.S. Biotransformation and metabolic profile of American ginseng saponins with human intestinal microflora by liquid chromatography quadrupole time-of-flight mass spectrometry. J. Chromatogr. A, 2013, 1286, 83-92.
[http://dx.doi.org/10.1016/j.chroma.2013.02.053] [PMID: 23499252]
[14]
Messiano, G.B.; Santos, R.A.; Ferreira, Lde.S.; Simões, R.A.; Jabor, V.A.; Kato, M.J.; Lopes, N.P.; Pupo, M.T.; de Oliveira, A.R. In vitro metabolism study of the promising anticancer agent the lignan (-)-grandisin. J. Pharm. Biomed. Anal., 2013, 72, 240-244.
[http://dx.doi.org/10.1016/j.jpba.2012.08.028] [PMID: 22995290]
[15]
Wu, H.; Li, L.; Shen, J.; Wang, Y.; Liu, K.; Zhang, S. In vitro metabolism of cyadox in rat, chicken and swine using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J. Pharm. Biomed. Anal., 2012, 67-68, 175-185.
[http://dx.doi.org/10.1016/j.jpba.2012.04.004] [PMID: 22565170]
[16]
Meng, Z.; Shi, Z.; Su, M.; Sun, H.W. In vitro metabolism analysis of sulfamerazine in mice liver by ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Curr. Pharm. Anal., 2018, 14, 17-22.
[17]
Deroussent, A.; Ré, M.; Hoellinger, H.; Cresteil, T. Metabolism of sanguinarine in human and in rat: characterization of oxidative metabolites produced by human CYP1A1 and CYP1A2 and rat liver microsomes using liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal., 2010, 52(3), 391-397.
[http://dx.doi.org/10.1016/j.jpba.2009.09.014] [PMID: 19804952]
[18]
Bo, F.; Dou, T.; Wang, X.; Donkor, P.O.; Ouyang, H.; Chang, Y.; Tu, Y.; Gao, X.; He, J. A validated LC-MS/MS method for determination of periplogenin in rat plasma and its application in pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 990, 80-83.
[http://dx.doi.org/10.1016/j.jchromb.2015.03.017] [PMID: 25864008]
[19]
Wang, L.; Zheng, B.J.; Luo, G.W.; Yang, L.Z.; Wang, L.T.; Hu, Z.; Xiang, Z. HPLC - MS / MS determination of fraxetin in rat plasma and its application to a pharmacokinetic study. Curr. Pharm. Anal., 2018, 14, 349-354.
[http://dx.doi.org/10.2174/1573412913666170525123017]
[20]
Marques, L.M.M.; da Silva, E.A., Jr; Gouvea, D.R.; Vessecchi, R.; Pupo, M.T.; Lopes, N.P.; Kato, M.J.; de Oliveira, A.R. In vitro metabolism of the alkaloid piplartine by rat liver microsomes. J. Pharm. Biomed. Anal., 2014, 95, 113-120.
[http://dx.doi.org/10.1016/j.jpba.2014.02.020] [PMID: 24667565]
[21]
Zhang, L.; Fang, G.; Zheng, L.; Chen, Z.; Liu, X. The hypocholesterolemic effect of capsaicinoids in ovariectomized rats fed with a cholesterol-free diet was mediated by inhibition of hepatic cholesterol synthesis. Food Funct., 2013, 4(5), 738-744.
[http://dx.doi.org/10.1039/c3fo30321g] [PMID: 23463147]
[22]
Yuan, L.; Jia, P.; Sun, Y.; Zhao, C.; Zhi, X.; Sheng, N.; Zhang, L. Study of in vitro metabolism of m-nisoldipine in human liver microsomes and recombinant cytochrome P450 enzymes by liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal., 2014, 97, 65-71.
[http://dx.doi.org/10.1016/j.jpba.2014.03.030] [PMID: 24816159]
[23]
Hokkanen, J.; Tolonen, A.; Mattila, S.; Turpeinen, M. Metabolism of hyperforin, the active constituent of St. John’s wort, in human liver microsomes. Eur. J. Pharm. Sci., 2011, 42(3), 273-284.
[http://dx.doi.org/10.1016/j.ejps.2010.12.002] [PMID: 21168483]
[24]
Wang, Y.Y.; Bu, F.L.; Zhang, R.; Yuan, G.Y.; Li, P.L.; Chen, X.W.; Wang, B.J.; Li, R.; Guo, R.C. The development and validation of the accurate and sensitive HPLC method for quantification of mizoribine in human plasma and its clinical applications. Curr. Pharm. Anal., 2018, 14, 541-546.
[http://dx.doi.org/10.2174/1573412913666170912102907]
[25]
Houston, J.B.; Galetin, A. Progress towards prediction of human pharmacokinetic parameters from in vitro technologies. Drug Metab. Rev., 2003, 35(4), 393-415.
[http://dx.doi.org/10.1081/DMR-120026870] [PMID: 14705868]
[26]
Palombo, E.; Audran, G.; Monti, H. Enantioconvergent access to the enantiomerically pure building blocks (+)- or (-)-4-Hydroxy-3-methyl-2-cyclohexenone using a chemoenzymatic process. Synlett, 2006, 691, 403-406.