International Journal of Sensors, Wireless Communications and Control

Author(s): Ruchi Makani* and Busi V. Ramana Reddy

DOI: 10.2174/2210327909666181217122655

DownloadDownload PDF Flyer Cite As
Performance Evaluation of Cognitive Internet on Things Under Routing Attacks

Page: [15 - 24] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background & Objective: In past few years, Cognitive Radio (CR) paradigm has emerged as a promising and revolutionary solution to avoid problems of spectrum paucity and inefficiency in spectrum usage. Efficiently utilization of the spectrum offers high network performance. CRs are proficient to identify and adopt the unused spectrum in order to allow secondary users to occupy it without interfering the primary user’s activity. Cognitive Internet on Things (CIoT) is an integration of several technologies and communication solutions which can be effectively realized as Cognitive Radio Adhoc Networks (CRAHN). In CRANH, on-demand routing protocols are the best suitable protocols due to their dynamic feature of available un-utilized channel/spectrum selection.

Methods: Here, firstly, Ad-Hoc On-Demand Distance Vector (AODV) routing protocol has been modified and further evaluated to address route selection challenges in CIoT framework. Secondly, the effects on network performance under network layer routing attacks (i.e. blackhole attack, byzantine attack and flooding attacks) are evaluated.

Conclusion: The simulations results demonstrate network performance increase with more channels and degrade differently under attacks.

Keywords: AODV, black hole attack, byzantine attack, cognitive internet on things, cognitive radio adhoc networks, flooding attack, network layer routing attacks, spectrum management framework.