A Comparative Study of the Antimicrobial and Structural Properties of Short Peptides and Lipopeptides Containing a Repetitive Motif KLFK

Page: [192 - 203] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: In the last years, Antimicrobial Peptides (AMPs) and lipopeptides have received attention as promising candidates to treat infections caused by resistant microorganisms.

Objective: The main objective of this study was to investigate the effect of repetitive KLFK motifs and the attachment of aliphatic acids to the N-terminus of (KLFK)n peptides on therapeutic properties.

Methods: Minimal inhibitory concentration against Gram (+) and (-) bacteria and yeast of synthetic compounds were determined by broth microtiter dilution method, and the toxicity was evaluated by hemolysis assay. Membrane-peptide interaction studies were performed with model phospholipid membranes mimicking those of bacterial and mammalian cells by Fluorescence Spectroscopy. The secondary structure in solution and membranes was determined by Circular Dichroism.

Results: Our results showed that the resulting compounds have inhibitory activity against bacteria and fungi. The (KLFK)3 peptide showed the highest therapeutic index against bacterial and yeast strains, and the (KLFK)2 peptide conjugated with octanoic acid was the most active against yeasts. All the lipopeptides containing long-chain fatty acids (C14 or longer) were highly hemolytic at low concentrations. The antimicrobial activity of (KLFK)2 and (KLFK)3 lipopeptides was mainly associated with improved stability of the amphipathic secondary structure, which showed high contributions of α-helix in dipalmitoylphosphatidylglycerol (DPPG) vesicles.

Conclusion: The repetition of the KLFK sequence and the conjugation with lipid tails allowed obtained compounds with high antimicrobial activity and low toxicity, becoming good candidates for treating infectious diseases.

Keywords: Peptide, lipopeptides, antimicrobial activity, hemolytic activity, critical micelle concentration, secondary structure, fluorescence spectroscopy.

Graphical Abstract

[1]
WHO | Antimicrobial Resistance. WHO, 2018.
[2]
Batzlaff, C.M.; Limper, A.H. When to consider the possibility of a fungal infection: An overview of clinical diagnosis and laboratory approaches. Clin. Chest Med., 2017, 38(3), 385-391.
[3]
Liu, R.H.; Shang, Z.C.; Li, T.X.; Yang, M.H.; Kong, L.Y. In vitro antibiofilm activity of Eucarobustol E against Candida albicans. Antimicrob. Agents Chemother., 2017, 61, e02707-16.
[4]
Yeaman, M.R. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55, 27-55.
[5]
Park, C.B.; Kim, H.S.; Kim, S.C. Mechanism of action of the antimicrobial peptide Buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun., 1998, 224, 253-257.
[6]
Malina, A.; Shai, Y. Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide. Biochem. J., 2005, 390, 695-702.
[7]
Sharma, S.; Sahoo, N.; Bhunia, A. Antimicrobial peptides and their pore/ion channel properties in neutralization of pathogenic microbes. Curr. Top. Med. Chem., 2016, 16, 46-53.
[8]
Herbel, V.; Wink, M. Mode of action and membrane specificity of the antimicrobial peptide Snakin-2. PeerJ, 2016, 4, e1987.
[9]
Nicolas, P. Multifunctional host defense peptides: Intracellular-targeting antimicrobial peptides. FEBS J., 2009, 276, 6483-6496.
[10]
Sani, M.A.; Separovic, F. How membrane-active peptides get into lipid membranes. Acc. Chem. Res., 2016, 49, 1130-1138.
[11]
Tashima, T. Intelligent substance delivery into cells using cell-penetrating peptides. Bioorg. Med. Chem. Lett., 2017, 27, 121-130.
[12]
Xu, X.; Li, J.; Lu, Q.; Yang, H.; Zhang, Y.; Lai, R. Two families of antimicrobial peptides from wasp (Vespa magnifica) venom. Toxicon, 2006, 47, 249-253.
[13]
Castro, M.S.; Ferreira, T.C.G.; Cilli, E.M.; Crusca, E.; Mendes-Giannini, M.J.S.; Sebben, A.; Ricart, C.A.O.; Sousa, M.V.; Fontes, W. Hylin A1, the first cytolytic peptide isolated from the arboreal south American frog Hypsiboas albopunctatus (“spotted Treefrog”). Peptides, 2009, 30, 291-296.
[14]
Matejuk, A.; Leng, Q.; Begum, M.D.; Woodle, M.C.; Scaria, P.; Chou, S.T.; Mixson, A.J. Peptide-Based antifungal therapies against emerging infections. Drugs Future, 2010, 35(3), 197.
[15]
Omar, R.; Yadav, A. The remarkable cationic peptides: A boon to pharmaceutical sciences? J. Pharm. Pharm. Sci., 2018, 21, 60.
[16]
Van Der Weerden, N.L.; Bleackley, M.R.; Anderson, M.A. Properties and mechanisms of action of naturally occurring antifungal peptides. . Cell. Mol. Life Sci., 2013, 70, 3545-3570.
[17]
Yun, J.; Hwang, J.S.; Lee, D.G. The antifungal activity of the peptide periplanetasin-2, derived from American cockroach Periplaneta americana. Biochem. J., 2017, 474, 3027-3043.
[18]
Lockwood, N.A.; Haseman, J.R.; Tirrell, M.V.; Mayo, K.H. Acylation of SC4 dodecapeptide increases bactericidal potency against gram-positive bacteria, including drug-resistant strains. Biochem. J., 2004, 378, 93-103.
[19]
Fang, Y.; Zhong, W.; Wang, Y.; Xun, T.; Lin, D.; Liu, W.; Wang, J.; Lv, L.; Liu, S.; He, J. Tuning the antimicrobial pharmacophore to enable discovery of short lipopeptides with multiple modes of action. Eur. J. Med. Chem., 2014, 83, 36-44.
[20]
Avrahami, D.; Shai, Y. Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry, 2002, 41, 2254-2263.
[21]
Mak, P.; Pohl, J.; Dubin, A.; Reed, M.S.; Bowers, S.E.; Fallon, M.T.; Shafer, W.M. The increased bactericidal activity of a fatty acid-modified synthetic antimicrobial peptide of human cathepsin G correlates with its enhanced capacity to interact with model membranes. Int. J. Antimicrob. Agents, 2003, 21, 13-19.
[22]
Shai, Y.; Makovitzky, A.; Avrahami, D. Host defense peptides and lipopeptides: Modes of action and potential candidates for the treatment of bacterial and fungal infections. Curr. Protein Pept. Sci., 2006, 7, 479-486.
[23]
Húmpola, M.V.; Rey, M.C.; Carballeira, N.M.; Simonetta, A.C.; Tonarelli, G.G. Biological and structural effects of the conjugation of an antimicrobial decapeptide with saturated, unsaturated, methoxylated and branched fatty acids. J. Pept. Sci., 2017, 23, 45-55.
[24]
Lohan, S.; Cameotra, S.S.; Bisht, G.S. Systematic study of non-natural short cationic lipopeptides as novel broad-spectrum antimicrobial agents. Chem. Biol. Drug Des., 2013, 82, 557-566.
[25]
Makovitzki, A.; Avrahami, D.; Shai, Y. Ultrashort antibacterial and antifungal lipopeptides. Proc. Natl. Acad. Sci., 2006, 103, 15997-16002.
[26]
Strøm, M.B.; Haug, B.E.; Skar, M.L.; Stensen, W.; Stiberg, T.; Svendsen, J.S. The pharmacophore of short cationic antibacterial peptides. J. Med. Chem., 2003, 46, 1567-1570.
[27]
Ramesh, S.; Govender, T.; Kruger, H.G.; de la Torre, B.G.; Albericio, F. Short Anti Microbial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents. J. Pept. Sci., 2016, 22, 438-451.
[28]
Liu, Z.; Brady, A.; Young, A.; Rasimick, B.; Chen, K.; Zhou, C.; Kallenbach, N.R. Length effects in antimicrobial peptides of the (RW)n series. Antimicrob. Agents Chemother., 2007, 51, 597-603.
[29]
Chan, W.C.; White, P. Fmoc Solid Phase Peptide Synthesis: A Practical Approach, 2000.
[30]
Siano, A.; Húmpola, M.V.; Rey, M.C.; Simonetta, A.; Tonarelli, G.G. Interaction of acylated and substituted antimicrobial peptide analogs with phospholipid-polydiacetylene vesicles. Correlation with their biological properties. Chem. Biol. Drug Des., 2011, 78, 85-93.
[31]
Siano, A.; Húmpola, M.V.; De Oliveira, E.; Albericio, F.; Simonetta, A.C.; Lajmanovich, R.; Tonarelli, G.G. Antimicrobial peptides from skin secretions of Hypsiboas pulchellus (Anura: Hylidae). J. Nat. Prod., 2014, 77, 831-841.
[32]
Fuguet, E.; Ràfols, C.; Rosés, M.; Bosch, E. Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Anal. Chim. Acta, 2005, 548, 95-100.
[33]
Siano, A.; Húmpola, M.V.; De Oliveira, E.; Albericio, F.; Simonetta, A.C.; Lajmanovich, R.; Tonarelli, G.G. Leptodactylus latrans amphibian skin secretions as a novel source for the isolation of antibacterial peptides. Molecules, 2018, 23(11), 2943.
[34]
Sreerama, N.; Woody, R.W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal. Biochem., 1993, 209, 32-44.
[35]
Sreerama, N.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem., 2000, 282, 252-260.
[36]
Sreerama, N.; Venyaminov, S.Y.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Inclusion of denatured proteins with native protein in the analysis. Anal. Biochem., 2000, 287, 243-451.
[37]
Ladokhin, A.S.; Jayasinghe, S.; White, S.H. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal. Biochem., 2000, 285, 235-245.
[38]
Krokhin, O. Peptide retention prediction in reversed-phase chromatography: Proteomic applications. Expert Rev. Proteomics, 2012, 9(1), 1-4.
[39]
Huang, Y.; Pan, L.; Zhao, L.; Mant, C.T.; Hodges, R.S.; Chen, Y. Structure-guided RP-HPLC chromatography of diastereomeric α-helical peptide analogs substituted with single amino acid stereoisomers. Biomed. Chromatogr., 2014, 28, 511-517.
[40]
Chen, Y.; Mant, C.T.; Farmer, S.W.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J. Biol. Chem., 2005, 280, 12316-12329.
[41]
Sikorska, E.; Dawgul, M.; Greber, K.; Iłowska, E.; Pogorzelska, A.; Kamysz, W. Self-assembly and interactions of short antimicrobial cationic lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies. Biochim. Biophys. Acta - Biomembr, 2014, 1838, 2625-2634.
[42]
Hollmann, A.; Martínez, M.; Noguera, M.E.; Augusto, M.T.; Disalvo, A.; Santos, N.C.; Semorile, L.; Maffía, P.C. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides. Coll. Surf. B, 2016, 141, 528-536.
[43]
Kang, H.K.; Kim, C.; Seo, C.H.; Park, Y. The therapeutic applications of Antimicrobial Peptides (AMPs): A patent review. J. Microbiol., 2017, 55, 1-12.
[44]
Nasompag, S.; Dechsiri, P.; Hongsing, N.; Phonimdaeng, P.; Daduang, S.; Klaynongsruang, S.; Camesano, T.A.; Patramanon, R. Effect of acyl chain length on therapeutic activity and mode of action of the CX-KYR-NH2 antimicrobial lipopeptide. Biochim. Biophys. Acta - Biomembr, 2015, 1848, 2351-2364.
[45]
Makovitzki, A.; Baram, J.; Shai, Y. Antimicrobial lipopolypeptides composed of palmitoyl di- and tricationic peptides: In vitro and in vivo activities, self-assembly to nanostructures, and a plausible mode of action. Biochemistry, 2008, 47, 10630-10636.
[46]
Xu, T.; Levitz, S.M.; Diamond, R.D.; Oppenheim, F.G. Anticandidal activity of major human salivary histatins. Infect. Immun., 1991, 59, 2549-2554.
[47]
Viejo-Díaz, M.; Andrés, M.T.; Fierro, J.F. Different anti-candida activities of two human lactoferrin-derived peptides, lfpep and Kaliocin-1. Antimicrob. Agents Chemother., 2005, 49, 2583-2588.
[48]
Thevissen, K.; Ferket, K.K.A.; François, I.E.J.A.; Cammue, B.P.A. Interactions of antifungal plant defensins with fungal membrane components. Peptides, 2003, 24(11), 1705-1712.
[49]
Thevissen, K.; Warnecke, D.C.; Francois, I.E.J.A.; Leipelt, M.; Heinz, E.; Ott, C.; Zähringer, U.; Thomma, B.P.H.J.; Ferket, K.K.A.; Cammue, B.P.A. Defensins from insects and plants interact with fungal glucosylceramides. J. Biol. Chem., 2004, 279(6), 3900-3905.
[50]
Henriksen, J.; Rowat, A.C.; Brief, E.; Hsueh, Y.W.; Thewalt, J.L.; Zuckermann, M.J.; Ipsen, J.H. Universal behavior of membranes with sterols. Biophys. J., 2006, 90, 1639-1649.
[51]
Sood, R.; Kinnunen, P.K.J. Cholesterol, lanosterol, and ergosterol attenuate the membrane association of LL-37(W27F) and Temporin L. Biochim. Biophys. Acta - Biomembr, 2008, 1778, 1460- 1466.
[52]
Brender, J.R.; McHenry, A.J.; Ramamoorthy, A. Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? Front. Immunol., 2012, 3, 195.
[53]
Fritsche, T.R.; Rhomberg, P.R.; Sader, H.S.; Jones, R.N. Antimicrobial activity of omiganan pentahydrochloride tested against contemporary bacterial pathogens commonly responsible for catheter-associated infections. J. Antimicrob. Chemother., 2008, 52, 1187-1189.
[54]
Avrahami, D.; Shai, Y. A new group of antifungal and antibacterial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J. Biol. Chem., 2004, 279, 12277-12285.
[55]
Chu-Kung, A.F.; Nguyen, R.; Bozzelli, K.N.; Tirrell, M. Chain length dependence of antimicrobial peptide-fatty acid conjugate activity. J. Coll. Interf. Sci., 2010, 345, 160-167.
[56]
Laverty, G.; McLaughlin, M.; Shaw, C.; Gorman, S.P.; Gilmore, B.F. Antimicrobial activity of short, synthetic cationic lipopeptides. Chem. Biol. Drug Des., 2010, 75, 563-569.
[57]
Wieprecht, T.; Apostolov, O.; Beyermann, M.; Seelig, J. Membrane binding and pore formation of the antibacterial peptide pgla: Thermodynamic and mechanistic aspects. Biochemistry, 2000, 39, 442-452.
[58]
Bonucci, A.; Balducci, E.; Pistolesi, S.; Pogni, R. The defensin-lipid interaction: Insights on the binding states of the human antimicrobial peptide HNP-1 to model bacterial membranes. Biochim. Biophys. Acta Biomembr., 2013, 1828, 758-764.
[59]
Christiaens, B.; Symoens, S.; Vanderheyden, S.; Engelborghs, Y.; Joliot, A.; Prochiantz, A.; Vandekerckhove, J.; Rosseneu, M.; Vanloo, B. Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur. J. Biochem., 2002, 269, 2918-2926.
[60]
Haldar, S.; Raghuraman, H.; Chattopadhyay, A. Monitoring orientation and dynamics of membrane-bound melittin utilizing dansyl fluorescence. J. Phys. Chem. B, 2008, 112, 14075-14082.