Targeting the Ribosome Biogenesis Key Molecule Fibrillarin to Avoid Chemoresistance

Page: [6020 - 6032] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Inherent or acquired chemo resistance in cancer patients has been a perpetual limitation in cancer treatment. Expanding knowledge on essential cellular processes opens a new window for therapeutic targeting. Ribosome biogenesis is a process that shows potential due to its fundamental role in cell development and contribution to tumorigenesis as a result of its upregulation. Inhibiting components of ribosome biogenesis has been explored and has shown interesting results. Yet, an important key component, methyltransferase Fibrillarin (FBL), which influences both the abundance and composition of ribosomes, has not been exploited thus far.

Methods: In this literature review, we describe relevant aspects of ribosome biogenesis in cancer to emphasize the potential of FBL as a therapeutic target, in order to lower the genotoxic effects of anti-cancer treatment.

Results: Remarkably, the amplification of the 19q13 cytogenetic band, including the gene coding for FBL, correlated to cell viability and resistance in pancreatic cells as well as to a trend toward a shorter survival in pancreatic cancer patients.

Targeting ribosome biogenesis, more specifically compared to the secondary effects of chemotherapeutics such as 5-fluorouracil or oxaliplatin, has been achieved by compound CX-5461. The cell dependent activity of this Pol I inhibitor has been reported in ovarian cancer, melanoma and leukemia models with active or mutated p53 status, presenting a promising mechanism to evade p53 resistance.

Conclusion: Targeting critical ribosome biogenesis components in order to decrease the genotoxic activity in cancer cell looks promising. Hence, we believe that targeting key protein rRNA methyltransferase FBL shows great potential, due to its pivotal role in ribosome biogenesis, its correlation to an improved survival rate at low expression in breast cancer patients and its association with p53.

Keywords: Ribosome biogenesis, Fibrillarin (FBL), ribosomal RNA, rRNA methyltransferase, therapeutic target, virus, cancer, p53, chemoresistence.

[1]
Brighenti, E.; Treré, D.; Derenzini, M. Targeted cancer therapy with ribosome biogenesis inhibitors: a real possibility? Oncotarget, 2015, 6(36), 38617-38627.
[http://dx.doi.org/10.18632/oncotarget.5775] [PMID: 26415219]
[2]
Orsolic, I.; Jurada, D.; Pullen, N.; Oren, M.; Eliopoulos, A.G.; Volarevic, S. The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Semin. Cancer Biol., 2016, 37-38, 36-50.
[http://dx.doi.org/10.1016/j.semcancer.2015.12.004] [PMID: 26721423]
[3]
Pelletier, J.; Thomas, G.; Volarević, S. Corrigendum: Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat. Rev. Cancer, 2018, 18(2), 134.
[http://dx.doi.org/10.1038/nrc.2018.3] [PMID: 29368746]
[4]
Belin, S.; Beghin, A.; Solano-Gonzàlez, E.; Bezin, L.; Brunet-Manquat, S.; Textoris, J.; Prats, A.C.; Mertani, H.C.; Dumontet, C.; Diaz, J.J. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS One, 2009, 4(9)e7147
[http://dx.doi.org/10.1371/journal.pone.0007147] [PMID: 19779612]
[5]
Burger, K.; Mühl, B.; Rohrmoser, M.; Coordes, B.; Heidemann, M.; Kellner, M.; Gruber-Eber, A.; Heissmeyer, V.; Strässer, K.; Eick, D. Cyclin-dependent kinase 9 links RNA polymerase II transcription to processing of ribosomal RNA. J. Biol. Chem., 2013, 288(29), 21173-21183.
[http://dx.doi.org/10.1074/jbc.M113.483719] [PMID: 23744076]
[6]
Helm, M. Post-transcriptional nucleotide modification and alternative folding of RNA. Nucleic Acids Res., 2006, 34(2), 721-733.
[http://dx.doi.org/10.1093/nar/gkj471] [PMID: 16452298]
[7]
Shubina, M.Y.; Musinova, Y.R.; Sheval, E.V. Nucleolar methyltransferase fibrillarin: evolution of structure and functions. Biochemistry (Mosc.), 2016, 81(9), 941-950.
[http://dx.doi.org/10.1134/S0006297916090030] [PMID: 27682166]
[8]
Sloan, K.E.; Warda, A.S.; Sharma, S.; Entian, K.D.; Lafontaine, D.L.J.; Bohnsack, M.T. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol., 2017, 14(9), 1138-1152.
[http://dx.doi.org/10.1080/15476286.2016.1259781] [PMID: 27911188]
[9]
Nicolas, E.; Parisot, P.; Pinto-Monteiro, C.; de Walque, R.; De Vleeschouwer, C.; Lafontaine, D.L.J. Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nat. Commun., 2016, 7, 11390.
[http://dx.doi.org/10.1038/ncomms11390] [PMID: 27265389]
[10]
Woods, S.J.; Hannan, K.M.; Pearson, R.B.; Hannan, R.D. The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. Biochim. Biophys. Acta, 2015, 1849(7), 821-829.
[http://dx.doi.org/10.1016/j.bbagrm.2014.10.007] [PMID: 25464032]
[11]
Holmberg Olausson, K.; Nistér, M.; Lindström, M.S. p53 -Dependent and -Independent Nucleolar Stress Responses. Cells, 2012, 1(4), 774-798.
[http://dx.doi.org/10.3390/cells1040774] [PMID: 24710530]
[12]
Derenzini, M.; Montanaro, L.; Trerè, D. Ribosome biogenesis and cancer. Acta Histochem., 2017, 119(3), 190-197.
[http://dx.doi.org/10.1016/j.acthis.2017.01.009] [PMID: 28168996]
[13]
van Riggelen, J.; Yetil, A.; Felsher, D.W. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer, 2010, 10(4), 301-309.
[http://dx.doi.org/10.1038/nrc2819] [PMID: 20332779]
[14]
Ruggero, D. Translational control in cancer etiology. Cold Spring Harb. Perspect. Biol., 2013, 5(2), 1-27.
[http://dx.doi.org/10.1101/cshperspect.a012336] [PMID: 22767671]
[15]
Marcel, V.; Ghayad, S.E.; Belin, S.; Therizols, G.; Morel, A.P.; Solano-Gonzàlez, E.; Vendrell, J.A.; Hacot, S.; Mertani, H.C.; Albaret, M.A.; Bourdon, J.C.; Jordan, L.; Thompson, A.; Tafer, Y.; Cong, R.; Bouvet, P.; Saurin, J.C.; Catez, F.; Prats, A.C.; Puisieux, A.; Diaz, J.J. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell, 2013, 24(3), 318-330.
[http://dx.doi.org/10.1016/j.ccr.2013.08.013] [PMID: 24029231]
[16]
Deffrasnes, C.; Marsh, G.A.; Foo, C.H.; Rootes, C.L.; Gould, C.M.; Grusovin, J.; Monaghan, P.; Lo, M.K.; Tompkins, S.M.; Adams, T.E.; Lowenthal, J.W.; Simpson, K.J.; Stewart, C.R.; Bean, A.G.; Wang, L.F. Genome-wide siRNA Screening at Biosafety Level 4 Reveals a Crucial Role for Fibrillarin in Henipavirus Infection. PLoS Pathog., 2016, 12(3)e1005478
[http://dx.doi.org/10.1371/journal.ppat.1005478] [PMID: 27010548]
[17]
Rodriguez-Corona, U.; Sobol, M.; Rodriguez-Zapata, L.C.; Hozak, P.; Castano, E. Fibrillarin from archaea to human. Biol. Cell, 2015, 107(6), 159-174.
[http://dx.doi.org/10.1111/boc.201400077] [PMID: 25772805]
[18]
Tessarz, P.; Santos-Rosa, H.; Robson, S.C.; Sylvestersen, K.B.; Nelson, C.J.; Nielsen, M.L.; Kouzarides, T. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature, 2014, 505(7484), 564-568.
[http://dx.doi.org/10.1038/nature12819] [PMID: 24352239]
[19]
Yanagida, M.; Hayano, T.; Yamauchi, Y.; Shinkawa, T.; Natsume, T.; Isobe, T.; Takahashi, N. Human fibrillarin forms a sub-complex with splicing factor 2-associated p32, protein arginine methyltransferases, and tubulins α 3 and β 1 that is independent of its association with preribosomal ribonucleoprotein complexes. J. Biol. Chem., 2004, 279(3), 1607-1614.
[http://dx.doi.org/10.1074/jbc.M305604200] [PMID: 14583623]
[20]
Bank RP protein data. 2IPX Human Fibrillarin. Available from: http://www.rcsb.org/pdb/explore/remediatedSequence.do?structureId=2IPX#DSSPRefAnchor(Accessed date: 1 Jan,. 2017.
[21]
Sun, Q.; Zhu, X.; Qi, J.; An, W.; Lan, P.; Tan, D. Molecular architecture of the 90S small subunit pre-ribosome. eLife, 2017, 6, 1-28.
[http://dx.doi.org/10.7554/eLife.22086]
[22]
Rose, A.S.; Hildebrand, P.W. NGL Viewer: a web application for molecular visualization. Nucleic Acids Res., 2015, 43(W1)W576-9
[http://dx.doi.org/10.1093/nar/gkv402] [PMID: 25925569]
[23]
Rose, A.S.; Bradley, A.R.; Valasatava, Y.; Duarte, J.M.; Prlić, A.; Rose, P.W. Web-based molecular graphics for large complexes., 2016.
[http://dx.doi.org/10.1145/2945292.2945324]
[24]
Human Fibrillarin (2IPX) 3D structure, Available at: https://www.rcsb.org/3d-view/2IPX/1 (Accessed date: 25 Jan, . 2018.
[25]
Melén, K.; Tynell, J.; Fagerlund, R.; Roussel, P.; Hernandez-Verdun, D.; Julkunen, I. Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin. Virol. J., 2012, 9, 167.
[http://dx.doi.org/10.1186/1743-422X-9-167] [PMID: 22909121]
[26]
Ponti, D.; Troiano, M.; Bellenchi, G.C.; Battaglia, P.A.; Gigliani, F. The HIV Tat protein affects processing of ribosomal RNA precursor. BMC Cell Biol., 2008, 9, 32.
[http://dx.doi.org/10.1186/1471-2121-9-32] [PMID: 18559082]
[27]
Marcel, V.; Catez, F.; Diaz, J-J. Ribosome heterogeneity in tumorigenesis: the rRNA point of view. Mol. Cell. Oncol., 2015, 2(3)e983755
[http://dx.doi.org/10.4161/23723556.2014.983755] [PMID: 27305893]
[28]
Kuuselo, R.; Savinainen, K.; Azorsa, D.O.; Basu, G.D.; Karhu, R.; Tuzmen, S.; Mousses, S.; Kallioniemi, A. Intersex-like (IXL) is a cell survival regulator in pancreatic cancer with 19q13 amplification. Cancer Res., 2007, 67(5), 1943-1949.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3387] [PMID: 17332321]
[29]
Lee, J.H.; Giovannetti, E.; Hwang, J.H.; Petrini, I.; Wang, Q.; Voortman, J.; Wang, Y.; Steinberg, S.M.; Funel, N.; Meltzer, P.S.; Wang, Y.; Giaccone, G. Loss of 18q22.3 involving the carboxypeptidase of glutamate-like gene is associated with poor prognosis in resected pancreatic cancer. Clin. Cancer Res., 2012, 18(2), 524-533.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1903] [PMID: 22128300]
[30]
Cenik, C.; Cenik, E.S.; Byeon, G.W.; Grubert, F.; Candille, S.I.; Spacek, D.; Alsallakh, B.; Tilgner, H.; Araya, C.L.; Tang, H.; Ricci, E.; Snyder, M.P. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans. Genome Res., 2015, 25(11), 1610-1621.
[http://dx.doi.org/10.1101/gr.193342.115] [PMID: 26297486]
[31]
Sharma, S.; Lafontaine, D.L.J. ‘View from a bridge’: A new perspective on eukaryotic rRNA base modification. Trends Biochem. Sci., 2015, 40(10), 560-575.
[http://dx.doi.org/10.1016/j.tibs.2015.07.008] [PMID: 26410597]
[32]
Scala, F.; Brighenti, E.; Govoni, M.; Imbrogno, E.; Fornari, F.; Treré, D.; Montanaro, L.; Derenzini, M. Direct relationship between the level of p53 stabilization induced by rRNA synthesis-inhibiting drugs and the cell ribosome biogenesis rate. Oncogene, 2016, 35(8), 977-989.
[http://dx.doi.org/10.1038/onc.2015.147] [PMID: 25961931]
[33]
Quin, J.E.; Devlin, J.R.; Cameron, D.; Hannan, K.M.; Pearson, R.B.; Hannan, R.D. Targeting the nucleolus for cancer intervention. Biochim. Biophys. Acta, 2014, 1842(6), 802-816.
[http://dx.doi.org/10.1016/j.bbadis.2013.12.009] [PMID: 24389329]
[34]
Hein, N.; Hannan, K.M.; George, A.J.; Sanij, E.; Hannan, R.D. The nucleolus: an emerging target for cancer therapy. Trends Mol. Med., 2013, 19(11), 643-654.
[http://dx.doi.org/10.1016/j.molmed.2013.07.005] [PMID: 23953479]
[35]
Diwakarla, C.; Hannan, K.; Hein, N.; Yip, D. Advanced pancreatic ductal adenocarcinoma - Complexities of treatment and emerging therapeutic options. World J. Gastroenterol., 2017, 23(13), 2276-2285.
[http://dx.doi.org/10.3748/wjg.v23.i13.2276] [PMID: 28428707]
[36]
Esposito, D.; Crescenzi, E.; Sagar, V.; Loreni, F.; Russo, A.; Russo, G. Human rpL3 plays a crucial role in cell response to nucleolar stress induced by 5-FU and L-OHP. Oncotarget, 2014, 5(22), 11737-11751.
[http://dx.doi.org/10.18632/oncotarget.2591] [PMID: 25473889]
[37]
Burger, K.; Mühl, B.; Harasim, T.; Rohrmoser, M.; Malamoussi, A.; Orban, M.; Kellner, M.; Gruber-Eber, A.; Kremmer, E.; Hölzel, M.; Eick, D. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J. Biol. Chem., 2010, 285(16), 12416-12425.
[http://dx.doi.org/10.1074/jbc.M109.074211] [PMID: 20159984]
[38]
Drygin, D.; Lin, A.; Bliesath, J.; Ho, C.B.; O’Brien, S.E.; Proffitt, C.; Omori, M.; Haddach, M.; Schwaebe, M.K.; Siddiqui-Jain, A.; Streiner, N.; Quin, J.E.; Sanij, E.; Bywater, M.J.; Hannan, R.D.; Ryckman, D.; Anderes, K.; Rice, W.G. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res., 2011, 71(4), 1418-1430.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1728] [PMID: 21159662]
[39]
Schlosser, I.; Hölzel, M.; Mürnseer, M.; Burtscher, H.; Weidle, U.H.; Eick, D. A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res., 2003, 31(21), 6148-6156.
[http://dx.doi.org/10.1093/nar/gkg794] [PMID: 14576301]
[40]
Bywater, M.J.; Poortinga, G.; Sanij, E.; Hein, N.; Peck, A.; Cullinane, C.; Wall, M.; Cluse, L.; Drygin, D.; Anderes, K.; Huser, N.; Proffitt, C.; Bliesath, J.; Haddach, M.; Schwaebe, M.K.; Ryckman, D.M.; Rice, W.G.; Schmitt, C.; Lowe, S.W.; Johnstone, R.W.; Pearson, R.B.; McArthur, G.A.; Hannan, R.D. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell, 2012, 22(1), 51-65.
[http://dx.doi.org/10.1016/j.ccr.2012.05.019] [PMID: 22789538]
[41]
Cornelison, R.; Dobbin, Z.C.; Katre, A.A.; Jeong, D.H.; Zhang, Y.; Chen, D.; Petrova, Y.; Llaneza, D.C.; Steg, A.D.; Parsons, L.; Schneider, D.A.; Landen, C.N. Targeting RNA-polymerase I in both chemosensitive and chemoresistant populations in epithelial ovarian cancer. Clin. Cancer Res., 2017, 23(21), 6529-6540.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0282] [PMID: 28778862]
[42]
Hein, N.; Cameron, D.P.; Hannan, K.M.; Nguyen, N.N.; Fong, C.Y.; Sornkom, J.; Wall, M.; Pavy, M.; Cullinane, C.; Diesch, J.; Devlin, J.R.; George, A.J.; Sanij, E.; Quin, J.; Poortinga, G.; Verbrugge, I.; Baker, A.; Drygin, D.; Harrison, S.J.; Rozario, J.D.; Powell, J.A.; Pitson, S.M.; Zuber, J.; Johnstone, R.W.; Dawson, M.A.; Guthridge, M.A.; Wei, A.; McArthur, G.A.; Pearson, R.B.; Hannan, R.D. Inhibition of Pol I transcription treats murine and human AML by targeting the leukemia-initiating cell population. Blood, 2017, 129(21), 2882-2895.
[http://dx.doi.org/10.1182/blood-2016-05-718171] [PMID: 28283481]
[43]
Lee, H.C.; Wang, H.; Baladandayuthapani, V.; Lin, H.; He, J.; Jones, R.J.; Kuiatse, I.; Gu, D.; Wang, Z.; Ma, W.; Lim, J.; O’Brien, S.; Keats, J.; Yang, J.; Davis, R.E.; Orlowski, R.Z. RNA polymerase I inhibition with CX-5461 as a novel therapeutic strategy to target MYC in multiple myeloma. Br. J. Haematol., 2017, 177(1), 80-94.
[http://dx.doi.org/10.1111/bjh.14525] [PMID: 28369725]
[44]
Xu, H.; Di Antonio, M.; McKinney, S.; Mathew, V.; Ho, B.; O’Neil, N.J.; Santos, N.D.; Silvester, J.; Wei, V.; Garcia, J.; Kabeer, F.; Lai, D.; Soriano, P.; Banáth, J.; Chiu, D.S.; Yap, D.; Le, D.D.; Ye, F.B.; Zhang, A.; Thu, K.; Soong, J.; Lin, S.C.; Tsai, A.H.; Osako, T.; Algara, T.; Saunders, D.N.; Wong, J.; Xian, J.; Bally, M.B.; Brenton, J.D.; Brown, G.W.; Shah, S.P.; Cescon, D.; Mak, T.W.; Caldas, C.; Stirling, P.C.; Hieter, P.; Balasubramanian, S.; Aparicio, S. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat. Commun., 2017, 8(205), 14432.
[http://dx.doi.org/10.1038/ncomms14432] [PMID: 28211448]
[45]
A Phase I/II Study of CX5461. National Library of Medicine, Bethesda (MD) (US), [2018 Jan 16] https://clinicaltrials.gov/ct2/show/NCT02719977
[46]
Drygin, D.; Siddiqui-Jain, A.; O’Brien, S.; Schwaebe, M.; Lin, A.; Bliesath, J.; Ho, C.B.; Proffitt, C.; Trent, K.; Whitten, J.P.; Lim, J.K.; Von Hoff, D.; Anderes, K.; Rice, W.G. Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res., 2009, 69(19), 7653-7661.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1304] [PMID: 19738048]
[47]
Study evaluating effects of CX-3543 in patients with relapsed or refractory B-Cell chronic lymphocytic leukemia. National Library of Medicine, Bethesda (MD) (US), Available at: https://clinicaltrials.gov/ct2/show/NCT00485966(Accessed date:16 January,. 2018.
[48]
Dose-escalation study of quarfloxin in patients with advanced solid tumors or lymphomas. National Library of Medicine, Bethesda (MD) (US), Available at: https://clinicaltrials.gov/ct2/show/NCT00955292(Accessed date: 16 January, . 2018.
[49]
Quarfloxin in patients with low to intermediate grade neuroendocrine carcinoma. National Library of Medicine, Bethesda (MD) (US), Available at: https://clinicaltrials.gov/ct2/show/NCT00780663(Accessed date: 16 January, . 2018.
[50]
Dose-escalation study of CX-3543 in patients with advanced solid tumors or lymphomas. National Library of Medicine, Bethesda (MD) (US), Available at: https://clinicaltrials.gov/ct2/show/NCT00955786(Accessed date: 16 January, . 2018.
[51]
Peltonen, K.; Colis, L.; Liu, H.; Jäämaa, S.; Moore, H.M.; Enbäck, J.; Laakkonen, P.; Vaahtokari, A.; Jones, R.J.; af Hällström, T.M.; Laiho, M. Identification of novel p53 pathway activating small-molecule compounds reveals unexpected similarities with known therapeutic agents. PLoS One, 2010, 5(9)e12996
[http://dx.doi.org/10.1371/journal.pone.0012996] [PMID: 20885994]
[52]
Peltonen, K.; Colis, L.; Liu, H.; Trivedi, R.; Moubarek, M.S.; Moore, H.M.; Bai, B.; Rudek, M.A.; Bieberich, C.J.; Laiho, M. A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell, 2014, 25(1), 77-90.
[http://dx.doi.org/10.1016/j.ccr.2013.12.009] [PMID: 24434211]
[53]
Kerry, L.E.; Pegg, E.E.; Cameron, D.P.; Budzak, J.; Poortinga, G.; Hannan, K.M.; Hannan, R.D.; Rudenko, G. Selective inhibition of RNA polymerase I transcription as a potential approach to treat African trypanosomiasis. PLoS Negl. Trop. Dis., 2017, 11(3)e0005432
[http://dx.doi.org/10.1371/journal.pntd.0005432] [PMID: 28263991]
[54]
Alcindor, T.; Beauger, N. Oxaliplatin: a review in the era of molecularly targeted therapy. Curr. Oncol., 2011, 18(1), 18-25.
[http://dx.doi.org/10.3747/co.v18i1.708] [PMID: 21331278]
[55]
Martinez-Balibrea, E.; Martínez-Cardús, A.; Ginés, A.; Ruiz de Porras, V.; Moutinho, C.; Layos, L.; Manzano, J.L.; Bugés, C.; Bystrup, S.; Esteller, M.; Abad, A. Tumor-Related Molecular Mechanisms of Oxaliplatin Resistance. Mol. Cancer Ther., 2015, 14(8), 1767-1776.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0636] [PMID: 26184483]
[56]
Yang, F.; Teves, S.S.; Kemp, C.J.; Henikoff, S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim. Biophys. Acta, 2014, 1845(1), 84-89.
[http://dx.doi.org/10.1016/j.bbcan.2013.12.002] [PMID: 24361676]
[57]
Alberts, D.S.; Peng, Y.M.; Bowden, G.T.; Dalton, W.S.; Mackel, C. Pharmacology of mitoxantrone: mode of action and pharmacokinetics. Invest. New Drugs, 1985, 3(2), 101-107.
[http://dx.doi.org/10.1007/BF00174156] [PMID: 4040505]
[58]
Rots, M.G.; Pieters, R.; Kaspers, G.J.L.; Veerman, A.J.P.; Peters, G.J.; Jansen, G. Classification of ex vivo methotrexate resistance in acute lymphoblastic and myeloid leukaemia. Br. J. Haematol., 2000, 110(4), 791-800.
[http://dx.doi.org/10.1046/j.1365-2141.2000.02070.x] [PMID: 11054060]
[59]
Chan, E.S.; Cronstein, B.N. Mechanisms of action of methotrexate. Bull Hosp Jt Dis (2013), 2013, 71(Suppl. 1), S5-S8.
[PMID: 24219035]
[60]
Russo, A.; Pagliara, V.; Albano, F.; Esposito, D.; Sagar, V.; Loreni, F.; Irace, C.; Santamaria, R.; Russo, G. Regulatory role of rpL3 in cell response to nucleolar stress induced by Act D in tumor cells lacking functional p53. Cell Cycle, 2016, 15(1), 41-51.
[http://dx.doi.org/10.1080/15384101.2015.1120926] [PMID: 26636733]
[61]
Hollstein, U. Actinomycin. Chemistry and mechanism of action. Chem. Rev., 1974, 74(6), 625-652.
[http://dx.doi.org/10.1021/cr60292a002]
[62]
Cortes, C.L.; Veiga, S.R.; Almacellas, E.; Hernández-Losa, J.; Ferreres, J.C.; Kozma, S.C.; Ambrosio, S.; Thomas, G.; Tauler, A. Effect of low doses of actinomycin D on neuroblastoma cell lines. Mol. Cancer, 2016, 15(1), 1-13.
[http://dx.doi.org/10.1186/s12943-015-0489-8] [PMID: 26728659]
[63]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740(0), 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[64]
Fu, X.; Xu, L.; Qi, L.; Tian, H.; Yi, D.; Yu, Y.; Liu, S.; Li, S.; Xu, Y.; Wang, C. BMH-21 inhibits viability and induces apoptosis by p53-dependent nucleolar stress responses in SKOV3 ovarian cancer cells. Oncol. Rep., 2017, 38(2), 859-865.
[http://dx.doi.org/10.3892/or.2017.5750] [PMID: 28656213]
[65]
Liu, L.F.; Duann, P.; Lin, C.T.; D’Arpa, P.; Wu, J. Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci., 1996, 803, 44-49.
[http://dx.doi.org/10.1111/j.1749-6632.1996.tb26375.x] [PMID: 8993499]
[66]
Sedlacek, H.H. Mechanisms of action of flavopiridol. Crit. Rev. Oncol. Hematol., 2001, 38(2), 139-170.
[http://dx.doi.org/10.1016/S1040-8428(00)00124-4] [PMID: 11311660]
[67]
Whittaker, S.R.; Te Poele, R.H.; Chan, F.; Linardopoulos, S.; Walton, M.I.; Garrett, M.D.; Workman, P. The cyclin-dependent kinase inhibitor seliciclib (R-roscovitine; CYC202) decreases the expression of mitotic control genes and prevents entry into mitosis. Cell Cycle, 2007, 6(24), 3114-3131.
[http://dx.doi.org/10.4161/cc.6.24.5142] [PMID: 18075315]
[68]
Zandomeni, R.; Mittleman, B.; Bunick, D.; Ackerman, S.; Weinmann, R. Mechanism of action of dichloro-beta-D-ribofuranosylbenzimidazole: effect on in vitro transcription. Proc. Natl. Acad. Sci. USA, 1982, 79(10), 3167-3170.
[http://dx.doi.org/10.1073/pnas.79.10.3167] [PMID: 6954467]
[69]
Peters, G.J.; van Triest, B.; Backus, H.H.J.; Kuiper, C.M.; van der Wilt, C.L.; Pinedo, H.M. Molecular downstream events and induction of thymidylate synthase in mutant and wild-type p53 colon cancer cell lines after treatment with 5-fluorouracil and the thymidylate synthase inhibitor raltitrexed. Eur. J. Cancer, 2000, 36(7), 916-924.
[http://dx.doi.org/10.1016/S0959-8049(00)00026-5] [PMID: 10785598]
[70]
Peters, G.J.; Backus, H.H.J.; Freemantle, S.; van Triest, B.; Codacci-Pisanelli, G.; van der Wilt, C.L.; Smid, K.; Lunec, J.; Calvert, A.H.; Marsh, S.; McLeod, H.L.; Bloemena, E.; Meijer, S.; Jansen, G.; van Groeningen, C.J.; Pinedo, H.M. Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. Biochim. Biophys. Acta, 2002, 1587(2-3), 194-205.
[http://dx.doi.org/10.1016/S0925-4439(02)00082-0] [PMID: 12084461]