Characterization of Biocompatible Gold Nanoparticles Synthesized by using Curcuma xanthorrhiza and their Catalytic Activity

Page: [214 - 225] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Based on various distinguished physical and chemical properties of gold nanoparticles, they have far wide applications in several areas of industry and medicine, such as catalysis, bio-sensor and drug delivery. Compared to a chemical method, biological synthesis is an economical and less toxic process, thus it is a better alternative for nanoparticle synthesis. In this study, an environmentally friendly method was chosen to produce AuNPs using Curcuma xanthorrhiza.

Methods: Alkaline aqueous extract of C. xanthorrhiza rhizomes, which acts as a reducing and stabilizing agent was used to produce AuNPs by bio-reduction of HAuCl4. The formation of AuNPs was periodically monitored by UV-visible spectroscopy. The obtained AuNPs were characterized by Xray diffraction, energy dispersive spectroscopy, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared (FTIR) spectroscopy. Catalytic activity and toxicity of the AuNPs were evaluated.

Results: The AuNPs obtained from this study mostly were spherical in shape with approximately 15 nm in size. The presence of functional groups derived from C. xanthorrhiza rhizome extract involved in the gold bio-reduction process was confirmed by the spectrum of FTIR spectroscopy. The biosynthesized AuNPs at the concentration of 0.5 μg/ml had catalytic activity in dye degradation of Congo red. The results showed that this biogenic AuNPs did not cause any toxicity to zebrafish embryos and all tested cell lines.

Conclusion: The biocompatible AuNPs with catalytic activity were successfully fabricated with C. xanthorrhiza rhizome extract by simple eco-friendly and inexpensive method. This catalytic activity of the obtained AuNPs is potentially useful for industrial applications as well as nanoscience and nanotechnology.

Keywords: Gold nanoparticle, green synthesis, Curcuma xanthorrhiza, catalytic activity, biocompatibility, zebrafish.

Graphical Abstract

[1]
Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae, 2011, 3(2), 34-55.
[http://dx.doi.org/10.32607/20758251-2011-3-2-34-56] [PMID: 22649683]
[2]
Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta, 2018, 184, 537-556.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088] [PMID: 29674080]
[3]
Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[4]
Ahmed, S.; Saiqa Ikram, S. Synthesis of gold nanoparticles using plant extract: An overview. Nano Res. Appl., 2015, 1(1), 5.
[5]
Castro-Longoria, E.; Vilchis-Nestor, A.R.; Avalos-Borja, M. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf. B Biointerfaces, 2011, 83(1), 42-48.
[http://dx.doi.org/10.1016/j.colsurfb.2010.10.035] [PMID: 21087843]
[6]
Karthik, L.; Kumar, G.; Kirthi, A.V.; Rahuman, A.A.; Bhaskara Rao, K.V. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst. Eng., 2014, 37(2), 261-267.
[http://dx.doi.org/10.1007/s00449-013-0994-3] [PMID: 23771163]
[7]
Mourato, A.; Gadanho, M.; Lino, A.R.; Tenreiro, R. Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg. Chem. Appl., 2011, 2011546074
[http://dx.doi.org/10.1155/2011/546074] [PMID: 21912532]
[8]
Murugan, K.; Benelli, G.; Panneerselvam, C.; Subramaniam, J.; Jeyalalitha, T.; Dinesh, D.; Nicoletti, M.; Hwang, J-S.; Suresh, U.; Madhiyazhagan, P. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp. Parasitol., 2015, 153, 129-138.
[http://dx.doi.org/10.1016/j.exppara.2015.03.017] [PMID: 25819295]
[9]
Soni, N.; Prakash, S. Antimicrobial and mosquitocidal activity of microbial synthesized silver nanoparticles. Parasitol. Res., 2015, 114(3), 1023-1030.
[http://dx.doi.org/10.1007/s00436-014-4268-z] [PMID: 25544704]
[10]
Singh, P.; Kim, Y.J.; Wang, C.; Mathiyalagan, R.; El-Agamy Farh, M.; Yang, D.C. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 811-816.
[PMID: 25706249]
[11]
Gogoi, N.; Babu, P.J.; Mahanta, C.; Bora, U. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities. Mater. Sci. Eng. C, 2015, 46, 463-469.
[http://dx.doi.org/10.1016/j.msec.2014.10.069] [PMID: 25492011]
[12]
Kora, A.J.; Beedu, S.R.; Jayaraman, A. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org. Med. Chem. Lett., 2012, 2(1), 17.
[http://dx.doi.org/10.1186/2191-2858-2-17] [PMID: 22571686]
[13]
Poopathi, S.; De Britto, L.J.; Praba, V.L.; Mani, C.; Praveen, M. Synthesis of silver nanoparticles from Azadirachta indica--a most effective method for mosquito control. Environ. Sci. Pollut. Res. Int., 2015, 22(4), 2956-2963.
[http://dx.doi.org/10.1007/s11356-014-3560-x] [PMID: 25226837]
[14]
Sadeghi, B.; Rostami, A.; Momeni, S.S. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 134, 326-332.
[http://dx.doi.org/10.1016/j.saa.2014.05.078] [PMID: 25022505]
[15]
Shende, S.; Ingle, A.P.; Gade, A.; Rai, M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol., 2015, 31(6), 865-873.
[http://dx.doi.org/10.1007/s11274-015-1840-3] [PMID: 25761857]
[16]
Singh, P.; Kim, Y.J.; Yang, D.C. A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1949-1957.
[http://dx.doi.org/10.3109/21691401.2015.1115410] [PMID: 26698271]
[17]
Velmurugan, P.; Park, J-H.; Lee, S-M.; Jang, J-S.; Lee, K-J.; Han, S-S.; Lee, S-H.; Cho, M.; Oh, B-T. Synthesis and characterization of nanosilver with antibacterial properties using Pinus densiflora young cone extract. J. Photochem. Photobiol. B, 2015, 147, 63-68.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.03.008] [PMID: 25846578]
[18]
Zhou, G.J.; Li, S.H.; Zhang, Y.C.; Fu, Y.Z. Biosynthesis of CdS nanoparticles in banana peel extract. J. Nanosci. Nanotechnol., 2014, 14(6), 4437-4442.
[http://dx.doi.org/10.1166/jnn.2014.8259] [PMID: 24738409]
[19]
Momeni, S.; Nabipour, I. A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl. Biochem. Biotechnol., 2015, 176(7), 1937-1949.
[http://dx.doi.org/10.1007/s12010-015-1690-3] [PMID: 26041058]
[20]
Nasrollahzadeh, M.; Sajadi, S.M. Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. J. Colloid Interface Sci., 2015, 457, 141-147.
[http://dx.doi.org/10.1016/j.jcis.2015.07.004] [PMID: 26164245]
[21]
Singh, P.; Kim, Y.J.; Wang, C.; Mathiyalagan, R.; Yang, D.C. The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications. Artif. Cells Nanomed. Biotechnol., 2016, 44(4), 1150-1157.
[PMID: 25771716]
[22]
Suresh, D.; Shobharani, R.M.; Nethravathi, P.C.; Pavan Kumar, M.A.; Nagabhushana, H.; Sharma, S.C. Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: luminescence, photocatalytic and antioxidant properties. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 141, 128-134.
[http://dx.doi.org/10.1016/j.saa.2015.01.048] [PMID: 25668693]
[23]
Zahir, A.A.; Chauhan, I.S.; Bagavan, A.; Kamaraj, C.; Elango, G.; Shankar, J.; Arjaria, N.; Roopan, S.M.; Rahuman, A.A.; Singh, N. Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract showed shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob. Agents Chemother., 2015, 59(8), 4782-4799.
[http://dx.doi.org/10.1128/AAC.00098-15] [PMID: 26033724]
[24]
Naseem, T.; Farrukh, M.A. Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J. Chem., 2015, 2015912342
[http://dx.doi.org/10.1155/2015/912342]
[25]
Zhou, Y.; Lin, W.; Huang, J.; Wang, W.; Gao, Y.; Lin, L.; Li, Q.; Lin, L.; Du, M. Biosynthesis of gold nanoparticles by foliar broths: roles of biocompounds and other attributes of the extracts. Nanoscale Res. Lett., 2010, 5(8), 1351-1359.
[http://dx.doi.org/10.1007/s11671-010-9652-8] [PMID: 20676207]
[26]
Gurunathan, S.; Han, J.; Park, J.H.; Kim, J-H. A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res. Lett., 2014, 9(1), 248.
[http://dx.doi.org/10.1186/1556-276X-9-248] [PMID: 24940177]
[27]
Joseph, S.; Mathew, B. Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt C), 1371-1379.
[http://dx.doi.org/10.1016/j.saa.2014.10.023] [PMID: 25459695]
[28]
Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153.
[PMID: 19594223]
[29]
Toda, S.; Miyase, T.; Arichi, H.; Tanizawa, H.; Takino, Y. Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem. Pharm. Bull. (Tokyo), 1985, 33(4), 1725-1728.
[http://dx.doi.org/10.1248/cpb.33.1725] [PMID: 4042250]
[30]
Apisariyakul, A.; Vanittanakom, N.; Buddhasukh, D. Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J. Ethnopharmacol., 1995, 49(3), 163-169.
[http://dx.doi.org/10.1016/0378-8741(95)01320-2] [PMID: 8824742]
[31]
Mary, H.P.; Susheela, G.K.; Jayasree, S.; Nizzy, A.; Rajagopal, B.; Jeeva, S. Phytochemical characterization and antimicrobial activity of Curcuma xanthorrhiza Roxb. Asian Pac. J. Trop. Biomed., 2012, 2(2), S637-S640.
[http://dx.doi.org/10.1016/S2221-1691(12)60288-3]
[32]
Mangunwardoyo, W.; Usia, T. Antimicobial and identification of active compound Curcuma xanthorrhiza Roxb. IJBAS, 2012, 12(1), 69-78.
[33]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[34]
Masuda, T.; Isobe, J.; Jitoe, A.; Nakatani, N. Antioxidative curcuminoids from rhizomes of Curcuma xanthorrhiza. Phytochemistry, 1992, 31(10), 3645-3647.
[http://dx.doi.org/10.1016/0031-9422(92)83748-N]
[35]
Sreelakshmi, C.; Goel, N.; Datta, K.; Addlagatta, A.; Ummanni, R.; Reddy, B. Green synthesis of curcumin capped gold nanoparticles and evaluation of their cytotoxicity. Nanosci. Nanotechnol. Lett., 2013, 5(12), 1258-1265.
[http://dx.doi.org/10.1166/nnl.2013.1678]
[36]
Shaabani, E.; Amini, S.M.; Kharrazi, S.; Tajerian, R. Curcumin coated gold nanoparticles: Synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles. Nanomed. J., 2017, 4(2), 115-125.
[37]
Yee, F.Y.; Periasamy, V.; Malek, S.N.A. Green synthesis of gold nanoparticles using aqueous ethanol extract of Curcuma mangga rhizomes as reducing agent, AIP Conference Proceedings; AIP Publishing, 2015. 1657, p. (1)060008
[38]
Foo, Y.Y.; Periasamy, V.; Kiew, L.V.; Kumar, G.G.; Malek, S.N.A. Curcuma mangga-mediated synthesis of gold nanoparticles: Characterization, stability, cytotoxicity, and blood compatibility. Nanomaterials (Basel), 2017, 7(6), 123.
[http://dx.doi.org/10.3390/nano7060123] [PMID: 28554995]
[39]
Das, M.; Shim, K.H.; An, S.S.A.; Yi, D.K. Review on gold nanoparticles and their applications. J. Toxicol. Environ. Health Sci., 2011, 3(4), 193-205.
[http://dx.doi.org/10.1007/s13530-011-0109-y]
[40]
Swinehart, D.F. The Beer-Lambert law. J. Chem. Educ., 1962, 39(7), 333.
[http://dx.doi.org/10.1021/ed039p333]
[41]
Santhosh, S.B.; Ragavendran, C.; Natarajan, D. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. J. Photochem. Photobiol. B, 2015, 153, 184-190.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.09.018] [PMID: 26410042]
[42]
Geethalakshmi, R.; Sarada, D.V.L. Characterization and antimicrobial activity of gold and silver nanoparticles synthesized using saponin isolated from Trianthema decandra L. Ind. Crops Prod., 2013, 51, 107-115.
[http://dx.doi.org/10.1016/j.indcrop.2013.08.055]
[43]
Shameli, K.; Ahmad, M.B.; Zamanian, A.; Sangpour, P.; Shabanzadeh, P.; Abdollahi, Y.; Zargar, M. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int. J. Nanomedicine, 2012, 7, 5603-5610.
[http://dx.doi.org/10.2147/IJN.S36786] [PMID: 23341739]
[44]
Abdel-Raouf, N.; Al-Enazi, N.M.; Ibraheem, I.B.M. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab. J. Chem., 2017, 10, S3029-S3039.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.044]
[45]
Guo, M.; Li, W.; Yang, F.; Liu, H. Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 142, 73-79.
[http://dx.doi.org/10.1016/j.saa.2015.01.109] [PMID: 25699695]
[46]
Chudapongse, N.; Kamkhunthod, M.; Poompachee, K. Effects of Phyllanthus urinaria extract on HepG2 cell viability and oxidative phosphorylation by isolated rat liver mitochondria. J. Ethnopharmacol., 2010, 130(2), 315-319.
[http://dx.doi.org/10.1016/j.jep.2010.05.010] [PMID: 20488238]
[47]
Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol., 2001, 3(Appendix), 3B.
[PMID: 18432654]
[48]
Truong, L.; Saili, K.S.; Miller, J.M.; Hutchison, J.E.; Tanguay, R.L. Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2012, 155(2), 269-274.
[http://dx.doi.org/10.1016/j.cbpc.2011.09.006] [PMID: 21946249]
[49]
OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD Guidelines for the Testing of Chemicals; OECD Publishing: Paris, 2013.
[50]
Kim, H.S.; Seo, Y.S.; Kim, K.; Han, J.W.; Park, Y.; Cho, S. Concentration effect of reducing agents on green synthesis of gold nanoparticles: Size, morphology, and growth mechanism. Nanoscale Res. Lett., 2016, 11(1), 230.
[http://dx.doi.org/10.1186/s11671-016-1393-x] [PMID: 27119158]
[51]
Kumar, B.; Smita, K.; Cumbal, L.; Camacho, J.; Hernández-Gallegos, E.; de Guadalupe Chávez-López, M.; Grijalva, M.; Andrade, K. One pot phytosynthesis of gold nanoparticles using Genipa americana fruit extract and its biological applications. Mater. Sci. Eng. C, 2016, 62, 725-731.
[http://dx.doi.org/10.1016/j.msec.2016.02.029] [PMID: 26952478]
[52]
Sujitha, M.V.; Kannan, S. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 102, 15-23.
[http://dx.doi.org/10.1016/j.saa.2012.09.042] [PMID: 23211617]
[53]
Lechtenberg, M.; Quandt, B.; Nahrstedt, A. Quantitative determination of curcuminoids in Curcuma rhizomes and rapid differentiation of Curcuma domestica Val. and Curcuma xanthorrhiza Roxb. by capillary electrophoresis. Phytochem. Anal., 2004, 15(3), 152-158.
[http://dx.doi.org/10.1002/pca.759] [PMID: 15202598]
[54]
Gan, P.P.; Li, S.F.Y. Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Rev. Environ. Sci. Biol., 2012, 11(2), 169-206.
[http://dx.doi.org/10.1007/s11157-012-9278-7]
[55]
Singh, A.K.; Talat, M.; Singh, D.P.; Srivastava, O.N. Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J. Nanopart. Res., 2010, 12(5), 1667-1675.
[http://dx.doi.org/10.1007/s11051-009-9835-3]
[56]
Nadaf, N.Y.; Kanase, S.S. Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arab. J. Chem., 2016.
[http://dx.doi.org/10.1016/j.arabjc.2016.09.020]
[57]
Thompson, D.T. Using gold nanoparticles for catalysis. Nano Today, 2007, 2(4), 40-43.
[http://dx.doi.org/10.1016/S1748-0132(07)70116-0]
[58]
Chueh, P.J.; Liang, R-Y.; Lee, Y-H.; Zeng, Z-M.; Chuang, S-M. Differential cytotoxic effects of gold nanoparticles in different mammalian cell lines. J. Hazard. Mater., 2014, 264, 303-312.
[http://dx.doi.org/10.1016/j.jhazmat.2013.11.031] [PMID: 24316248]
[59]
Alkilany, A.M.; Murphy, C.J. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res., 2010, 12(7), 2313-2333.
[http://dx.doi.org/10.1007/s11051-010-9911-8] [PMID: 21170131]
[60]
Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S-S. Zebrafish: A complete animal model to enumerate the nanoparticle toxicity. J. Nanobiotechnology, 2016, 14(1), 65.
[http://dx.doi.org/10.1186/s12951-016-0217-6] [PMID: 27544212]
[61]
Ramachandran, R.; Krishnaraj, C.; Sivakumar, A.S.; Prasannakumar, P.; Abhay Kumar, V.K.; Shim, K.S.; Song, C.G.; Yun, S.I. Anticancer activity of biologically synthesized silver and gold nanoparticles on mouse myoblast cancer cells and their toxicity against embryonic zebrafish. Mater. Sci. Eng. C, 2017, 73, 674-683.
[http://dx.doi.org/10.1016/j.msec.2016.12.110] [PMID: 28183660]