[1]
Cai, Z.Q.; Dwivedi, A.D.; Lee, W.N.; Zhao, X.; Liu, W.; Sillanpaa, M.; Zhao, D.Y.; Huang, C.H.; Fu, J. Application of nanotechnologies for removing pharmaceutically active compounds from water: Development and future trends. Environ. Sci. Nano, 2018, 5(1), 27-47.
[2]
Awfa, D.; Ateia, M.; Fujii, M.; Johnson, M.S.; Yoshimura, C. Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: A critical review of recent literature. Water Res., 2018, 142, 26-45.
[3]
Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect. Dis., 2014, 14(8), 742-750.
[4]
Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol., 2006, 76(2), 122-159.
[5]
Jones, O.A.H.; Voulvoulis, N.; Lester, J. Human pharmaceuticals in wastewater treatment processes. Crit. Rev. Environ. Sci. Technol., 2005, 35(4), 401-427.
[6]
Kümmerer, K. Antibiotics in the aquatic environment-a review-part I. Chemosphere, 2009, 75(4), 417-434.
[7]
Yang, Y.; Ok, Y.S.; Kim, K-H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of Pharmaceuticals And Personal Care Products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ., 2017, 596, 303-320.
[8]
Pomati, F.; Castiglioni, S.; Zuccato, E.; Fanelli, R.; Vigetti, D.; Rossetti, C.; Calamari, D. Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells. Environ. Sci. Technol., 2006, 40(7), 2442-2447.
[9]
Chopra, I.; Roberts, M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev., 2001, 65(2), 232-260.
[10]
Kim, S.; Aga, D.S. Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J. Toxicol. Environ. Health B, 2007, 10(8), 559-573.
[11]
Lee, D-H. Evidence of the possible harm of endocrine-disrupting chemicals in humans: Ongoing debates and key issues. Endocrinol. Metab., 2018, 33(1), 44-52.
[12]
Madikizela, L.M.; Tavengwa, N.T.; Chimuka, L. Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods. J. Environ. Manage., 2017, 193, 211-220.
[13]
Carmona, E.; Andreu, V.; Picó, Y. Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water. Sci. Total Environ., 2014, 484, 53-63.
[14]
Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: A review. Sustain. Cities Soc., 2016, 27, 407-418.
[15]
Jelić, A.; Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. YangOccurrence and elimination of pharmaceuticals during conventional wastewater treatment.In: Emerging and Priority Pollutants in Rivers; Helena, G.; Antoni, G.; Anita, G., Eds.; Springer-Verlag: Berlin, Heidelberg, 2012, pp. 1-23.
[16]
Baker, D.R.; Kasprzyk-Hordern, B. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: New developments. Sci. Total Environ., 2013, 454-455, 442-456.
[17]
Tijani, J.O.; Fatoba, O.O.; Babajide, O.O.; Petrik, L.F. Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: A review. Environ. Chem. Lett., 2016, 14(1), 27-49.
[18]
Lunenfeld, B.; Stratton, P. The clinical consequences of an ageing world and preventive strategies. Best Pract. Res. Clin. Obstet. Gynaecol., 2013, 27(5), 643-659.
[19]
Bergman, Å.; Heindel, J.J.; Kasten, T.; Kidd, K.A.; Jobling, S.; Neira, M.; Zoeller, R.T.; Becher, G.; Bjerregaard, P.; Bornman, R. The impact of endocrine disruption: A consensus statement on the state of the science. Environ. Health Perspect., 2013, 121(4), a104.
[20]
Benotti, M.J.; Trenholm, R.A.; Vanderford, B.J.; Holady, J.C.; Stanford, B.D.; Snyder, S.A. Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ. Sci. Technol., 2008, 43(3), 597-603.
[21]
Ikehata, K.; Jodeiri Naghashkar, N.; Gamal El-Din, M. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review. Ozone Sci. Eng., 2006, 28(6), 353-414.
[22]
Balakrishna, K.; Rath, A.; Praveenkumarreddy, Y.; Guruge, K.S.; Subedi, B. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol. Environ. Saf., 2017, 137, 113-120.
[23]
Rivera-Jaimes, J.A.; Postigo, C.; Melgoza-Alemán, R.M.; Aceña, J.; Barceló, D.; De Alda, M.L. Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. Sci. Total Environ., 2018, 613, 1263-1274.
[24]
Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Thomaidis, N.S.; Xu, J. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. J. Hazard. Mater., 2017, 323, 274-298.
[25]
Esplugas, S.; Bila, D.M.; Krause, L.G.T.; Dezotti, M. Ozonation and advanced oxidation technologies to remove Endocrine Disrupting Chemicals (EDCs) and Pharmaceuticals and Personal Care Products (PPCPs) in water effluents. J. Hazard. Mater., 2007, 149(3), 631-642.
[26]
Tijani, J.O.; Fatoba, O.O.; Petrik, L.F. A review of pharmaceuticals and endocrine-disrupting compounds: Sources, effects, removal, and detections. Water, Air, Soil Pollut., 2013, 224(11), Awfa1770-1773.
[27]
Baquero, F.; Martínez, J-L.; Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol., 2008, 19(3), 260-265.
[28]
Oetken, M.; Nentwig, G.; Löffler, D.; Ternes, T.; Oehlmann, J. Effects of pharmaceuticals on aquatic invertebrates. Part I. The antiepileptic drug carbamazepine. Arch. Environ. Contam. Toxicol., 2005, 49(3), 353-361.
[29]
Flaherty, C.M.; Dodson, S.I. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere, 2005, 61(2), 200-207.
[30]
Khan, A.; Wang, J.; Li, J.; Wang, X.; Chen, Z.; Alsaedi, A.; Hayat, T.; Chen, Y.; Wang, X. The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: A review. Environ. Sci. Pollut. Res., 2017, 24(9), 7938-7958.
[31]
Nakada, N.; Tanishima, T.; Shinohara, H.; Kiri, K.; Takada, H. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res., 2006, 40(17), 3297-3303.
[32]
Clara, M.; Kreuzinger, N.; Strenn, B.; Gans, O.; Kroiss, H. The solids retention time-a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res., 2005, 39(1), 97-106.
[33]
Joss, A.; Siegrist, H.; Ternes, T. Are we about to upgrade wastewater treatment for removing organic micropollutants? Water Sci. Technol., 2008, 57(2), 251-255.
[34]
Ternes, T.A.; Meisenheimer, M.; McDowell, D.; Sacher, F.; Brauch, H-J.; Haist-Gulde, B.; Preuss, G.; Wilme, U.; Zulei-Seibert, N. Removal of pharmaceuticals during drinking water treatment. Environ. Sci. Technol., 2002, 36(17), 3855-3863.
[35]
Huber, M.M. GÖbel, A.; Joss, A.; Hermann, N.; LÖffler, D.; McArdell, C.S.; Ried, A.; Siegrist, H.; Ternes, T.A.; von Gunten, U. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: A pilot study. Environ. Sci. Technol., 2005, 39(11), 4290-4299.
[36]
Lüddeke, F.; Heß, S.; Gallert, C.; Winter, J.; Güde, H.; Löffler, H. Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques. Water Res., 2015, 69, 243-251.
[37]
Giebner, S.; Ostermann, S.; Straskraba, S.; Oetken, M.; Oehlmann, J.; Wagner, M. Effectivity of advanced wastewater treatment: Reduction of in vitro endocrine activity and mutagenicity but not of in vivo reproductive toxicity. Environ. Sci. Pollut. Res., 2018, 25(5), 3965-3976.
[38]
Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; DeMarini, D.M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res.-. Rev. Mutat., 2007, 636(1), 178-242.
[39]
Yang, L.; Hu, C.; Nie, Y.; Qu, J. Surface acidity and reactivity of β-FeOOH/Al2O3 for pharmaceuticals degradation with ozone: In situ ATR-FTIR studies. Appl. Catal. B, 2010, 97(3-4), 340-346.
[40]
Bollmann, A.F.; Seitz, W.; Prasse, C.; Lucke, T.; Schulz, W.; Ternes, T. Occurrence and fate of amisulpride, sulpiride, and lamotrigine in municipal wastewater treatment plants with biological treatment and ozonation. J. Hazard. Mater., 2016, 320, 204-215.
[41]
Chtourou, M.; Mallek, M.; Dalmau, M.; Mamo, J.; Santos-Clotas, E.; Salah, A.B.; Khaled, W.; Salvadó, V.; Monclús, H. Triclosan, carbamazepine and caffeine removal by activated sludge system focusing on membrane bioreactor. Process Saf. Environ., 2018, 118, 1-9.
[42]
Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev., 2018, 356, 147-164.
[43]
Savage, N.; Diallo, M.S. Nanomaterials and water purification: opportunities and challenges. J. Nanopart. Res., 2005, 7(4-5), 331-342.
[44]
Matsuoka, M.; Toyao, T.; Horiuchi, Y.; Takeuchi, M.; Anpo, M. Wastewater treatment using highly functional immobilized TiO2 thin‐film photocatalysts.In:Photocatalysis and water purification: From fundamentals to recent applications; Pichat, P., Ed.; John Wiley & Sons: Hoboken, New Jersey, 2013, pp. 179-197.
[45]
Madhavan, J.; Grieser, F.; Ashokkumar, M. Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments. J. Hazard. Mater., 2010, 178(1-3), 202-208.
[46]
Mohammadi, A.; Kazemipour, M.; Ranjbar, H.; Walker, R.B.; Ansari, M. Amoxicillin removal from aqueous media using multi-walled carbon nanotubes. Fuller. Nanotub. Carbon Nanostruct., 2015, 23(2), 165-169.
[47]
Wen, S.; Chen, L.; Li, W.; Ren, H.; Li, K.; Wu, B.; Hu, H.; Xu, K. Insight into the characteristics, removal, and toxicity of effluent organic matter from a pharmaceutical wastewater treatment plant during catalytic ozonation. Sci. Rep., 2018, 8(1), 9581.
[48]
Huang, D.; Wang, X.; Zhang, C.; Zeng, G.; Peng, Z.; Zhou, J.; Cheng, M.; Wang, R.; Hu, Z.; Qin, X. Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: Influencing factors and mechanism. Chemosphere, 2017, 186, 414-421.
[49]
Mousavi, M.; Habibi-Yangjeh, A.; Pouran, S.R. Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci. Mater. Electron., 2018, 29(3), 1719-1747.
[50]
Ren, X.; Chen, C.; Nagatsu, M.; Wang, X. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem. Eng. J., 2011, 170(2-3), 395-410.
[51]
Ji, L.; Shao, Y.; Xu, Z.; Zheng, S.; Zhu, D. Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching. Environ. Sci. Technol., 2010, 44(16), 6429-6436.
[52]
Putra, E.K.; Pranowo, R.; Sunarso, J.; Indraswati, N.; Ismadji, S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Res., 2009, 43(9), 2419-2430.
[53]
Al-Khateeb, L.A.; Almotiry, S.; Salam, M.A. Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chem. Eng. J., 2014, 248, 191-199.
[54]
Agnihotri, S.; Mukherji, S.; Mukherji, S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver. Nanoscale, 2013, 5(16), 7328-7340.
[55]
Álvarez-Torrellas, S.; Peres, J.; Gil-Álvarez, V.; Ovejero, G.; García, J. Effective adsorption of non-biodegradable pharmaceuticals from hospital wastewater with different carbon materials. Chem. Eng. J., 2017, 320, 319-329.
[56]
Patiño, Y.; Díaz, E.; Ordóñez, S. Performance of different carbonaceous materials for emerging pollutants adsorption. Chemosphere, 2015, 119, S124-S130.
[57]
Wang, F.; Ma, S.; Si, Y.; Dong, L.; Wang, X.; Yao, J.; Chen, H.; Yi, Z.; Yao, W.; Xing, B. Interaction mechanisms of antibiotic sulfamethoxazole with various graphene-based materials and multiwall carbon nanotubes and the effect of humic acid in water. Carbon, 2017, 114, 671-678.
[58]
Song, J.Y.; Bhadra, B.N.; Jhung, S.H. Contribution of H-bond in adsorptive removal of pharmaceutical and personal care products from water using oxidized activated carbon. Microporous Mesoporous Mater., 2017, 243, 221-228.
[59]
Smith, S.C.; Rodrigues, D.F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications. Carbon, 2015, 91, 122-143.
[60]
Yu, J-G.; Zhao, X-H.; Yang, H.; Chen, X-H.; Yang, Q.; Yu, L-Y.; Jiang, J-H.; Chen, X-Q. Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci. Total Environ., 2014, 482, 241-251.
[61]
Carmalin Sophia, A.; Lima, E.C.; Allaudeen, N.; Rajan, S. Application of graphene based materials for adsorption of pharmaceutical traces from water and wastewater-a review. Desalination Water Treat., 2016, 57(57), 27573-27586.
[62]
Liu, F-f.; Zhao, J.; Wang, S.; Du, P.; Xing, B. Effects of solution chemistry on adsorption of selected Pharmaceuticals and Personal Care Products (PPCPs) by graphenes and carbon nanotubes. Environ. Sci. Technol., 2014, 48(22), 13197-13206.
[63]
Jung, C.; Park, J.; Lim, K.H.; Park, S.; Heo, J.; Her, N.; Oh, J.; Yun, S.; Yoon, Y. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars. J. Hazard. Mater., 2013, 263, 702-710.
[64]
Prauchner, M.J.; Sapag, K.; Rodríguez-Reinoso, F. Tailoring biomass-based activated carbon for CH4 storage by combining chemical activation with H3PO4 or ZnCl2 and physical activation with CO2. Carbon, 2016, 110, 138-147.
[65]
Thue, P.S.; Lima, E.C.; Sieliechi, J.M.; Saucier, C.; Dias, S.L.; Vaghetti, J.C.; Rodembusch, F.S.; Pavan, F.A. Effects of first-row transition metals and impregnation ratios on the physicochemical properties of microwave-assisted activated carbons from wood biomass. J. Colloid Interface Sci., 2017, 486, 163-175.
[66]
Martins, A.C.; Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Yamazaki, D.A.; Bandoch, G.F.; Asefa, T.; Visentainer, J.V.; Almeida, V.C. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chem. Eng. J., 2015, 260, 291-299.
[67]
Ahmed, M.; Islam, M.A.; Asif, M.; Hameed, B. Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics. Bioresour. Technol., 2017, 243, 778-784.
[68]
Pouretedal, H.; Sadegh, N. Effective removal of amoxicillin, cephalexin, tetracycline and penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. J. Water Process Eng., 2014, 1, 64-73.
[69]
de Franco, M.A.E.; De Carvalho, C.B.; Bonetto, M.M.; De Pelegrini Soares, R.; Féris, L.A. Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: Kinetics, isotherms, experimental design and breakthrough curves modelling. J. Clean. Prod., 2017, 161, 947-956.
[70]
Nazari, G.; Abolghasemi, H.; Esmaieli, M.; Pouya, E.S. Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: A fixed-bed column study. Appl. Surf. Sci., 2016, 375, 144-153.
[71]
Nazari, G.; Abolghasemi, H.; Esmaieli, M. Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shell-based activated carbon. J. Taiwan Inst. Chem. Eng., 2016, 58, 357-365.
[72]
Moral-Rodríguez, A.; Leyva-Ramos, R.; Ocampo-Pérez, R.; Mendoza-Barron, J.; Serratos-Alvarez, I.; Salazar-Rabago, J. Removal of ronidazole and sulfamethoxazole from water solutions by adsorption on granular activated carbon: Equilibrium and intraparticle diffusion mechanisms. Adsorption, 2016, 22(1), 89-103.
[73]
Fu, H.; Li, X.; Wang, J.; Lin, P.; Chen, C.; Zhang, X.; Suffet, I.M. Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling. J. Environ. Sci., 2017, 56, 145-152.
[74]
Liu, Y.; Liu, X.; Dong, W.; Zhang, L.; Kong, Q.; Wang, W. Efficient adsorption of sulfamethazine onto modified activated carbon: A plausible adsorption mechanism. Sci. Rep., 2017, 7(1), 12437.
[75]
Wang, S.; Li, X.; Zhao, H.; Quan, X.; Chen, S.; Yu, H. Enhanced adsorption of ionizable antibiotics on activated carbon fiber under electrochemical assistance in continuous-flow modes. Water Res., 2018, 134, 162-169.
[76]
Sharma, P.K.; Wankat, P.C. Solvent recovery by steamless temperature swing carbon adsorption processes. Ind. Eng. Chem. Res., 2010, 49(22), 11602-11613.
[77]
Zhang, Y.; Zuo, S.; Zhou, M.; Liang, L.; Ren, G. Removal of tetracycline by coupling of flow-through electro-Fenton and in-situ regenerative active carbon felt adsorption. Chem. Eng. J., 2018, 335, 685-692.
[78]
Teixeira, S.; Delerue-Matos, C.; Santos, L. Application of experimental design methodology to optimize antibiotics removal by walnut shell based activated carbon. Sci. Total Environ., 2019, 646, 168-176.
[79]
Klinar, D. Universal model of slow pyrolysis technology producing biochar and heat from standard biomass needed for the techno-economic assessment. Bioresour. Technol., 2016, 206, 112-120.
[80]
Yao, Y.; Zhang, Y.; Gao, B.; Chen, R.; Wu, F. Removal of Sulfamethoxazole (SMX) and Sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environ. Sci. Pollut. Res., 2017, 25(26), 25659-25667.
[81]
Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ., 2015, 532, 112-126.
[82]
Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Chen, M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour. Technol., 2016, 214, 836-851.
[83]
Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Johir, M.A.H.; Belhaj, D. Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment. Bioresour. Technol., 2017, 238, 306-312.
[84]
Jia, M.; Wang, F.; Bian, Y.; Jin, X.; Song, Y.; Kengara, F.O.; Xu, R.; Jiang, X. Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresour. Technol., 2013, 136, 87-93.
[85]
Rajapaksha, A.U.; Vithanage, M.; Ahmad, M.; Seo, D-C.; Cho, J-S.; Lee, S-E.; Lee, S.S.; Ok, Y.S. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. J. Hazard. Mater., 2015, 290, 43-50.
[86]
Oh, T-K.; Choi, B.; Shinogi, Y.; Chikushi, J. Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water Air Soil Pollut., 2012, 223(7), 3729-3738.
[87]
Zhu, X.; Liu, Y.; Zhou, C.; Luo, G.; Zhang, S.; Chen, J. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon, 2014, 77, 627-636.
[88]
Upadhyayula, V.K.; Deng, S.; Mitchell, M.C.; Smith, G.B. Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci. Total Environ., 2009, 408(1), 1-13.
[89]
Apul, O.G.; Karanfil, T. Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review. Water Res., 2015, 68, 34-55.
[90]
Jung, C.; Son, A.; Her, N.; Zoh, K-D.; Cho, J.; Yoon, Y. Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review. J. Ind. Eng. Chem., 2015, 27, 1-11.
[91]
Ji, L.; Chen, W.; Zheng, S.; Xu, Z.; Zhu, D. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir, 2009, 25(19), 11608-11613.
[92]
Kim, H.; Hwang, Y.S.; Sharma, V.K. Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes. Chem. Eng. J., 2014, 255, 23-27.
[93]
Yu, F.; Ma, J.; Han, S. Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents. Sci. Rep., 2014, 4(5326), 1-8.
[94]
Li, H.; Zhang, D.; Han, X.; Xing, B. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics. Chemosphere, 2014, 95, 150-155.
[95]
Yu, F.; Sun, S.; Han, S.; Zheng, J.; Ma, J. Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chem. Eng. J., 2016, 285, 588-595.
[96]
Peng, H.; Pan, B.; Wu, M.; Liu, Y.; Zhang, D.; Xing, B. Adsorption of ofloxacin and norfloxacin on carbon nanotubes: Hydrophobicity-and structure-controlled process. J. Hazard. Mater., 2012, 233, 89-96.
[97]
Balarak, D.; Mostafapour, F.; Bazrafshan, E.; Saleh, T.A. Studies on the adsorption of amoxicillin on multi-wall carbon nanotubes. Water Sci. Technol., 2017, 75(7), 1599-1606.
[98]
Yang, Q.; Chen, G.; Zhang, J.; Li, H. Adsorption of sulfamethazine by multi-walled carbon nanotubes: Effects of aqueous solution chemistry. RSC Advances, 2015, 5(32), 25541-25549.
[99]
Zhou, Y.; He, Y.; Xiang, Y.; Meng, S.; Liu, X.; Yu, J.; Yang, J.; Zhang, J.; Qin, P.; Luo, L. Single and simultaneous adsorption of pefloxacin and Cu (II) ions from aqueous solutions by oxidized multiwalled carbon nanotube. Sci. Total Environ., 2019, 646, 29-36.
[100]
Chen, W.; Duan, L.; Wang, L.; Zhu, D. Adsorption of hydroxyl-and amino-substituted aromatics to carbon nanotubes. Environ. Sci. Technol., 2008, 42(18), 6862-6868.
[101]
Ji, L.; Chen, W.; Duan, L.; Zhu, D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environ. Sci. Technol., 2009, 43(7), 2322-2327.
[102]
Yang, K.; Xing, B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem. Rev., 2010, 110(10), 5989-6008.
[103]
Wang, L.; Zhu, D.; Duan, L.; Chen, W. Adsorption of single-ringed N-and S-heterocyclic aromatics on carbon nanotubes. Carbon, 2010, 48(13), 3906-3915.
[104]
Ncibi, M.C.; Sillanpää, M. Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J. Hazard. Mater., 2015, 298, 102-110.
[105]
Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S.M.; Su, X. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci., 2012, 368(1), 540-546.
[106]
Patiño, Y.; Díaz, E.; Ordóñez, S.; Gallegos-Suarez, E.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes. Chemosphere, 2015, 136, 174-180.
[107]
Lawal, I.A.; Lawal, M.M.; Akpotu, S.O.; Azeez, M.A.; Ndungu, P.; Moodley, B. Theoretical and experimental adsorption studies of sulfamethoxazole and ketoprofen on synthesized ionic liquids modified CNTs. Ecotoxicol. Environ. Saf., 2018, 161, 542-552.
[108]
Yu, X.; Zhang, L.; Liang, M.; Sun, W. pH-dependent sulfonamides adsorption by carbon nanotubes with different surface oxygen contents. Chem. Eng. J., 2015, 279, 363-371.
[109]
Agnihotri, S.; Dhiman, N.K. Development of nano-antimicrobial biomaterials for biomedical applications. In: Advances in Biomaterials for Biomedical Applications; Tripathi, A.; Melo, J.S., Eds.; Springer: Singapore, 2017, pp. 479-545.
[110]
Agnihotri, S.; Dhiman, N.K.; Tripathi, A. Antimicrobial surface modification of polymeric biomaterials. In: Handbook of Antimicrobial Coatings; Tiwari, A., Ed.; Elsevier: Armsterdam, Netherlands, 2018, pp. 435-486.
[111]
Mukherji, S.; Ruparelia, J.; Agnihotri, S. Antimicrobial activity of silver and copper nanoparticles: Variation in sensitivity across various strains of bacteria and fungi. In: Nano-Antimicrobials: Progress and Prospects; Cioffi, N.; Rai, M., Eds.; Springer-Verlag Berlin Heidelberg, 2012, pp. 225-251.
[112]
Agnihotri, S.; Bajaj, G.; Mukherji, S.; Mukherji, S. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: An enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale, 2015, 7(16), 7415-7429.
[113]
Agnihotri, S.; Mukherji, S.; Mukherji, S. Antimicrobial chitosan-PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl. Nanosci., 2012, 2(3), 179-188.
[114]
Bharti, S.; Agnihotri, S.; Mukherji, S.; Mukherji, S. Effectiveness of immobilized silver nanoparticles in inactivation of pathogenic bacteria. J. Environ. Res. Dev., 2015, 9(3A), 849-856.
[115]
Chakraborty, D.; Sharma, V.; Agnihotri, S.; Mukherji, S.; Mukherji, S. Disinfection of water in a batch reactor using chloridized silver surfaces. J. Water Process Eng., 2017, 16, 41-49.
[116]
Fazelirad, H.; Ranjbar, M.; Taher, M.A.; Sargazi, G. Preparation of magnetic multi-walled carbon nanotubes for an efficient adsorption and spectrophotometric determination of amoxicillin. J. Ind. Eng. Chem., 2015, 21, 889-892.
[117]
Wang, Y.; Zhu, J.; Huang, H.; Cho, H-H. Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products: Capabilities and potential mechanisms. J. Membr. Sci., 2015, 479, 165-174.
[118]
Wang, Y.; Huang, H.; Wei, X. Influence of wastewater precoagulation on adsorptive filtration of pharmaceutical and personal care products by carbon nanotube membranes. Chem. Eng. J., 2018, 333, 66-75.
[119]
Shan, D.; Deng, S.; He, C.; Li, J.; Wang, H.; Jiang, C.; Yu, G.; Wiesner, M.R. Intercalation of rigid molecules between carbon nanotubes for adsorption enhancement of typical pharmaceuticals. Chem. Eng. J., 2018, 332, 102-108.
[120]
Xiong, W.; Zeng, Z.; Li, X.; Zeng, G.; Xiao, R.; Yang, Z.; Zhou, Y.; Zhang, C.; Cheng, M.; Hu, L. Multi-walled carbon nanotube/amino-functionalized MIL-53 (Fe) composites: Remarkable adsorptive removal of antibiotics from aqueous solutions. Chemosphere, 2018, 210, 1061-1069.
[121]
Xiong, W.; Zeng, G.; Yang, Z.; Zhou, Y.; Zhang, C.; Cheng, M.; Liu, Y.; Hu, L.; Wan, J.; Zhou, C. Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53 (Fe) as new adsorbent. Sci. Total Environ., 2018, 627, 235-244.
[122]
Dervin, S.; Dionysiou, D.D.; Pillai, S.C. 2D nanostructures for water purification: Graphene and beyond. Nanoscale, 2016, 8(33), 15115-15131.
[123]
Zhu, X.; Tsang, D.C.; Chen, F.; Li, S.; Yang, X. Ciprofloxacin adsorption on graphene and granular activated carbon: Kinetics, isotherms, and effects of solution chemistry. Environ. Technol., 2015, 36(24), 3094-3102.
[124]
Chen, H.; Gao, B.; Li, H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J. Hazard. Mater., 2015, 282, 201-207.
[125]
Tang, Y.; Guo, H.; Xiao, L.; Yu, S.; Gao, N.; Wang, Y. Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf. Physicochem. Eng. Aspects, 2013, 424, 74-80.
[126]
Nam, S-W.; Jung, C.; Li, H.; Yu, M.; Flora, J.R.; Boateng, L.K.; Her, N.; Zoh, K-D.; Yoon, Y. Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution. Chemosphere, 2015, 136, 20-26.
[127]
Chen, H.; Gao, B.; Li, H. Functionalization, pH, and ionic strength influenced sorption of sulfamethoxazole on graphene. J. Environ. Chem. Eng., 2014, 2(1), 310-315.
[128]
Luo, Y-B.; Shi, Z-G.; Gao, Q.; Feng, Y-Q. Magnetic retrieval of graphene: Extraction of sulfonamide antibiotics from environmental water samples. J. Chromatogr., 2011, 1218(10), 1353-1358.
[129]
Liu, F-F.; Zhao, J.; Wang, S.; Xing, B. Adsorption of sulfonamides on reduced graphene oxides as affected by pH and dissolved organic matter. Environ. Pollut., 2016, 210, 85-93.
[130]
Kerkez-Kuyumcu, Ö.; Bayazit, Ş.S.; Salam, M.A. Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. J. Ind. Eng. Chem., 2016, 36, 198-205.
[131]
Peng, B.; Chen, L.; Que, C.; Yang, K.; Deng, F.; Deng, X.; Shi, G.; Xu, G.; Wu, M. Adsorption of antibiotics on graphene and biochar in aqueous solutions induced by π-π interactions. Sci. Rep., 2016, 6, 31920.
[132]
Yu, F.; Ma, J.; Bi, D. Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene. Environ. Sci. Pollut. Res., 2015, 22(6), 4715-4724.
[133]
Rostamian, R.; Behnejad, H. A comparative adsorption study of sulfamethoxazole onto graphene and graphene oxide nanosheets through equilibrium, kinetic and thermodynamic modeling. Process Saf. Environ. Prot., 2016, 102, 20-29.
[134]
Sharma, D.; Sharma, J.; Arya, R.K.; Ahuja, S.; Agnihotri, S. Surfactant enhanced drying of waterbased poly(vinyl alcohol) coatings. Prog. Org. Coat., 2018, 125, 443-452.
[135]
Ma, J.; Yang, M.; Yu, F.; Zheng, J. Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel. Sci. Rep., 2015, 5, 13578.
[136]
Fei, Y.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. J. Colloid Interface Sci., 2016, 484, 196-204.
[137]
Yang, G-H.; Bao, D-D.; Zhang, D-Q.; Wang, C.; Qu, L-L.; Li, H-T. Removal of antibiotics from water with an all-carbon 3D nanofiltration membrane. Nanoscale Res. Lett., 2018, 13(1), 146.
[138]
Upadhyay, R.K.; Soin, N.; Roy, S.S. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review. RSC Advances, 2014, 4(8), 3823-3851.
[139]
Anis, S.F.; Khalil, A.; Singaravel, G.; Hashaikeh, R. A review on the fabrication of zeolite and mesoporous inorganic nanofibers formation for catalytic applications. Microporous Mesoporous Mater., 2016, 236, 176-192.
[140]
Ghasemi, Z.; Sourinejad, I.; Kazemian, H.; Rohani, S. Application of zeolites in aquaculture industry: A review. Rev. Aquacult., 2018, 10(1), 75-95.
[141]
Koshy, N.; Singh, D. Fly ash zeolites for water treatment applications. J. Environ. Chem. Eng., 2016, 4(2), 1460-1472.
[142]
Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Using zeolitic adsorbents to cleanup special wastewater streams: A review. Microporous Mesoporous Mater., 2015, 214, 224-241.
[143]
Tsutsumi, K.; Takahashi, H. Study of the nature of active sites on zeolites by the measurement of heat of immersion. II. Effects of silica/alumina ratio to electrostatic-field strength of calcium-exchanged zeolites. J. Phys. Chem., 1972, 76(1), 110-115.
[144]
Burke, N.; Trimm, D.; Howe, R.F. The effect of silica: Alumina ratio and hydrothermal ageing on the adsorption characteristics of BEA zeolites for cold start emission control. Appl. Catal. B, 2003, 46(1), 97-104.
[145]
Jiang, N.; Shang, R.; Heijman, S.G.; Rietveld, L.C. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Res., 2018, 144, 145-161.
[146]
Rossner, A.; Snyder, S.A.; Knappe, D.R. Removal of emerging contaminants of concern by alternative adsorbents. Water Res., 2009, 43(15), 3787-3796.
[147]
Braschi, I.; Blasioli, S.; Gigli, L.; Gessa, C.E.; Alberti, A.; Martucci, A. Removal of sulfonamide antibiotics from water: Evidence of adsorption into an organophilic zeolite Y by its structural modifications. J. Hazard. Mater., 2010, 178(1-3), 218-225.
[148]
Martucci, A.; Cremonini, M.A.; Blasioli, S.; Gigli, L.; Gatti, G.; Marchese, L.; Braschi, I. Adsorption and reaction of sulfachloropyridazine sulfonamide antibiotic on a high silica mordenite: A structural and spectroscopic combined study. Microporous Mesoporous Mater., 2013, 170, 274-286.
[149]
De Sousa, D.N.R.; Insa, S.; Mozeto, A.A.; Petrovic, M.; Chaves, T.F.; Fadini, P.S. Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere, 2018, 205, 137-146.
[150]
Braschi, I.; Martucci, A.; Blasioli, S.; Mzini, L.L.; Ciavatta, C.; Cossi, M. Effect of humic monomers on the adsorption of sulfamethoxazole sulfonamide antibiotic into a high silica zeolite Y: An interdisciplinary study. Chemosphere, 2016, 155, 444-452.
[151]
Khanday, W.; Hameed, B. Zeolite-hydroxyapatite-activated oil palm ash composite for antibiotic tetracycline adsorption. Fuel, 2018, 215, 499-505.
[152]
Chao, Y.; Zhu, W.; Wu, X.; Hou, F.; Xun, S.; Wu, P.; Ji, H.; Xu, H.; Li, H. Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic. Chem. Eng. J., 2014, 243, 60-67.
[153]
Yu, S.; Wang, X.; Pang, H.; Zhang, R.; Song, W.; Fu, D.; Hayat, T.; Wang, X. Boron nitride-based materials for the removal of pollutants from aqueous solutions: A review. Chem. Eng. J., 2018, 333, 343-360.
[154]
Liu, D.; Lei, W.; Qin, S.; Klika, K.D.; Chen, Y. Superior adsorption of pharmaceutical molecules by highly porous BN nanosheets. Phys. Chem. Chem. Phys., 2016, 18(1), 84-88.
[155]
Barbooti, M.; Su, H.; Punamiya, P.; Sarkar, D. Oxytetracycline sorption onto Iraqi montmorillonite. Int. J. Environ. Sci. Technol., 2014, 11(1), 69-76.
[156]
Sassman, S.A.; Lee, L.S. Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environ. Sci. Technol., 2005, 39(19), 7452-7459.
[157]
Zhu, X.; Liu, Y.; Qian, F.; Zhou, C.; Zhang, S.; Chen, J. Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresour. Technol., 2014, 154, 209-214.
[158]
Brigante, M.; Parolo, M.E.; Schulz, P.C.; Avena, M. Synthesis, characterization of mesoporous silica powders and application to antibiotic remotion from aqueous solution. Effect of supported Fe-oxide on the SiO2 adsorption properties. Powder Technol., 2014, 253, 178-186.
[159]
Parida, K.; Dash, S.K. Adsorption of Cu2+ on spherical Fe-MCM-41 and its application for oxidation of adamantane. J. Hazard. Mater., 2010, 179(1-3), 642-649.
[160]
Yokoi, T.; Kubota, Y.; Tatsumi, T. Amino-functionalized mesoporous silica as base catalyst and adsorbent. Appl. Catal. A, 2012, 421, 14-37.
[161]
Zhang, Z.; Lan, H.; Liu, H.; Qu, J. Removal of tetracycline antibiotics from aqueous solution by amino-Fe (III) functionalized SBA15. Colloids Surf. Physicochem. Eng. Aspects, 2015, 471, 133-138.
[162]
Sui, M.; Zhou, Y.; Sheng, L.; Duan, B. Adsorption of norfloxacin in aqueous solution by Mg-Al layered double hydroxides with variable metal composition and interlayer anions. Chem. Eng. J., 2012, 210, 451-460.
[163]
Soori, M.M.; Ghahramani, E.; Kazemian, H.; Al-Musawi, T.J.; Zarrabi, M. Intercalation of tetracycline in nano sheet layered double hydroxide: an insight into UV/VIS spectra analysis. J. Taiwan Inst. Chem. Eng., 2016, 63, 271-285.
[164]
Sepehr, M.N.; Al-Musawi, T.J.; Ghahramani, E.; Kazemian, H.; Zarrabi, M. Adsorption performance of magnesium/aluminum layered double hydroxide nanoparticles for metronidazole from aqueous solution. Arab. J. Chem., 2017, 10(5), 611-623.
[165]
Li, W.; Wang, J.; He, G.; Yu, L.; Noor, N.; Sun, Y.; Zhou, X.; Hu, J.; Parkin, I.P. Enhanced adsorption capacity of ultralong hydrogen titanate nanobelts for antibiotics. J. Mater. Chem. A , 2017, 5(9), 4352-4358.
[166]
Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C-Photochem. Rev., 2012, 13(3), 169-189.
[167]
Fujishima, A.; Zhang, X.; Tryk, D.A. Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup. Int. J. Hydrogen Energy, 2007, 32(14), 2664-2672.
[168]
Agnihotri, S.; Sillu, D.; Sharma, G.; Arya, R.K. Photocatalytic and antibacterial potential of silver nanoparticles derived from pineapple waste: Process optimization and modeling kinetics for dye removal. Appl. Nanosci., 2018, 8(8), 2077-2092.
[169]
Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep., 2008, 63(12), 515-582.
[170]
Tu, W.; Zhou, Y.; Zou, Z. Versatile graphene‐promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Adv. Funct. Mater., 2013, 23(40), 4996-5008.
[171]
Turchi, C.S.; Ollis, D.F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal., 1990, 122(1), 178-192.
[172]
Ahmed, S.N.; Haider, W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnology, 2018, 29(34)342001
[173]
Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous photocatalysis: Recent advances and applications. Catalysts, 2013, 3(1), 189-218.
[174]
Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev., 2014, 114(19), 9919-9986.
[175]
Borges, M.; Sierra, M.; Cuevas, E.; García, R.; Esparza, P. Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Sol. Energy, 2016, 135, 527-535.
[176]
Zangeneh, H.; Zinatizadeh, A.; Habibi, M.; Akia, M.; Isa, M.H. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem., 2015, 26, 1-36.
[177]
Liang, P.; Wei, A.; Zhang, Y.; Wu, J.; Zhang, X.; Li, S. Immobilisation of TiO2 films on activated carbon fibres by a hydrothermal method for photocatalytic degradation of toluene. Micro & Nano Lett., 2016, 11(9), 539-544.
[178]
Sabar, S.; Nawi, M.; Ngah, W. Photocatalytic removal of reactive red 4 dye by immobilised layer-by-layer TiO2/cross-linked chitosan derivatives system. Desalination Water Treat., 2016, 57(13), 5851-5857.
[179]
Lin, L.; Wang, H.; Jiang, W.; Mkaouar, A.R.; Xu, P. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. J. Hazard. Mater., 2017, 333, 162-168.
[180]
Thiruppathi, M.; Senthil Kumar, P.; Devendran, P.; Ramalingan, C.; Swaminathan, M.; Nagarajan, E.R. Ce@TiO2 nanocomposites: An efficient, stable and affordable photocatalyst for the photodegradation of diclofenac sodium. J. Alloys Compd., 2018, 735, 728-734.
[181]
Benotti, M.J.; Stanford, B.D.; Wert, E.C.; Snyder, S.A. Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Res., 2009, 43(6), 1513-1522.
[182]
Choina, J.; Bagabas, A.; Fischer, C.; Flechsig, G-U.; Kosslick, H.; Alshammari, A.; Schulz, A. The influence of the textural properties of ZnO nanoparticles on adsorption and photocatalytic remediation of water from pharmaceuticals. Catal. Today, 2015, 241, 47-54.
[183]
Li, X.; Yang, S.; Sun, J.; He, P.; Xu, X.; Ding, G. Tungsten oxide nanowire-reduced graphene oxide aerogel for high-efficiency visible light photocatalysis. Carbon, 2014, 78, 38-48.
[184]
Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ., 2012, 424, 1-10.
[185]
Wang, X.; Blechert, S.; Antonietti, M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal., 2012, 2(8), 1596-1606.
[186]
Mills, A.; Le Hunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A: Chem., 1997, 108(1), 1-35.
[187]
Liu, W.; Shang, Y.; Zhu, A.; Tan, P.; Liu, Y.; Qiao, L.; Chu, D.; Xiong, X.; Pan, J. Enhanced performance of doped BiOCl nanoplates for photocatalysis: Understanding from doping insight into improved spatial carrier separation. J. Mater. Chem. A , 2017, 5(24), 12542-12549.
[188]
Fox, M.A.; Doan, K.E.; Dulay, M.T. The effect of the “inert” support on relative photocatalytic activity in the oxidative decomposition of alcohols on irradiated titanium dioxide composites. Res. Chem. Intermed., 1994, 20(7), 711.
[189]
Devi, L.G.; Kavitha, R. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal. B, 2013, 140, 559-587.
[190]
Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater., 2015, 27(13), 2150-2176.
[191]
Maji, T.K.; Bagchi, D.; Kar, P.; Karmakar, D.; Pal, S.K. Enhanced charge separation through modulation of defect-state in wide band-gap semiconductor for potential photocatalysis application: Ultrafast spectroscopy and computational studies. J. Photochem. Photobiol. A: Chem., 2017, 332, 391-398.
[192]
Mohamed, M.A.; Salleh, W.; Jaafar, J.; Ismail, A.; Mutalib, M.A.; Sani, N.; Asri, S.; Ong, C. Physicochemical characteristic of regenerated cellulose/N-doped TiO2 nanocomposite membrane fabricated from recycled newspaper with photocatalytic activity under UV and visible light irradiation. Chem. Eng. J., 2016, 284, 202-215.
[193]
Lee, S.C.; Jeong, Y.; Kim, Y.J.; Kim, H.; Lee, H.U.; Lee, Y-C.; Lee, S.M.; Kim, H.J.; An, H-R.; Ha, M.G. Hierarchically three-dimensional (3D) nanotubular sea urchin-shaped iron oxide and its application in heavy metal removal and solar-induced photocatalytic degradation. J. Hazard. Mater., 2018, 354, 283-292.
[194]
Sotelo-Vazquez, C.; Noor, N.; Kafizas, A.; Quesada-Cabrera, R.; Scanlon, D.O.; Taylor, A.; Durrant, J.R.; Parkin, I.P. Multifunctional P-doped TiO2 films: a new approach to self-cleaning, transparent conducting oxide materials. Chem. Mater., 2015, 27(9), 3234-3242.
[195]
Cai, Z.; Sun, Y.; Liu, W.; Pan, F.; Sun, P.; Fu, J. An overview of nanomaterials applied for removing dyes from wastewater. Environ. Sci. Pollut. Res., 2017, 24(19), 15882-15904.
[196]
Thomas, M.; Natarajan, T.S. TiO2-high surface area materials based composite photocatalytic nanomaterials for degradation of pollutants: A review. Photocatal. Nanomat. Environ. Appl., 2018, 27, 48.
[197]
Zhang, H.; Banfield, J.F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. J. Phys. Chem. B, 2000, 104(15), 3481-3487.
[198]
Ranade, M.; Navrotsky, A.; Zhang, H.; Banfield, J.; Elder, S.; Zaban, A.; Borse, P.; Kulkarni, S.; Doran, G.; Whitfield, H. Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. USA, 2002, 99(Suppl. 2), 6476-6481.
[199]
Doll, T.E.; Frimmel, F.H. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials-determination of intermediates and reaction pathways. Water Res., 2004, 38(4), 955-964.
[200]
Addamo, M.; Augugliaro, V.; Di Paola, A.; Garcia-Lopez, E.; Loddo, V.; Marci, G.; Palmisano, L. Removal of drugs in aqueous systems by photoassisted degradation. J. Appl. Electrochem., 2005, 35(7-8), 765-774.
[201]
Molinari, R.; Pirillo, F.; Loddo, V.; Palmisano, L. Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catal. Today, 2006, 118(1-2), 205-213.
[202]
Abellán, M.; Bayarri, B.; Giménez, J.; Costa, J. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B, 2007, 74(3-4), 233-241.
[203]
Zhang, X.; Wu, F.; Wu, X.; Chen, P.; Deng, N. Photodegradation of acetaminophen in TiO2 suspended solution. J. Hazard. Mater., 2008, 157(2-3), 300-307.
[204]
Achilleos, A.; Hapeshi, E.; Xekoukoulotakis, N.; Mantzavinos, D.; Fatta-Kassinos, D. UV-A and solar photodegradation of ibuprofen and carbamazepine catalyzed by TiO2. Sep. Sci. Technol., 2010, 45(11), 1564-1570.
[205]
Pereira, J.H.; Vilar, V.J.; Borges, M.T.; González, O.; Esplugas, S.; Boaventura, R.A. Photocatalytic degradation of oxytetracycline using TiO2 under natural and simulated solar radiation. Sol. Energy, 2011, 85(11), 2732-2740.
[206]
Sousa, M.; Gonçalves, C.; Vilar, V.J.; Boaventura, R.A.; Alpendurada, M. Suspended TiO2-assisted photocatalytic degradation of emerging contaminants in a municipal WWTP effluent using a solar pilot plant with CPCs. Chem. Eng. J., 2012, 198, 301-309.
[207]
Das, R.; Sarkar, S.; Chakraborty, S.; Choi, H.; Bhattacharjee, C. Remediation of antiseptic components in wastewater by photocatalysis using TiO2 nanoparticles. Ind. Eng. Chem. Res., 2014, 53(8), 3012-3020.
[208]
Bhanvase, B.; Shende, T.; Sonawane, S. A review on graphene-TiO2 and doped graphene-TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environ. Technol. Rev., 2017, 6(1), 1-14.
[209]
Mori, K.; Miura, Y.; Shironita, S.; Yamashita, H. New route for the preparation of Pd and PdAu nanoparticles using photoexcited Ti-containing zeolite as an efficient support material and investigation of their catalytic properties. Langmuir, 2009, 25(18), 11180-11187.
[210]
Marschall, R.; Wang, L. Non-metal doping of transition metal oxides for visible-light photocatalysis. Catal. Today, 2014, 225, 111-135.
[211]
Liang, H.; Wang, Z.; Liao, L.; Chen, L.; Li, Z.; Feng, J. High performance photocatalysts: Montmorillonite supported-nano TiO2 composites. Optik-Int. J. Light Electron Opt., , 2017, 136, 44-51.
[212]
Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528), 269-271.
[213]
Wu, H-C.; Lin, Y-S.; Lin, S-W. Mechanisms of visible light photocatalysis in n-doped anatase TiO2 with oxygen vacancies from GGA+U calculations. Int. J. Photoenergy, 2013, 289328, 1-7.
[214]
Shafeeyan, M.S.; Daud, W.M.A.W.; Shamiri, A.; Aghamohammadi, N. Modeling of carbon dioxide adsorption onto ammonia-modified activated carbon: Kinetic analysis and breakthrough behavior. Energy Fuels, 2015, 29(10), 6565-6577.
[215]
Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P. Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts. Chem. Eng. J., 2015, 261, 3-8.
[216]
Eslami, A.; Amini, M.M.; Yazdanbakhsh, A.R.; Mohseni‐Bandpei, A.; Safari, A.A.; Asadi, A.N. S co‐doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non‐steroidal anti‐inflammatory drugs in water: a comparative study. J. Chem. Technol. Biotechnol., 2016, 91(10), 2693-2704.
[217]
Khaki, M.R.D.; Shafeeyan, M.S.; Raman, A.A.A.; Daud, W.M.A.W. Application of doped photocatalysts for organic pollutant degradation-A review. J. Environ. Manage., 2017, 198, 78-94.
[218]
Bu, D.; Zhuang, H. Biotemplated synthesis of high specific surface area copper-doped hollow spherical titania and its photocatalytic research for degradating chlorotetracycline. Appl. Surf. Sci., 2013, 265, 677-685.
[219]
Ofiarska, A.; Pieczyńska, A.; Borzyszkowska, A.F.; Stepnowski, P.; Siedlecka, E.M. Pt-TiO2-assisted photocatalytic degradation of the cytostatic drugs ifosfamide and cyclophosphamide under artificial sunlight. Chem. Eng. J., 2016, 285, 417-427.
[220]
Wang, Q.; Yang, C.; Zhang, G.; Hu, L.; Wang, P. Photocatalytic Fe-doped TiO2/PSF composite UF membranes: Characterization and performance on BPA removal under visible-light irradiation. Chem. Eng. J., 2017, 319, 39-47.
[221]
Zhiyong, Y.; Bensimon, M.; Sarria, V.; Stolitchnov, I.; Jardim, W.; Laub, D.; Mielczarski, E.; Mielczarski, J.; Kiwi-Minsker, L.; Kiwi, J. ZnSO4-TiO2 doped catalyst with higher activity in photocatalytic processes. Appl. Catal. B, 2007, 76(1-2), 185-195.
[222]
Zhang, J.; Tse, K.; Wong, M.; Zhang, Y.; Zhu, J. A brief review of co-doping. Front. Phys., 2016, 11(6)117405
[223]
Phattalung, S.N.; Limpijumnong, S.; Yu, J. Passivated co-doping approach to bandgap narrowing of titanium dioxide with enhanced photocatalytic activity. Appl. Catal. B, 2017, 200, 1-9.
[224]
Buda, W.; Czech, B. Preparation and characterization of C, N-codoped TiO2 photocatalyst for the degradation of diclofenac from wastewater. Water Sci. Technol., 2013, 68(6), 1322-1328.
[225]
Segne, T.A.; Tirukkovalluri, S.R.; Challapalli, S. Studies on characterization and photocatalytic activities of visible light sensitive TiO2 nano catalysts co-doped with magnesium and copper. Int. Res. J. Pure Appl. Chem., 2011, 1(3), 84.
[226]
Choi, H.; Shin, D.; Yeo, B.C.; Song, T.; Han, S.S.; Park, N.; Kim, S. Simultaneously controllable doping sites and the activity of a W-N codoped TiO2 photocatalyst. ACS Catal., 2016, 6(5), 2745-2753.
[227]
Kadam, A.; Dhabbe, R.; Shin, D-S.; Garadkar, K.; Park, J. Sunlight driven high photocatalytic activity of Sn doped N-TiO2 nanoparticles synthesized by a microwave assisted method. Ceram. Int., 2017, 43(6), 5164-5172.
[228]
Khalid, N.; Majid, A.; Tahir, M.B.; Niaz, N.; Khalid, S. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceram. Int., 2017, 43(17), 14552-14571.
[229]
Tao, H.; Liang, X.; Zhang, Q.; Chang, C-T. Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of acetaminophen. Appl. Surf. Sci., 2015, 324, 258-264.
[230]
Ahmadi, M.; Motlagh, H.R.; Jaafarzadeh, N.; Mostoufi, A.; Saeedi, R.; Barzegar, G.; Jorfi, S. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J. Environ. Manage., 2017, 186, 55-63.
[231]
Jung, J-Y.; Lee, D.; Lee, Y-S. CNT-embedded hollow TiO2 nanofibers with high adsorption and photocatalytic activity under UV irradiation. J. Alloys Compd., 2015, 622, 651-656.
[232]
Karaolia, P.; Michael-Kordatou, I.; Hapeshi, E.; Drosou, C.; Bertakis, Y.; Christofilos, D.; Armatas, G.S.; Sygellou, L.; Schwartz, T.; Xekoukoulotakis, N.P. Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters. Appl. Catal. B, 2018, 224, 810-824.
[233]
Sun, T.; Qiu, J.; Liang, C. Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays. J. Phys. Chem. C, 2008, 112(3), 715-721.
[234]
Ye, C.; Bando, Y.; Shen, G.; Golberg, D. Thickness-dependent photocatalytic performance of ZnO nanoplatelets. J. Phys. Chem. B, 2006, 110(31), 15146-15151.
[235]
Yu, J.; Yu, X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ. Sci. Technol., 2008, 42(13), 4902-4907.
[236]
Xie, W.; Li, Y.; Sun, W.; Huang, J.; Xie, H.; Zhao, X. Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability. J. Photochem. Photobiol. A: Chem., 2010, 216(2), 149-155.
[237]
Dindar, B.; Içli, S. Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. J. Photochem. Photobiol. A: Chem., 2001, 140(3), 263-268.
[238]
Bylander, E. Surface effects on the low‐energy cathodoluminescence of zinc oxide. J. Appl. Phys., 1978, 49(3), 1188-1195.
[239]
Wang, X.; Zhao, F.; Xie, P.; Deng, S.; Xu, N.; Wang, H. Surface emission characteristics of ZnO nanoparticles. Chem. Phys. Lett., 2006, 423(4-6), 361-365.
[240]
Farzadkia, M.; Esrafili, A.; Baghapour, M.A.; Shahamat, Y.D.; Okhovat, N. Degradation of metronidazole in aqueous solution by nano-ZnO/UV photocatalytic process. Desalination Water Treat., 2014, 52(25-27), 4947-4952.
[241]
Mijin, D.; Savić, M.; Smiljanić, A.; Glavaški, O.; Jovanović, M.; Petrović, S. A study of the photocatalytic degradation of metamitron in ZnO water suspensions. Desalination, 2009, 249(1), 286-292.
[242]
El-Kemary, M.; El-Shamy, H.; El-Mehasseb, I. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. J. Lumin., 2010, 130(12), 2327-2331.
[243]
Anandan, S.; Vinu, A.; Lovely, K.S.; Gokulakrishnan, N.; Srinivasu, P.; Mori, T.; Murugesan, V.; Sivamurugan, V.; Ariga, K. Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J. Mol. Catal. A Chem., 2007, 266(1-2), 149-157.
[244]
Shakir, M.; Faraz, M.; Sherwani, M.A.; Al-Resayes, S.I. Photocatalytic degradation of the paracetamol drug using Lanthanum doped ZnO nanoparticles and their in-vitro cytotoxicity assay. J. Lumin., 2016, 176, 159-167.
[245]
Elmolla, E.S.; Chaudhuri, M. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J. Hazard. Mater., 2010, 173(1-3), 445-449.
[246]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[247]
Yousefi, R.; Jamali-Sheini, F.; Cheraghizade, M.; Khosravi-Gandomani, S.; Sáaedi, A.; Huang, N.M.; Basirun, W.J.; Azarang, M. Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles. Mater. Sci. Semiconduct. Prcess., 2015, 32, 152-159.
[248]
Lavand, A.B.; Malghe, Y.S. Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres. J. Asian Ceram. Soc., 2015, 3(3), 305-310.
[249]
Moussa, H.; Girot, E.; Mozet, K.; Alem, H.; Medjahdi, G.; Schneider, R. ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl. Catal. B, 2016, 185, 11-21.
[250]
Wang, Y.; Zheng, Y-Z.; Lu, S.; Tao, X.; Che, Y.; Chen, J-F. Visible-light-responsive TiO2-coated ZnO: I nanorod array films with enhanced photoelectrochemical and photocatalytic performance. ACS Appl. Mater. Interfaces, 2015, 7(11), 6093-6101.
[251]
Zhao, X.; Shen, H.; Zhang, Y.; Li, X.; Zhao, X.; Tai, M.; Li, J.; Li, J.; Lin, H. Aluminum-doped zinc oxide as highly stable electron collection layer for perovskite solar cells. ACS Appl. Mater. Interfaces, 2016, 8(12), 7826-7833.
[252]
Ullah, R.; Dutta, J. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard. Mater., 2008, 156(1-3), 194-200.
[253]
Nair, M.G.; Nirmala, M.; Rekha, K.; Anukaliani, A. Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater. Lett., 2011, 65(12), 1797-1800.
[254]
Fu, M.; Li, Y.; Lu, P.; Liu, J.; Dong, F. Sol-gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl. Surf. Sci., 2011, 258(4), 1587-1591.
[255]
Whang, T-J.; Hsieh, M-T.; Chen, H-H. Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles. Appl. Surf. Sci., 2012, 258(7), 2796-2801.
[256]
Türkyılmaz, Ş.Ş.; Güy, N.; Özacar, M. Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals. J. Photochem. Photobiol. A: Chem., 2017, 341, 39-50.
[257]
Eskandarloo, H.; Badiei, A.; Behnajady, M.A.; Ziarani, G.M. Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants. Ultrason. Sonochem., 2016, 28, 169-177.
[258]
Li, D.; Kaner, R.B. Graphene-based materials. Nat. Nanotechnol., 2008, 3, 101.
[259]
Bolotin, K.I.; Sikes, K.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 2008, 146(9-10), 351-355.
[260]
Xu, T.; Zhang, L.; Cheng, H.; Zhu, Y. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B, 2011, 101(3-4), 382-387.
[261]
Bai, X.; Wang, L.; Zong, R.; Lv, Y.; Sun, Y.; Zhu, Y. Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir, 2013, 29(9), 3097-3105.
[262]
Wang, J.; Tsuzuki, T.; Tang, B.; Hou, X.; Sun, L.; Wang, X. Reduced graphene oxide/ZnO composite: Reusable adsorbent for pollutant management. ACS Appl. Mater. Interfaces, 2012, 4(6), 3084-3090.
[263]
Thi, V.H.T.; Lee, B-K. Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method. J. Hazard. Mater., 2017, 324, 329-339.
[264]
Anirudhan, T.S.; Deepa, J.R. Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions. J. Colloid Interface Sci., 2017, 490, 343-356.
[265]
Tobajas, M.; Belver, C.; Rodríguez, J.J. Degradation of emerging pollutants in water under solar irradiation using novel TiO2-ZnO/clay nanoarchitectures. Chem. Eng. J., 2017, 309, 596-606.
[266]
Sajjad, A.K.L.; Sajjad, S.; Iqbal, A. ZnO/WO3 nanostructure as an efficient visible light catalyst. Ceram. Int., 2018, 44(8), 9364-9371.
[267]
Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev., 2018, 81, 536-551.
[268]
Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H-C.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 2008, 71(7), 1308-1316.
[269]
Lv, M.; Su, S.; He, Y.; Huang, Q.; Hu, W.; Li, D.; Fan, C.; Lee, S.T. Long‐Term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv. Mater., 2010, 22(48), 5463-5467.
[270]
Carabante, I.; Grahn, M.; Holmgren, A.; Kumpiene, J.; Hedlund, J. Adsorption of As(V) on iron oxide nanoparticle films studied by in situ ATR-FTIR spectroscopy. Colloids Surf. Physicochem. Eng. Aspects, 2009, 346(1-3), 106-113.
[271]
Akhavan, O.; Azimirad, R. Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation. Appl. Catal. A, 2009, 369(1-2), 77-82.
[272]
Feng, W.; Nansheng, D.; Helin, H. Degradation mechanism of azo dye CI reactive red 2 by iron powder reduction and photooxidation in aqueous solutions. Chemosphere, 2000, 41(8), 1233-1238.
[273]
Bautista, P.; Mohedano, A.; Casas, J.; Zazo, J.; Rodriguez, J. An overview of the application of Fenton oxidation to industrial wastewaters treatment. J. Chem. Technol. Biotechnol., 2008, 83(10), 1323-1338.
[274]
Nogueira, R.F.P.; Trovó, A.G.; Silva, M.R.A.d.; Villa, R.D.; Oliveira, M.C.d. Fundaments and environmental applications of Fenton and photo-Fenton processes. Quim. Nova, 2007, 30(2), 400-408.
[275]
Rozas, O.; Contreras, D.; Mondaca, M.A.; Pérez-Moya, M.; Mansilla, H.D. Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions. J. Hazard. Mater., 2010, 177(1-3), 1025-1030.
[276]
Boruah, P.K.; Sharma, B.; Karbhal, I.; Shelke, M.V.; Das, M.R. Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation. J. Hazard. Mater., 2017, 325, 90-100.
[277]
Bansal, P.; Verma, A. Synergistic effect of dual process (photocatalysis and photo-Fenton) for the degradation of Cephalexin using TiO2 immobilized novel clay beads with waste fly ash/foundry sand. J. Photochem. Photobiol. A: Chem., 2017, 342, 131-142.
[278]
Wang, C-T. Photocatalytic activity of nanoparticle gold/iron oxide aerogels for azo dye degradation. J. Non-Cryst. Solids, 2007, 353(11-12), 1126-1133.
[279]
Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater., 2009, 8(1), 76.
[280]
Zhang, J.; Grzelczak, M.; Hou, Y.; Maeda, K.; Domen, K.; Fu, X.; Antonietti, M.; Wang, X. Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements. Chem. Sci., 2012, 3(2), 443-446.
[281]
Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S.Z. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci., 2012, 5(5), 6717-6731.
[282]
Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal‐free catalyst for Friedel-crafts reaction of benzene. Angew. Chem. Int. Ed., 2006, 45(27), 4467-4471.
[283]
Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou, Y.; Fu, X.; Antonietti, M. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc., 2009, 131(5), 1680-1681.
[284]
Yan, S.C.; Lv, S.B.; Li, Z.S.; Zou, Z.G. Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans., 2010, 39(6), 1488-1491.
[285]
Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale, 2015, 7(1), 15-37.
[286]
Zhang, Y.; Ligthart, D.M.; Quek, X-Y.; Gao, L.; Hensen, E.J. Influence of Rh nanoparticle size and composition on the photocatalytic water splitting performance of Rh/graphitic carbon nitride. Int. J. Hydrogen Energy, 2014, 39(22), 11537-11546.
[287]
Ma, S.; Zhan, S.; Jia, Y.; Shi, Q.; Zhou, Q. Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl. Catal. B, 2016, 186, 77-87.
[288]
Ran, J.; Ma, T.Y.; Gao, G.; Du, X-W.; Qiao, S.Z. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci., 2015, 8(12), 3708-3717.
[289]
Wang, X.; Chen, X.; Thomas, A.; Fu, X.; Antonietti, M. Metal‐containing carbon nitride compounds: A new functional organic-metal hybrid material. Adv. Mater., 2009, 21(16), 1609-1612.
[290]
Han, C.; Wu, L.; Ge, L.; Li, Y.; Zhao, Z. AuPd bimetallic nanoparticles decorated graphitic carbon nitride for highly efficient reduction of water to H2 under visible light irradiation. Carbon, 2015, 92, 31-40.
[291]
Liang, Q.; Zhang, M.; Liu, C.; Xu, S.; Li, Z. Sulfur-doped graphitic carbon nitride decorated with zinc phthalocyanines towards highly stable and efficient photocatalysis. Appl. Catal. A, 2016, 519, 107-115.
[292]
Paragas, L.K.B.; De Luna, M.D.G.; Doong, R-A. Rapid removal of sulfamethoxazole from simulated water matrix by visible-light responsive iodine and potassium co-doped graphitic carbon nitride photocatalysts. Chemosphere, 2018, 210, 1099-1107.
[293]
Zheng, Q.; Durkin, D.P.; Elenewski, J.E.; Sun, Y.; Banek, N.A.; Hua, L.; Chen, H.; Wagner, M.J.; Zhang, W.; Shuai, D. Visible-light-responsive graphitic carbon nitride: rational design and photocatalytic applications for water treatment. Environ. Sci. Technol., 2016, 50(23), 12938-12948.
[294]
Naseri, A.; Samadi, M.; Pourjavadi, A.; Moshfegh, A.Z.; Ramakrishna, S. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: Recent advances and future development directions. J. Mater. Chem. A , 2017, 5(45), 23406-23433.
[295]
Li, G.; Nie, X.; Gao, Y.; An, T. Can environmental pharmaceuticals be photocatalytically degraded and completely mineralized in water using g-C3N4/TiO2 under visible light irradiation? Implications of persistent toxic intermediates. Appl. Catal. B, 2016, 180, 726-732.
[296]
Muduli, S.K.; Wang, S.; Chen, S.; Ng, C.F.; Huan, C.H.A.; Sum, T.C.; Soo, H.S. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes. Beilstein J. Nanotechnol., 2014, 5, 517.
[297]
Jourshabani, M.; Shariatinia, Z.; Badiei, A. Facile one-pot synthesis of cerium oxide/sulfur-doped graphitic carbon nitride (g-C3N4) as efficient nanophotocatalysts under visible light irradiation. J. Colloid Interface Sci., 2017, 507, 59-73.
[298]
Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater., 2012, 211, 317-331.
[299]
Kim, J.; Lee, C.W.; Choi, W. Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ. Sci. Technol., 2010, 44(17), 6849-6854.
[300]
Abe, R.; Takami, H.; Murakami, N.; Ohtani, B. Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J. Am. Chem. Soc., 2008, 130(25), 7780-7781.
[301]
Miyauchi, M. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles. Phys. Chem. Chem. Phys., 2008, 10(41), 6258-6265.
[302]
Rey, A.; García-Muñoz, P.; Hernández-Alonso, M.; Mena, E.; García-Rodríguez, S.; Beltrán, F. WO3-TiO2 based catalysts for the simulated solar radiation assisted photocatalytic ozonation of emerging contaminants in a municipal wastewater treatment plant effluent. Appl. Catal. B, 2014, 154, 274-284.
[303]
Ioannidou, E.; Frontistis, Z.; Antonopoulou, M.; Venieri, D.; Konstantinou, I.; Kondarides, D.I.; Mantzavinos, D. Solar photocatalytic degradation of sulfamethoxazole over tungsten-Modified TiO2. Chem. Eng. J., 2017, 318, 143-152.
[304]
Fakhri, A.; Behrouz, S. Photocatalytic properties of tungsten trioxide (WO3) nanoparticles for degradation of Lidocaine under visible and sunlight irradiation. Sol. Energy, 2015, 112, 163-168.
[305]
Rao, Y.; Chu, W.; Wang, Y. Photocatalytic oxidation of carbamazepine in triclinic-WO3 suspension: Role of alcohol and sulfate radicals in the degradation pathway. Appl. Catal. A, 2013, 468, 240-249.
[306]
Yanyan, L.; Kurniawan, T.A.; Ying, Z.; Albadarin, A.B.; Walker, G. Enhanced photocatalytic degradation of acetaminophen from wastewater using WO3/TiO2/SiO2 composite under UV-Vis irradiation. J. Mol. Liq., 2017, 243, 761-770.
[307]
Dong, S.; Sun, J.; Li, Y.; Yu, C.; Li, Y.; Sun, J. ZnSnO3 hollow nanospheres/reduced graphene oxide nanocomposites as high-performance photocatalysts for degradation of metronidazole. Appl. Catal. B, 2014, 144, 386-393.
[308]
Jallouli, N.; Pastrana-Martinez, L.M.; Ribeiro, A.R.; Moreira, N.F.; Faria, J.L.; Hentati, O.; Silva, A.M.; Ksibi, M. Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system. Chem. Eng. J., 2018, 334, 976-984.
[309]
Kumar, A.; Khan, M.; Fang, L.; Lo, I.M. Visible-light-driven NTiO2@ SiO2@ Fe3O4 magnetic nanophotocatalysts: Synthesis, characterization, and photocatalytic degradation of PPCPs. J. Hazard. Mater., 2017. pii: S0304-3894(17)30556-3.
[310]
Belver, C.; Han, C.; Rodriguez, J.; Dionysiou, D. Innovative W-doped titanium dioxide anchored on clay for photocatalytic removal of atrazine. Catal. Today, 2017, 280, 21-28.
[311]
Alalm, M.G.; Tawfik, A.; Ookawara, S. Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals. J. Environ. Chem. Eng., 2016, 4(2), 1929-1937.
[312]
Maraschi, F.; Sturini, M.; Speltini, A.; Pretali, L.; Profumo, A.; Pastorello, A.; Kumar, V.; Ferretti, M.; Caratto, V. TiO2-modified zeolites for fluoroquinolones removal from wastewaters and reuse after solar light regeneration. J. Environ. Chem. Eng., 2014, 2(4), 2170-2176.
[313]
Wang, X.; Tang, Y.; Leiw, M-Y.; Lim, T-T. Solvothermal synthesis of Fe-C codoped TiO2 nanoparticles for visible-light photocatalytic removal of emerging organic contaminants in water. Appl. Catal. A, 2011, 409, 257-266.
[314]
Alawi, M.A.; Alahmad, W. Kinetic study of photocatalytic degradation of several pharmaceuticals assisted by SiO2/TiO2 catalyst in solar bath system. Jordan J. Pharm. Sci., 2010, 108(393), 1-22.
[315]
Yang, H.; Li, G.; An, T.; Gao, Y.; Fu, J. Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: A case of sulfa drugs. Catal. Today, 2010, 153(3-4), 200-207.
[316]
Alalm, M.G.; Ookawara, S.; Fukushi, D.; Sato, A.; Tawfik, A. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin. J. Hazard. Mater., 2016, 302, 225-231.
[317]
Chen, S.; Li, Y.; Lü, R.; Jiang, J.; Zhang, G.; Wang, P. Optimization and modeling of photocatalytic removal of norfloxacin using tungsten bismuth loaded carbon iron complexes based on response surface methodology. Ind. Eng. Chem. Res., 2014, 53(26), 10775-10783.
[318]
El Bekkali, C.; Bouyarmane, H.; El Karbane, M.; Masse, S.; Saoiabi, A.; Coradin, T.; Laghzizil, A. Zinc oxide-hydroxyapatite nanocomposite photocatalysts for the degradation of ciprofloxacin and ofloxacin antibiotics. Colloids Surf. Physicochem. Eng. Aspects, 2018, 539, 364-370.
[319]
Mahdizadeh, F.; Aber, S.; Karimi, A. Synthesis of nano zinc oxide on granular porous scoria: Application for photocatalytic removal of pharmaceutical and textile pollutants from synthetic and real wastewaters. J. Taiwan Inst. Chem. Eng., 2015, 49, 212-219.
[320]
Nosrati, R.; Olad, A.; Maramifar, R. Degradation of ampicillin antibiotic in aqueous solution by ZnO/polyaniline nanocomposite as photocatalyst under sunlight irradiation. Environ. Sci. Pollut. Res. , 2012, 19(6), 2291-2299.
[321]
Pardeshi, S.; Patil, A. Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. J. Hazard. Mater., 2009, 163(1), 403-409.
[322]
Zammouri, L.; Aboulaich, A.; Capoen, B.; Bouazaoui, M.; Sarakha, M.; Stitou, M.; Mahiou, R. Enhancement under UV-visible and visible light of the ZnO photocatalytic activity for the antibiotic removal from aqueous media using Ce-doped Lu3Al5O12 nanoparticles. Mater. Res. Bull., 2018, 106, 162-169.
[323]
Khoshnamvand, N.; Mostafapour, F.K.; Mohammadi, A.; Faraji, M. Response Surface Methodology (RSM) modeling to improve removal of ciprofloxacin from aqueous solutions in photocatalytic process using copper oxide nanoparticles (CuO/UV). AMB Express, 2018, 8(1), 48.
[324]
Paragas, L.K.B.; De Luna, M.D.G.; Doong, R-A. Rapid removal of sulfamethoxazole from simulated water matrix by visible-light responsive iodine and potassium co-doped graphitic carbon nitride photocatalysts. Chemosphere, 2018, 210, 1099-1107.
[325]
Gao, X.; Zhang, X.; Wang, Y.; Peng, S.; Yue, B.; Fan, C. Rapid synthesis of hierarchical BiOCl microspheres for efficient photocatalytic degradation of carbamazepine under simulated solar irradiation. Chem. Eng. J., 2015, 263, 419-426.
[326]
Xia, D.; Lo, I.M. Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation. Water Res., 2016, 100, 393-404.
[327]
Gonçalves, A.; Órfão, J.J.; Pereira, M.F.R. Ozonation of bezafibrate promoted by carbon materials. Appl. Catal. B, 2013, 140, 82-91.
[328]
Fathinia, M.; Khataee, A.; Naseri, A.; Aber, S. Monitoring simultaneous photocatalytic-ozonation of mixture of pharmaceuticals in the presence of immobilized TiO 2 nanoparticles using MCR-ALS: Identification of intermediates and multi-response optimization approach. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2015, 136, 1275-1290.
[329]
Yu, L.; Wang, D.; Ye, D. Solar photocatalytic ozonation of emerging contaminants detected in municipal wastewater treatment plant effluents by magnetic MWCNTs/TiO 2 nanocomposites. RSC Advances, 2015, 5(117), 96896-96904.
[330]
Jothinathan, L.; Hu, J. Kinetic evaluation of graphene oxide based heterogenous catalytic ozonation for the removal of ibuprofen. Water Res., 2018, 134, 63-73.
[331]
Hou, L.; Zhang, H.; Wang, L.; Chen, L.; Xiong, Y.; Xue, X. Removal of sulfamethoxazole from aqueous solution by sono-ozonation in the presence of a magnetic catalyst. Separ. Purif. Tech., 2013, 117, 46-52.
[332]
Hou, L.; Zhang, H.; Wang, L.; Chen, L. Ultrasound-enhanced magnetite catalytic ozonation of tetracycline in water. Chem. Eng. J., 2013, 229, 577-584.
[333]
Aguinaco, A.; Beltrán, F.J.; García-Araya, J.F.; Oropesa, A. Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: Influence of variables. Chem. Eng. J., 2012, 189, 275-282.
[334]
Moreira, N.F.; Orge, C.A.; Ribeiro, A.R.; Faria, J.L.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M. Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater. Water Res., 2015, 87, 87-96.
[335]
Márquez, G.; Rodríguez, E.M.; Beltrán, F.J.; Álvarez, P.M. Solar photocatalytic ozonation of a mixture of pharmaceutical compounds in water. Chemosphere, 2014, 113, 71-78.
[336]
Quiñones, D.H.; Álvarez, P.M.; Rey, A.; Contreras, S.; Beltrán, F.J. Application of solar photocatalytic ozonation for the degradation of emerging contaminants in water in a pilot plant. Chem. Eng. J., 2015, 260, 399-410.
[337]
Fathinia, M.; Khataee, A. Photocatalytic ozonation of phenazopyridine using TiO 2 nanoparticles coated on ceramic plates: Mechanistic studies, degradation intermediates and ecotoxicological assessments. Appl. Catal. A Gen., 2015, 491, 136-154.
[338]
Yin, R.; Guo, W.; Zhou, X.; Zheng, H.; Du, J.; Wu, Q.; Chang, J.; Ren, N. Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic Fe3O4 nanoparticles: Catalytic performance and degradation mechanism. RSC Advances, 2016, 6(23), 19265-19270.
[339]
Mashayekh-Salehi, A.; Moussavi, G.; Yaghmaeian, K. Preparation, characterization and catalytic activity of a novel mesoporous nanocrystalline MgO nanoparticle for ozonation of acetaminophen as an emerging water contaminant. Chem. Eng. J., 2017, 310, 157-169.
[340]
Nghiem, L.D.; Schäfer, A.I.; Elimelech, M. Removal of natural hormones by nanofiltration membranes: Measurement, modeling, and mechanisms. Environ. Sci. Technol., 2004, 38(6), 1888-1896.
[341]
Hilal, N.; Al-Zoubi, H.; Darwish, N.; Mohamma, A.; Arabi, M.A. A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy. Desalination, 2004, 170(3), 281-308.
[342]
Lu, X.; Bian, X.; Shi, L. Preparation and characterization of NF composite membrane. J. Membr. Sci., 2002, 210(1), 3-11.
[343]
Mohammad, A.W.; Teow, Y.; Ang, W.; Chung, Y.; Oatley-Radcliffe, D.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination, 2015, 356, 226-254.
[344]
Van Der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R. A review of pressure‐driven membrane processes in wastewater treatment and drinking water production. Environ. Prog., 2003, 22(1), 46-56.
[345]
Li, J.B.; Zhu, J.W.; Zheng, M.S. Morphologies and properties of poly (phthalazinone ether sulfone ketone) matrix ultrafiltration membranes with entrapped TiO2 nanoparticles. J. Appl. Polym. Sci., 2007, 103(6), 3623-3629.
[346]
Li, J-F.; Xu, Z-L.; Yang, H.; Yu, L-Y.; Liu, M. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl. Surf. Sci., 2009, 255(9), 4725-4732.
[347]
Cortalezzi, M.M.; Rose, J.; Barron, A.R.; Wiesner, M.R. Characteristics of ultrafiltration ceramic membranes derived from alumoxane nanoparticles. J. Membr. Sci., 2002, 205(1-2), 33-43.
[348]
Cortalezzi, M.a.M.; Rose, J.; Wells, G.F.; Bottero, J-Y.; Barron, A.R.; Wiesner, M.R. Ceramic membranes derived from ferroxane nanoparticles: A new route for the fabrication of iron oxide ultrafiltration membranes. J. Membr. Sci., 2003, 227(1-2), 207-217.
[349]
Luo, M-L.; Zhao, J-Q.; Tang, W.; Pu, C-S. Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Appl. Surf. Sci., 2005, 249(1-4), 76-84.
[350]
Moermans, B.; De Beuckelaer, W.; Vankelecom, I.F.; Ravishankar, R.; Martens, J.A.; Jacobs, P.A. Incorporation of nano-sized zeolites in membranes. Chem. Commun., 2000, 24, 2467-2468.
[351]
You, S-J.; Semblante, G.U.; Lu, S-C.; Damodar, R.A.; Wei, T-C. Evaluation of the antifouling and photocatalytic properties of poly (vinylidene fluoride) plasma-grafted poly (acrylic acid) membrane with self-assembled TiO2. J. Hazard. Mater., 2012, 237, 10-19.
[352]
Rahimpour, A.; Jahanshahi, M.; Rajaeian, B.; Rahimnejad, M. TiO2 entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties. Desalination, 2011, 278(1-3), 343-353.
[353]
Madaeni, S.; Zinadini, S.; Vatanpour, V. A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J. Membr. Sci., 2011, 380(1-2), 155-162.
[354]
Zhu, T.; Lin, Y.; Luo, Y.; Hu, X.; Lin, W.; Yu, P.; Huang, C. Preparation and characterization of TiO2-regenerated cellulose inorganic-polymer hybrid membranes for dehydration of caprolactam. Carbohydr. Polym., 2012, 87(1), 901-909.
[355]
Liu, M-K.; Liu, Y-Y.; Bao, D-D.; Zhu, G.; Yang, G-H.; Geng, J-F.; Li, H-T. Effective removal of tetracycline antibiotics from water using hybrid carbon membranes. Sci. Rep., 2017, 7, 43717.
[356]
Mueller, N.C.; Van Der Bruggen, B.; Keuter, V.; Luis, P.; Melin, T.; Pronk, W.; Reisewitz, R.; Rickerby, D.; Rios, G.M.; Wennekes, W. Nanofiltration and nanostructured membranes-should they be considered nanotechnology or not? J. Hazard. Mater., 2012, 211, 275-280.
[357]
Kim, J.; Van Der Bruggen, B. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut., 2010, 158(7), 2335-2349.
[358]
Fernández, R.L.; McDonald, J.A.; Khan, S.J.; Le-Clech, P. Removal of pharmaceuticals and endocrine disrupting chemicals by a submerged membrane photocatalysis reactor (MPR). Separ. Purif. Tech., 2014, 127, 131-139.
[359]
Van Der Bruggen, B.; Mänttäri, M.; Nyström, M. Drawbacks of applying nanofiltration and how to avoid them: A review. Separ. Purif. Tech., 2008, 63(2), 251-263.
[360]
Matos, M.; Gutiérrez, G.; Lobo, A.; Coca, J.; Pazos, C.; Benito, J.M. Surfactant effect on the ultrafiltration of oil-in-water emulsions using ceramic membranes. J. Membr. Sci., 2016, 520, 749-759.
[361]
Kumar, R.; Dhakate, S.R.; Gupta, T.; Saini, P.; Singh, B.P.; Mathur, R.B. Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes. J. Mater. Chem. A, 2013, 1(18), 5727-5735.
[362]
Gulotty, R.; Castellino, M.; Jagdale, P.; Tagliaferro, A.; Balandin, A.A. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano, 2013, 7(6), 5114-5121.
[363]
Wang, L.; Song, X.; Wang, T.; Wang, S.; Wang, Z.; Gao, C. Fabrication and characterization of Polyethersulfone/Carbon Nanotubes (PES/CNTs) based Mixed Matrix Membranes (MMMs) for nanofiltration application. Appl. Surf. Sci., 2015, 330, 118-125.
[364]
Farahani, M.H.D.A.; Hua, D.; Chung, T-S. Cross-linked Mixed Matrix Membranes (MMMs) consisting of amine-functionalized multi-walled carbon nanotubes and P84 polyimide for Organic Solvent Nanofiltration (OSN) with enhanced flux. J. Membr. Sci., 2018, 548, 319-331.
[365]
Dong, L-X.; Huang, X-C.; Wang, Z.; Yang, Z.; Wang, X-M.; Tang, C.Y. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Separ. Purif. Tech., 2016, 166, 230-239.