[1]
Plummer, J.D. In: Silicon MOSFETs (conventional and nontraditional)
at the scaling limit; Proceedings of the 58th Device Research
Conference. Denver, USA, June 19-21, 2000.
[2]
Murali, R.; Meindl, J.D. Modeling the effect of source/drain junction depth on bulk-MOSFET scaling. Solid-State Electron., 2007, 51, 823-827.
[3]
Roy, K.; Mahmoodi, H.; Mukhopadhyay, S.; Ananthan, H.; Bansal, A.; Cakici, T. Double-gate SOI devices for low-power and
high-performance applications; 19th international conference on
VLSI Design.. Hyderabad, India, January 3-7, 2006.
[4]
Takato, H.; Sunouchi, K.; Okabe, N.; Nitayama, A.; Hieda, K.; Horiguchi, H.; Masuoka, F. Impact of surrounding gate transistor (SGT) for ultra-high density LSI’s. IEEE Trans. Electron Dev., 1991, 38, 573-578.
[5]
Nitayami, A.; Takato, H.; Okabe, N.; Sunouchi, K.; Hieda, K.; Horiguchi, F.; Masuoka, F. Multi-pillar surrounding gate transistor (M-SGT) for compact and high-speed circuits. IEEE Trans. Electron Dev., 1991, 38, 579-583.
[6]
Saremi, M.; Saremi, M.; Niazi, H.; Saremi, M.; Goharrizi, A.Y. SOI LDMOSFET with up and down extended stepped drift region. J. Electron. Mater., 2017, 46(10), 5570-5576.
[7]
Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Jin, B.; Kavalieros, J.; Majumdar, A.; Metz, M.; Radosavljevic, M. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. NanoTechnol., 2005, 4, 153-158.
[8]
Jiménez, D.; Iñiguez, B.; Suñé, J.; Marsal, L.F.; Pallarès, J.; Roig, J.; Flores, D. Continuous analytic current-voltage model for surrounding-gate MOSFETs. IEEE Electron Device Lett., 2004, 25, 571-573.
[9]
Dutta, A.; Koley, K.; Sarkar, C.K. Impact of underlap and mole-fraction on RF performance of strained-Si/Si1_xGex/strained-Si DG MOSFETs. Superlattices Microstruct., 2014, 75, 634-646.
[10]
Jena, B.; Dash, S.; Mishra, G.P. Effect of underlap length variation on DC/RF performance of dual material cylindrical MOS. Int. J. Numer. Model. Electron. Networks Devices Fields, 2016, 30(2) e2175
[11]
Chand, P.; Agarwal, N.; Baral, B. Comparative study of gate underlap and overlap in junction-less DG-MOSFET with high k-spacer through simulation. NCRAEEE, 2015, 3(25), 2278-0181.
[12]
Zhang, L.; Ma, C.; He, J.; Lin, X.; Chan, M. Analytical solution of subthreshold channel potential of gate underlap cylindrical gate-all-around MOSFET. Solid-State Electron., 2010, 54, 806-808.
[13]
Kumar, M.; Haldar, S.; Gupta, M.; Gupta, R.S. A new T-shaped source/drain extension (T-SSDE) gate underlap GAA MOSFET with enhanced subthreshold analog/RF performance for low power applications. Solid-State Electron., 2014, 101, 13-17.
[14]
Dutta, A.; Koley, K.; Sarkar, C.K. Analysis of harmonic distortion in asymmetric underlap DG-MOSFET with high-k spacer. Microelectron. Reliab., 2014, 54, 1125-1132.
[15]
Vaddi, R.; Agarwal, R.P.; Dasgupta, S. Analytical modeling of subthreshold current and subthreshold swing of an underlap DGMOSFET with tied–independent gate and symmetric–asymmetric options. Microelectronics J., 2011, 42, 798-807.
[16]
Sarkar, A.; Jana, R. The influence of gate underlap on analog and RF performance of III-V heterostructure double gate MOSFET. Superlattices Microstruct., 2014, 73, 256-267.
[17]
Pardeshi, H.; Pati, S.K.; Raj, G.; Mohankumar, N.; Sarkar, C.K. Investigation of asymmetric effects due to gate misalignment gate bias and underlap length in III-V heterostructure underlap DG MOSFET. Phys. E Low-Dimens. Sys. Nanostruct, 2012, 46, 61-67.
[18]
Raoavljevic, M.; Dewey, G.; Fastenau, J.M.; Kavalieros, J.; Kotlyar, R.; ChuKung, B.; Liu, W.K.; Lubyshev, D.; Metz, M.; Millard, K.; Mukherjee, N.; Pan, L.; Shah, U.; Chau, R. In: Non-planar
multi-gate InGaAs quantum well field effect transistors with high-K
gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation
for low power logic applications; Proceedings of International
Electron Devices Meeting. San Francisco, USA, December
6-8, 2010.
[19]
Tezuka, T.; Sugiyama, N.; Mizuno, T.; Takagi, S. Ultrathin body SiGe-on-insulator pMOSFETs with high-mobility SiGe surface channels. IEEE Trans. Electron Dev., 2003, 50, 1328-1333.
[20]
Jiménez, D.; Saenz, J.J.; Iniguez, B.; Sune, J.; Marsal, L.F.; Pallares, J. Modeling of nanoscale gate-all-around MOSFETs. IEEE Electron Device Lett., 2004, 25, 314-316.
[21]
Pillarisetty, R.; Rachmady, W.; Shah, U.; Chau, R. In: Non-planar
multi-gate InGaAs quantum well field effect transistors with high-K
gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation
for low power logic applications; IEEE International Electron
Devices Meeting (IEDM). San Francisco, USA, December 6-8, 2010.
[22]
Shang, H.; Lee, K.L.; Kozlowski, P.; D’emic, C.; Babich, I.; Sikorski, E.M.; Leong, H.S.P.W.; Guarini, K.; Haensch, W. Self-aligned n-channel germanium MOSFETs with a thin Geoxynitride gate dielectric and tungsten gate. IEEE Electron Device Lett., 2004, 25, 135-137.
[23]
Oktyabrsky, S.; Peide, D.Y. Fundamentals of III–V semiconductor MOSFETs; Springer: New York, USA, 2010.
[24]
Kuo, J.B.; Hsu, C.H.; Yang, C.P. In: Gate-misalignment-effect related
capacitance behavior of a 100nm double-gate FD SOI NMOS
device with n+/P+ poly top/bottom gate; Proceedings of the IEEE
Conference on Electron Devices and Solid-State Circuits. Xi’an,
China, June 12-14, 2005.
[25]
Jena, B.; Pradhan, K.P.; Sahu, P.K.; Dash, S.; Mishra, G.P.; Mohapatra, S.K. Investigation on cylindrical gate all around (GAA) to Nanowire MOSFET for Circuit Application. Electron. Energet, 2015, 28, 637-643.
[26]
Zhang, J.; Cui, J.; Wang, X.; Wang, W.; Mei, X.; Yi, P.; Yang, X.; Hui, X. Recent progress in the preparation of horizontally ordered carbon nanotube assemblies from solution. Phys. Status Solidi, 2018, 215(6), 1-11.
[27]
Cui, J.; Zhang, J.; He, X.; Mei, X.; Wang, W.; Yang, X.; Hui, X.; Yang, L.; Wang, Y. Investigating interfacial contact configuration and behavior of single-walled carbon nanotube-based nanodevice with atomistic simulations. J. Nanopart. Res., 2017, 19(3), 1-10.
[28]
Cui, J.; Yang, L.; Wang, Y.; Mei, X.; Wang, W.; Hou, C. Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect. ACS Appl. Mater. Interfaces, 2015, 7(4), 2294-2300.
[29]
Cui, J.; Yang, L.; Zhou, L.; Wang, Y. Nanoscale soldering of axially positioned single-walled carbon nanotubes: A molecular dynamics simulation study. ACS Appl. Mater. Interfaces, 2014, 6(3), 2044-2050.
[30]
Synopsys.TCAD Sentaurus device user’s manual. Mountain view,
USA, 2009.
[31]
Cho, Y.; Sakamoto, R.; Inoue, M. Real space hot electron distributions and transfer effects in heterostructures. Solid-State Electron., 1988, 31, 325-328.
[32]
Ji, G.; Liu, H.G.; Su, Y.B. Physical modeling based on hydrodynamic simulation for the design of lnGaAs/InP double hetero junction bipolar transistor. Chin. Phys. B, 2012, 21, 058501-058506.
[33]
Valin, R.; Sampedro, C.; Aldegunde, M.; Loureiro, A.G.; Seoane, N.; Godoy, A.; Gamiz, F. Two dimensional montecarlo simulation of DGSOI MOSFET misalignment. IEEE Trans. Electron Dev., 2012, 59, 1621-1628.
[34]
Kalyan, K.K.; Syamal, B.; Kundu, A. Mohan kumar, N.; Sarkar, C.K. Subthreshold analog/RF performance of underlap DG FETs with asymmetric source/drain extensions. Microelectron. Reliab., 2012, 52, 2572-2578.