An Extensive Simulation Study of Gate Underlap Influence on Device Performance of Surrounding Gate In0.53Ga0.47As/InP Hetero Field Effect Transistor

Page: [157 - 165] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: This work describes the implementation of In0.53Ga0.47As/InP Surrounding Metal Gate Oxide Semiconductor Heterostructure Field Effect Transistor (SG MOSHFET) with gate underlap on both source and drain end to improve the DC and RF performance.

Methods: A comprehensive and methodological investigation of DC and RF performance of III-V semiconductor are made for different underlap length varying from 5nm to 30nm on both sides of the device, which is used to mitigate the short channel issues to improve the device performance. Hydrodynamic model has been taken into consideration for the device simulation and it also includes Auger recombination and the Shockley–Read–Hall (SRH) model. Simulation is performed to analyze the various analog performance of device like drain current, surface potential, transconductance, threshold voltage, drain induced barrier lowering, off current, subthreshold slope, Ion/Ioff ratio, output conductance, intrinsic delay, energy-delay product, transconductance generation factor and radio frequency performance of device, like trans-frequency product and cut-off frequency.

Results: From the simulation, it can be observed that an improved analog and RF performance is obtained at the optimum underlap length.

Conclusion: This work delivers an idea for extended researchers to investigate different aspects of group III–V underlap MOSFETs.

Keywords: Surrounding gate, MOS-HFET, trans-frequency product, sub threshold slope, intrinsic delay, cut-off frequency, energy delay product.

Graphical Abstract

[1]
Plummer, J.D. In: Silicon MOSFETs (conventional and nontraditional) at the scaling limit; Proceedings of the 58th Device Research Conference. Denver, USA, June 19-21, 2000.
[2]
Murali, R.; Meindl, J.D. Modeling the effect of source/drain junction depth on bulk-MOSFET scaling. Solid-State Electron., 2007, 51, 823-827.
[3]
Roy, K.; Mahmoodi, H.; Mukhopadhyay, S.; Ananthan, H.; Bansal, A.; Cakici, T. Double-gate SOI devices for low-power and high-performance applications; 19th international conference on VLSI Design.. Hyderabad, India, January 3-7, 2006.
[4]
Takato, H.; Sunouchi, K.; Okabe, N.; Nitayama, A.; Hieda, K.; Horiguchi, H.; Masuoka, F. Impact of surrounding gate transistor (SGT) for ultra-high density LSI’s. IEEE Trans. Electron Dev., 1991, 38, 573-578.
[5]
Nitayami, A.; Takato, H.; Okabe, N.; Sunouchi, K.; Hieda, K.; Horiguchi, F.; Masuoka, F. Multi-pillar surrounding gate transistor (M-SGT) for compact and high-speed circuits. IEEE Trans. Electron Dev., 1991, 38, 579-583.
[6]
Saremi, M.; Saremi, M.; Niazi, H.; Saremi, M.; Goharrizi, A.Y. SOI LDMOSFET with up and down extended stepped drift region. J. Electron. Mater., 2017, 46(10), 5570-5576.
[7]
Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Jin, B.; Kavalieros, J.; Majumdar, A.; Metz, M.; Radosavljevic, M. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. NanoTechnol., 2005, 4, 153-158.
[8]
Jiménez, D.; Iñiguez, B.; Suñé, J.; Marsal, L.F.; Pallarès, J.; Roig, J.; Flores, D. Continuous analytic current-voltage model for surrounding-gate MOSFETs. IEEE Electron Device Lett., 2004, 25, 571-573.
[9]
Dutta, A.; Koley, K.; Sarkar, C.K. Impact of underlap and mole-fraction on RF performance of strained-Si/Si1_xGex/strained-Si DG MOSFETs. Superlattices Microstruct., 2014, 75, 634-646.
[10]
Jena, B.; Dash, S.; Mishra, G.P. Effect of underlap length variation on DC/RF performance of dual material cylindrical MOS. Int. J. Numer. Model. Electron. Networks Devices Fields, 2016, 30(2) e2175
[11]
Chand, P.; Agarwal, N.; Baral, B. Comparative study of gate underlap and overlap in junction-less DG-MOSFET with high k-spacer through simulation. NCRAEEE, 2015, 3(25), 2278-0181.
[12]
Zhang, L.; Ma, C.; He, J.; Lin, X.; Chan, M. Analytical solution of subthreshold channel potential of gate underlap cylindrical gate-all-around MOSFET. Solid-State Electron., 2010, 54, 806-808.
[13]
Kumar, M.; Haldar, S.; Gupta, M.; Gupta, R.S. A new T-shaped source/drain extension (T-SSDE) gate underlap GAA MOSFET with enhanced subthreshold analog/RF performance for low power applications. Solid-State Electron., 2014, 101, 13-17.
[14]
Dutta, A.; Koley, K.; Sarkar, C.K. Analysis of harmonic distortion in asymmetric underlap DG-MOSFET with high-k spacer. Microelectron. Reliab., 2014, 54, 1125-1132.
[15]
Vaddi, R.; Agarwal, R.P.; Dasgupta, S. Analytical modeling of subthreshold current and subthreshold swing of an underlap DGMOSFET with tied–independent gate and symmetric–asymmetric options. Microelectronics J., 2011, 42, 798-807.
[16]
Sarkar, A.; Jana, R. The influence of gate underlap on analog and RF performance of III-V heterostructure double gate MOSFET. Superlattices Microstruct., 2014, 73, 256-267.
[17]
Pardeshi, H.; Pati, S.K.; Raj, G.; Mohankumar, N.; Sarkar, C.K. Investigation of asymmetric effects due to gate misalignment gate bias and underlap length in III-V heterostructure underlap DG MOSFET. Phys. E Low-Dimens. Sys. Nanostruct, 2012, 46, 61-67.
[18]
Raoavljevic, M.; Dewey, G.; Fastenau, J.M.; Kavalieros, J.; Kotlyar, R.; ChuKung, B.; Liu, W.K.; Lubyshev, D.; Metz, M.; Millard, K.; Mukherjee, N.; Pan, L.; Shah, U.; Chau, R. In: Non-planar multi-gate InGaAs quantum well field effect transistors with high-K gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic applications; Proceedings of International Electron Devices Meeting. San Francisco, USA, December 6-8, 2010.
[19]
Tezuka, T.; Sugiyama, N.; Mizuno, T.; Takagi, S. Ultrathin body SiGe-on-insulator pMOSFETs with high-mobility SiGe surface channels. IEEE Trans. Electron Dev., 2003, 50, 1328-1333.
[20]
Jiménez, D.; Saenz, J.J.; Iniguez, B.; Sune, J.; Marsal, L.F.; Pallares, J. Modeling of nanoscale gate-all-around MOSFETs. IEEE Electron Device Lett., 2004, 25, 314-316.
[21]
Pillarisetty, R.; Rachmady, W.; Shah, U.; Chau, R. In: Non-planar multi-gate InGaAs quantum well field effect transistors with high-K gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic applications; IEEE International Electron Devices Meeting (IEDM). San Francisco, USA, December 6-8, 2010.
[22]
Shang, H.; Lee, K.L.; Kozlowski, P.; D’emic, C.; Babich, I.; Sikorski, E.M.; Leong, H.S.P.W.; Guarini, K.; Haensch, W. Self-aligned n-channel germanium MOSFETs with a thin Geoxynitride gate dielectric and tungsten gate. IEEE Electron Device Lett., 2004, 25, 135-137.
[23]
Oktyabrsky, S.; Peide, D.Y. Fundamentals of III–V semiconductor MOSFETs; Springer: New York, USA, 2010.
[24]
Kuo, J.B.; Hsu, C.H.; Yang, C.P. In: Gate-misalignment-effect related capacitance behavior of a 100nm double-gate FD SOI NMOS device with n+/P+ poly top/bottom gate; Proceedings of the IEEE Conference on Electron Devices and Solid-State Circuits. Xi’an, China, June 12-14, 2005.
[25]
Jena, B.; Pradhan, K.P.; Sahu, P.K.; Dash, S.; Mishra, G.P.; Mohapatra, S.K. Investigation on cylindrical gate all around (GAA) to Nanowire MOSFET for Circuit Application. Electron. Energet, 2015, 28, 637-643.
[26]
Zhang, J.; Cui, J.; Wang, X.; Wang, W.; Mei, X.; Yi, P.; Yang, X.; Hui, X. Recent progress in the preparation of horizontally ordered carbon nanotube assemblies from solution. Phys. Status Solidi, 2018, 215(6), 1-11.
[27]
Cui, J.; Zhang, J.; He, X.; Mei, X.; Wang, W.; Yang, X.; Hui, X.; Yang, L.; Wang, Y. Investigating interfacial contact configuration and behavior of single-walled carbon nanotube-based nanodevice with atomistic simulations. J. Nanopart. Res., 2017, 19(3), 1-10.
[28]
Cui, J.; Yang, L.; Wang, Y.; Mei, X.; Wang, W.; Hou, C. Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect. ACS Appl. Mater. Interfaces, 2015, 7(4), 2294-2300.
[29]
Cui, J.; Yang, L.; Zhou, L.; Wang, Y. Nanoscale soldering of axially positioned single-walled carbon nanotubes: A molecular dynamics simulation study. ACS Appl. Mater. Interfaces, 2014, 6(3), 2044-2050.
[30]
Synopsys.TCAD Sentaurus device user’s manual. Mountain view, USA, 2009.
[31]
Cho, Y.; Sakamoto, R.; Inoue, M. Real space hot electron distributions and transfer effects in heterostructures. Solid-State Electron., 1988, 31, 325-328.
[32]
Ji, G.; Liu, H.G.; Su, Y.B. Physical modeling based on hydrodynamic simulation for the design of lnGaAs/InP double hetero junction bipolar transistor. Chin. Phys. B, 2012, 21, 058501-058506.
[33]
Valin, R.; Sampedro, C.; Aldegunde, M.; Loureiro, A.G.; Seoane, N.; Godoy, A.; Gamiz, F. Two dimensional montecarlo simulation of DGSOI MOSFET misalignment. IEEE Trans. Electron Dev., 2012, 59, 1621-1628.
[34]
Kalyan, K.K.; Syamal, B.; Kundu, A. Mohan kumar, N.; Sarkar, C.K. Subthreshold analog/RF performance of underlap DG FETs with asymmetric source/drain extensions. Microelectron. Reliab., 2012, 52, 2572-2578.