Advances in Carbon Based Nanomaterials for Bio-Medical Applications

Page: [6851 - 6877] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

The unique mechanical, electrical, thermal, chemical and optical properties of carbon based nanomaterials (CBNs) like: Fullerenes, Graphene, Carbon nanotubes, and their derivatives made them widely used materials for various applications including biomedicine. Few recent applications of the CBNs in biomedicine include: cancer therapy, targeted drug delivery, bio-sensing, cell and tissue imaging and regenerative medicine. However, functionalization renders the toxicity of CBNs and makes them soluble in several solvents including water, which is required for biomedical applications. Hence, this review represents the complete study of development in nanomaterials of carbon for biomedical uses. Especially, CBNs as the vehicles for delivering the drug in carbon nanomaterials is described in particular. The computational modeling approaches of various CBNs are also addressed. Furthermore, prospectus, issues and possible challenges of this rapidly developing field are highlighted.

Keywords: Carbon based nanomaterials, functionalization, drug delivery, biomedicine, toxicity, hybridization.

[1]
Advani, S.G. Processing and properties of nanocomposites; World Scientific: Singapore, 2006.
[http://dx.doi.org/10.1142/6317]
[2]
Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature, 1985, 318(6042), 162-163.
[http://dx.doi.org/10.1038/318162a0]
[3]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
[http://dx.doi.org/10.1038/354056a0]
[4]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[5]
Na, S.R.; Suk, J.W.; Ruoff, R.S.; Huang, R.; Liechti, K.M. Ultra long-range interactions between large area graphene and silicon. ACS Nano, 2014, 8(11), 11234-11242.
[http://dx.doi.org/10.1021/nn503624f] [PMID: 25317979]
[6]
Nguyen, T-T.; Ambrosetti, A.; Stephane, B.; Alexandre, T. Micrometer-scale stress from van der Waals interactions in the delamination of graphene from substrates In: APS Meeting Abstracts; , 2018. abstract id.X40.011.
[7]
Enderling, H.; Rejniak, K.A. Simulating cancer: computational models in oncology. Front. Oncol., 2013, 3, 233.
[http://dx.doi.org/10.3389/fonc.2013.00233] [PMID: 24062986]
[8]
McKenna, M.T.; Weis, J.A.; Brock, A.; Quaranta, V.; Yankeelov, T.E. Precision medicine with imprecise therapy: computational modeling for chemotherapy in breastcancer. Transl. Oncol., 2018, 11(3), 732-742.
[http://dx.doi.org/10.1016/j.tranon.2018.03.009] [PMID: 29674173]
[9]
Azuaje, F. Computational models for predicting drug responses in cancer research. Brief. Bioinform., 2017, 18(5), 820-829.
[http://dx.doi.org/10.1093/bib/bbw065] [PMID: 27444372]
[10]
Kaddi, C.D.; Phan, J.H. Wang, M.D. Computational nanomedicine: modeling of nanoparticle mediated hyperthermal cancer therapy. Nanomedicine (Lond.), 2013, 8(8), 1323-1333.
[http://dx.doi.org/10.2217/nnm.13.117] [PMID: 23914967]
[11]
Katira, P.; Bonnecaze, R.T.; Zaman, M.H. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties. Front. Oncol., 2013, 3, 145.
[http://dx.doi.org/10.3389/fonc.2013.00145] [PMID: 23781492]
[12]
Budarapu, P.R.; Reinoso, J.; Paggi, M. Concurrently coupled solid shell-based adaptive multiscale method for fracture. Comput. Methods Appl. Mech. Eng., 2017, 319, 338-365.
[http://dx.doi.org/10.1016/j.cma.2017.02.023]
[13]
Ojo, S.; Budarapu, P.R.; Paggi, M. A nonlocal adaptive discrete empirical interpolation method combined with modified hp-refinement for order reduction of molecular dynamicssystems. Comput. Mater. Sci., 2017, 140, 189-208.
[http://dx.doi.org/10.1016/j.commatsci.2017.08.022]
[14]
Budarapu, P.R.; Javvaji, B.; Sutrakar, V.K.; Mahapatra, D.R.; Zi, G.; Paggi, M.; Rabczuk, T. Lattice orientation and crack size effect on the mechanical properties of graphene. Int. J. Fract., 2017, 203(1), 81-91.
[http://dx.doi.org/10.1007/s10704-016-0115-9]
[15]
Hamdia, K.M.; Silani, M.; Zhuang, X.; He, P.; Rabczuk, T. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites usingpolynomial chaos expansions. Int. J. Fract., 2017, 206(2), 215-227.
[http://dx.doi.org/10.1007/s10704-017-0210-6]
[16]
Javvaji, B.; Budarapu, P.R.; Sutrakar, V.K.; Mahapatra, D.R.; Zi, G.; Paggi, M.; Rabczuk, T. Mechanical properties of graphene: molecular dynamics simulations correlated to continuum based scaling laws. Comput. Mater. Sci., 2016, 125, 319-327.
[http://dx.doi.org/10.1016/j.commatsci.2016.08.016]
[17]
Talebi, H.; Silani, M.; Rabczuk, T. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Adv. Eng. Softw., 2015, 80, 82-92.
[http://dx.doi.org/10.1016/j.advengsoft.2014.09.016]
[18]
Budarapu, P.R.; Gracie, R.; Bordas, S.P.A.; Rabczuk, T. An adaptive multiscale method forquasi-static crack growth. Comput. Mech., 2014, 53(6), 1129-1148.
[http://dx.doi.org/10.1007/s00466-013-0952-6]
[19]
Talebi, H.; Silani, M.; Bordas, S.P.A.; Kerfriden, P.; Rabczuk, T. A computational library for multiscale modeling of material failure. Comput. Mech., 2014, 53(5), 1047-1071.
[http://dx.doi.org/10.1007/s00466-013-0948-2]
[20]
Beex, L.A.A.; Peerlings, R.H.J.; Geers, M.G.D. A quasicontinuum methodology for multiscale analyses of discrete microstructural models. Int. J. Numer. Methods Eng., 2011, 87(7), 701-718.
[http://dx.doi.org/10.1002/nme.3134]
[21]
Beex, L.A.A.; Kerfriden, P.; Rabczuk, T.; Bordas, S.P.A. Quasicontinuum-based multiscale approaches for plate like beam lattices experiencing in-plane and out-of-plane deformation. Comput. Methods Appl. Mech. Eng., 2014, 279, 348-378.
[http://dx.doi.org/10.1016/j.cma.2014.06.018]
[22]
Kerfriden, P.; Schmidt, K.M.; Rabczuk, T.; Bordas, S. Statistical extraction of process zones and representative subspaces in fracture of random composites. Int. J. Multiscale Comput. Eng., 2013, 11(3), 253-287.
[http://dx.doi.org/10.1615/IntJMultCompEng.2013005939]
[23]
Kerfriden, P.; Goury, O.; Rabczuk, T.; Bordas, S.P. A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics. Comput. Methods Appl. Mech. Eng., 2013, 256, 169-188.
[http://dx.doi.org/10.1016/j.cma.2012.12.004] [PMID: 23750055]
[24]
Kerfriden, P.; Garcia, J.J.R.; Bordas, S.P-A. Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error. Int. J. Numer. Methods Eng., 2014, 97(6), 395-422.
[http://dx.doi.org/10.1002/nme.4588]
[25]
Hoang, K.C.; Kerfriden, P.; Khoo, B.C.; Bordas, S. An efficient goal-oriented sampling strategy using reduced basis method for parametrized elastodynamic problems. Numer. Methods Partial Differ. Equ., 2015, 31(2), 575-608.
[http://dx.doi.org/10.1002/num.21932]
[26]
Talebi, H.; Silani, M.; Bordas, S.P.A.; Kerfriden, P.; Rabczuk, T. Molecular dynamics/XFEM coupling by a three dimensional extended bridging domain with applications to dynamic brittle fracture. Int. J. Multiscale Comput. Eng., 2013, 11(6), 527-541.
[http://dx.doi.org/10.1615/IntJMultCompEng.2013005838]
[27]
Roy, U.; Drozd, V.; Durygin, A.; Rodriguez, J.; Barber, P.; Atluri, V.; Liu, X.; Voss, T.G.; Saxena, S.; Nair, M. Characterization of nanodiamond-based anti-HIV drug delivery to the brain. Sci. Rep., 2018, 8(1), 1603.
[http://dx.doi.org/10.1038/s41598-017-16703-9] [PMID: 29371638]
[28]
Chen, X.; Zhang, W. Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem. Soc. Rev., 2017, 46(3), 734-760.
[http://dx.doi.org/10.1039/C6CS00109B] [PMID: 27942638]
[29]
Choi, M.; Kim, K-G.; Heo, J.; Jeong, H.; Kim, S.Y.; Hong, J. Hong, J. Multilayered graphene nano-film for controlled protein delivery by desired electro-stimuli. Sci. Rep., 2015, 5, 17631.
[http://dx.doi.org/10.1038/srep17631] [PMID: 26621344]
[30]
Ding, D.; Xu, Y.; Zou, Y.; Chen, L.; Chen, Z.; Tan, W. Graphitic nanocapsules: design, synthesis and bioanalytical applications. Nanoscale, 2017, 9(30), 10529-10543.
[http://dx.doi.org/10.1039/C7NR02587D] [PMID: 28715021]
[31]
Reina, G.; González-Domínguez, J.M.; Criado, A.; Vázquez, E.; Bianco, A.; Prato, M. Promises, facts and challenges for graphene in biomedicalapplications. Chem. Soc. Rev., 2017, 46(15), 4400-4416.
[http://dx.doi.org/10.1039/C7CS00363C] [PMID: 28722038]
[32]
Kim, H.; Miura, Y.; Macosko, C.W. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater., 2010, 22(11), 3441-3450.
[http://dx.doi.org/10.1021/cm100477v]
[33]
Stankovich, S. Graphene-based composite materials. Nature, 2006, 442(7100), 282.
[http://dx.doi.org/10.1038/nature04969] [PMID: 16855586]
[34]
Ramanathan, T.; Abdala, A.A.; Stankovich, S.; Dikin, D.A.; Herrera-Alonso, M.; Piner, R.D.; Adamson, D.H.; Schniepp, H.C.; Chen, X.; Ruoff, R.S.; Nguyen, S.T.; Aksay, I.A. Prud’Homme, R.K.; Brinson, L.C. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol., 2008, 3(6), 327-331.
[http://dx.doi.org/10.1038/nnano.2008.96] [PMID: 18654541]
[35]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[36]
Garg, B.; Bisht, T.; Ling, Y-C. Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective. Molecules, 2014, 19(9), 14582-14614.
[http://dx.doi.org/10.3390/molecules190914582] [PMID: 25225721]
[37]
Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8), 4806-4814.
[http://dx.doi.org/10.1021/nn1006368] [PMID: 20731455]
[38]
Gupta, T.K.; Singh, B.P.; Tripathi, R.K.; Dhakate, S.R.; Singh, V.N.; Panwar, O.S.; Mathur, R.B. Superior nano-mechanical properties of reduced grapheneoxide reinforced polyurethane composites. RSC Advances, 2015, 5(22), 16921-16930.
[http://dx.doi.org/10.1039/C4RA14223C]
[39]
Gao, W. The chemistry of graphene oxide. In: Graphene Oxide; Gao, W., Ed.; Springer: Cham, Switzerland, 2015; pp. 61-95.
[http://dx.doi.org/10.1007/978-3-319-15500-5_3]
[40]
Nakajima, T.; Mabuchi, A.; Hagiwara, R. A new structure model of graphite oxide. Carbon, 1988, 26(3), 357-361.
[http://dx.doi.org/10.1016/0008-6223(88)90227-8]
[41]
Risi, G.; Bloise, N.; Merli, D.; Icaro-Cornaglia, A.; Profumo, A.; Fagnoni, M.; Quartarone, E.; Imbriani, M.; Visai, L. In vitro study of multiwall carbon nanotubes (MWCNTS) with adsorbed mitoxantrone (MTO) as a drug delivery system to treat breast cancer. RSC Advances, 2014, 4(36), 18683-18693.
[http://dx.doi.org/10.1039/C4RA02366H]
[42]
Sitko, R.; Zawisza, B.; Malicka, E. Modification of carbon nanotubes for pre concentration, separation and determination of trace-metal ions. Trends Analyt. Chem., 2012, 37, 22-31.
[http://dx.doi.org/10.1016/j.trac.2012.03.016]
[43]
Jakubus, A.; Paszkiewicz, M.; Stepnowski, P. Carbon nanotubes application in the extraction techniques of pesticides: a review. Crit. Rev. Anal. Chem., 2017, 47(1), 76-91.
[http://dx.doi.org/10.1080/10408347.2016.1209105] [PMID: 27404790]
[44]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[45]
Wong, B.S.; Yoong, S.L.; Jagusiak, A.; Panczyk, T.; Ho, H.K.; Ang, W.H.; Pastorin, G. Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev., 2013, 65(15), 1964-2015.
[http://dx.doi.org/10.1016/j.addr.2013.08.005] [PMID: 23954402]
[46]
Debundling of multiwalled carbon nanotubes in N, N-dimethylacetamide by polymers. Colloid Polym. Sci., 2014, 292(10), 2571-2580.
[http://dx.doi.org/10.1007/s00396-014-3305-x]
[47]
Yang, J.; Zhang, Q.; Chang, H.; Cheng, Y. Surface-engineered dendrimers in gene delivery. Chem. Rev., 2015, 115(11), 5274-5300.
[http://dx.doi.org/10.1021/cr500542t] [PMID: 25944558]
[48]
Robertson, D.H.; Brenner, D.W.; Mintmire, J.W. Energetics of nanoscale graphitic tubules. Phys. Rev. B Condens. Matter, 1992, 45(21), 12592-12595.
[http://dx.doi.org/10.1103/PhysRevB.45.12592] [PMID: 10001304]
[49]
Azam, M.A.; Abdul Manaf, N.S.; Talib, E.; Bistamam, M.S.A. Aligned carbon nanotube from catalytic chemical vapor deposition technique forenergy storage device: A review. Ionics, 2013, 19(11), 1455-1476.
[http://dx.doi.org/10.1007/s11581-013-0979-x]
[50]
Mathur, R.B.; Chatterjee, S.; Singh, B.P. Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos. Sci. Technol., 2008, 68(7-8), 1608-1615.
[http://dx.doi.org/10.1016/j.compscitech.2008.02.020]
[51]
Wang, Y.; Wei, F.; Luo, G.; Yu, H.; Gu, G. The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chem. Phys. Lett., 2002, 364(5-6), 568-572.
[http://dx.doi.org/10.1016/S0009-2614(02)01384-2]
[52]
Treacy, M.M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381(6584), 678.
[http://dx.doi.org/10.1038/381678a0]
[53]
Eric, W. Young’s modulus of single-walled nanotubes. Phys. Review B., 1997, 277(5334), 1971-1975.
[54]
Krishnan, A.; Dujardin, E.; Ebbesen, T.W.; Yianilos, P.N.; Treacy, M.M.J. Young’s modulus of single-walled nanotubes. Phys. Rev. B., 1998, 58(20), 14013.
[http://dx.doi.org/10.1103/PhysRevB.58.14013]
[55]
Yu, M-F.; Bradley, S.F.; Sivaram, A.; Ruoff, R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett., 2000, 84(24), 5552.
[http://dx.doi.org/10.1103/PhysRevLett.84.5552] [PMID: 10990992]
[56]
Xie, X-L.; Mai, Y-W.; Zhou, X-P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. Rep., 2005, 49(4), 89-112.
[http://dx.doi.org/10.1016/j.mser.2005.04.002]
[57]
Berber, S.; Kwon, Y-K.; Tomanek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett., 2000, 84(20), 4613-4616.
[http://dx.doi.org/10.1103/PhysRevLett.84.4613] [PMID: 10990753]
[58]
Che, J.; Cagin, T.; Goddard, W.A., III Thermal conductivity of carbon nanotubes. Nanotechnology, 2000, 11(2), 65.
[http://dx.doi.org/10.1088/0957-4484/11/2/305]
[59]
Osman, M.A.; Srivastava, D. Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology, 2001, 12(1), 21.
[http://dx.doi.org/10.1088/0957-4484/12/1/305]
[60]
Kwon, Y.K.; Kim, P. Unusually High Thermal Conductivity in Carbon Nanotubes. In: High Thermal Conductivity Materials; Shindé, S.L.; Goela, J.S., Eds.; Springer: New York, 2006; pp. 227-265.
[http://dx.doi.org/10.1007/0-387-25100-6_8]
[61]
Avouris, P.; Appenzeller, J.; Martel, R.; Wind, S.J. Carbon nanotube electronics. Proc. IEEE, 2003, 91(11), 1772-1784.
[http://dx.doi.org/10.1109/JPROC.2003.818338]
[62]
Wei, B.Q.; Vajtai, R.; Ajayan, P.M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett., 2001, 79(8), 1172-1174.
[http://dx.doi.org/10.1063/1.1396632]
[63]
Dürkop, T.; Kim, B.M.; Fuhrer, M.S. Properties and applications of high-mobility semiconducting nanotubes. J. Phys. Condens. Matter, 2004, 16(18), R553.
[http://dx.doi.org/10.1088/0953-8984/16/18/R01]
[64]
Tang, Z.K.; Zhang, L.; Wang, N.; Zhang, X.X.; Wen, G.H.; Li, G.D.; Wang, J.N.; Chan, C.T.; Sheng, P. Superconductivity in 4 angstrom single-walled carbon nanotubes. Science, 2001, 292(5526), 2462-2465.
[http://dx.doi.org/10.1126/science.1060470] [PMID: 11431560]
[65]
Dreyer, D.R.; Todd, A.D.; Bielawski, C.W. Harnessing the chemistry of graphene oxide. Chem. Soc. Rev., 2014, 43(15), 5288-5301.
[http://dx.doi.org/10.1039/c4cs00060a] [PMID: 24789533]
[66]
Guldi, D.M.; Rahman, G.M.; Zerbetto, F.; Prato, M. Carbon nanotubes in electron donor- acceptor nanocomposites. Acc. Chem. Res., 2005, 38(11), 871-878.
[http://dx.doi.org/10.1021/ar040238i] [PMID: 16285709]
[67]
Mishra, V.; Jain, N.K. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials, 2014, 35(4), 1267-1283.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.032] [PMID: 24210872]
[68]
Zhang, X.; Hou, L.; Samorì, P. Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nat. Commun., 2016, 7, 11118.
[http://dx.doi.org/10.1038/ncomms11118] [PMID: 27067387]
[69]
Yang, K.; Feng, L.; Hong, H.; Cai, W.; Liu, Z. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat. Protoc., 2013, 8(12), 2392-2403.
[http://dx.doi.org/10.1038/nprot.2013.146] [PMID: 24202553]
[70]
Bandaru, P.R. Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechnol., 2007, 7(4-5), 1239-1267.
[http://dx.doi.org/10.1166/jnn.2007.307] [PMID: 17450889]
[71]
Choi, T.; Kim, S.H.; Chang, W.L.; Kim, H.; Choi, S-K. Kim, S.H.; Kim, E.; Park, J.; Kim, H. Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing. Biosens. Bioelectron., 2015, 63, 325-330.
[http://dx.doi.org/10.1016/j.bios.2014.07.059] [PMID: 25113051]
[72]
Favvasa, E.P.; Nitodas, S.F.; Stefopoulos, A.A.; Papageorgiou, S.K.; Stefanopoulos, K.L.; Mitropoulos, A.C. High puritymulti-walled carbon nanotubes: Preparation, characterization and performance as filler materialsin co-polyimide hollow fiber membranes. Separ. Purif. Tech., 2014, 122, 262-269.
[http://dx.doi.org/10.1016/j.seppur.2013.11.015]
[73]
Madani, S.Y.; Tan, A.; Dwek, M.; Seifalian, A.M. Functionalization of single-walled carbon nanotubes and their binding to cancer cells. Int. J. Nanomedicine, 2012, 7, 905-914.
[http://dx.doi.org/10.2147/IJN.S25035] [PMID: 22412297]
[74]
Coccini, T.; Roda, E.; Sarigiannis, D.A.; Mustarelli, P.; Quartarone, E.; Profumo, A.; Manzo, L. Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology, 2010, 269(1), 41-53.
[http://dx.doi.org/10.1016/j.tox.2010.01.005] [PMID: 20079395]
[75]
Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Saeedi, M.S. Efficient epoxidation of alkenes with sodium periodatecatalyzed by reusable manganese (III) salophen supported on multi-wall carbon nanotubes. Appl. Catal. A Gen., 2010, 381(1-2), 233-241.
[http://dx.doi.org/10.1016/j.apcata.2010.04.013]
[76]
Rahimpour, A.; Jahanshahi, M.; Khalili, S.; Mollahosseini, A.; Zirepour, A.; Rajaeian, B. Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (pes) membrane. Desalination, 2012, 286, 99-107.
[http://dx.doi.org/10.1016/j.desal.2011.10.039]
[77]
Amiri, A.; Maghrebi, M.; Baniadam, M.; Zeinali Heris, S. One-pot, efficient functionalization of multi-walled carbon nanotubes with diamines by microwave method. Appl. Surf. Sci., 2011, 257(23), 10261-10266.
[http://dx.doi.org/10.1016/j.apsusc.2011.07.039]
[78]
Functionalization of carbon nanotubes for applicationsin materials science and nanomedicine. Pure Appl. Chem., 2010, 82(4), 853-861.
[http://dx.doi.org/10.1351/PAC-CON-09-10-40]
[79]
Mulvey, J.J.; Feinberg, E.N.; Alidori, S.; McDevitt, M.R.; Heller, D.A.; Scheinberg, D.A. Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes. Int. J. Nanomedicine, 2014, 9, 4245.
[80]
Zardini, H.Z.; Amiri, A.; Shanbedi, M.; Maghrebi, M.; Baniadam, M. Enhanced antibacterial activity of amino acids-functionalized multi walled carbonnanotubes by a simple method. Colloids Surf. B Biointerfaces, 2012, 92, 196-202.
[http://dx.doi.org/10.1016/j.colsurfb.2011.11.045]
[81]
Polo-Luque, M.L.; Simonet, B.M.; Valcárcel, M. Functionalization and dispersion of carbon nanotubes in ionic liquids. Trends Analyt. Chem., 2013, 47, 99-110.
[http://dx.doi.org/10.1016/j.trac.2013.03.007]
[82]
Hilder, T.A.; Hill, J.M. Modeling the loading and unloading of drugs into nanotubes. Small, 2009, 5(3), 300-308.
[http://dx.doi.org/10.1002/smll.200800321] [PMID: 19058282]
[83]
Chen, J.; Chen, S.; Zhao, X.; Kuznetsova, L.V.; Wong, S.S.; Ojima, I. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc., 2008, 130(49), 16778-16785.
[http://dx.doi.org/10.1021/ja805570f] [PMID: 19554734]
[84]
Steinmetz, N.F.; Hong, V.; Spoerke, E.D.; Lu, P.; Breitenkamp, K.; Finn, M.G.; Manchester, M. Buckyballs meet viral nanoparticles: candidates for biomedicine. J. Am. Chem. Soc., 2009, 131(47), 17093-17095.
[http://dx.doi.org/10.1021/ja902293w] [PMID: 19904938]
[85]
Ganji, M.D.; Mirzaei, S.; Dalirandeh, Z. Molecular origin of drug release by water boiling inside carbon nanotubes from reactive molecular dynamics simulation and DFT perspectives. Sci. Rep., 2017, 7(1), 4669.
[http://dx.doi.org/10.1038/s41598-017-04981-2] [PMID: 28680131]
[86]
Nishiyama, N. Nanomedicine: Nanocarriers shape up for long life. Nat. Nanotechnol., 2007, 2(4), 203-204.
[http://dx.doi.org/10.1038/nnano.2007.88] [PMID: 18654260]
[87]
Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol., 2007, 2(1), 47.
[http://dx.doi.org/10.1038/nnano.2006.170] [PMID: 18654207]
[88]
Chu, D.; Dong, X.; Shi, X.; Zhang, C.; Wang, Z. Neutrophil-based drug delivery systems. Adv. Mater., 2018, 30(22)e1706245
[http://dx.doi.org/10.1002/adma.201706245] [PMID: 29577477]
[89]
Chen, X.; Kis, A.; Zettl, A.; Bertozzi, C.R. A cell nanoinjector based on carbon nanotubes. Proc. Natl. Acad. Sci. USA, 2007, 104(20), 8218-8222.
[http://dx.doi.org/10.1073/pnas.0700567104] [PMID: 17485677]
[90]
Comparetti, E.J.; Pedrosa, V.A.; Kaneno, R. Carbon nanotube as a tool for fighting cancer. Bioconjug. Chem., 2018, 29(3), 709-718.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00563]
[91]
Sahoo, A.K.; Kanchi, S.; Mandal, T.; Dasgupta, C.; Maiti, P.K. Translocation of bioactive molecules through carbon nanotubes embedded in the lipid membrane. ACS Appl. Mater. Interfaces, 2007, 10(7), 6168-6179.
[92]
Zhang, Y.; Yu, J.; Bomba, H.N.; Zhu, Y.; Gu, Z. Zhu, N.Y.; Gu, Z. Mechanical force-triggered drug delivery. Chem. Rev., 2016, 116(19), 12536-12563.
[http://dx.doi.org/10.1021/acs.chemrev.6b00369] [PMID: 27680291]
[93]
Zhao, H.; Chao, Y.; Liu, J.; Huang, J.; Pan, J.; Guo, W.; Wu, J.; Sheng, M.; Yang, K.; Wang, J.; Liu, Z. Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy. Theranostics, 2016, 6(11), 1833-1843.
[http://dx.doi.org/10.7150/thno.16047] [PMID: 27570554]
[94]
Kim, H.; Lee, D.; Kim, J.; Kim, T.I.; Kim, W.J. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano, 2013, 7(8), 6735-6746.
[http://dx.doi.org/10.1021/nn403096s] [PMID: 23829596]
[95]
Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev., 2015, 115(19), 10816-10906.
[http://dx.doi.org/10.1021/acs.chemrev.5b00008] [PMID: 25997028]
[96]
Xia, Y.; Naomi, J. Halas. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull., 2005, 30(5), 338-348.
[http://dx.doi.org/10.1557/mrs2005.96]
[97]
Liu, Q.; Zhan, C.; Kohane, D.S. Phototriggered drug delivery using inorganic nanomaterials. Bioconjug. Chem., 2017, 28(1), 98-104.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00448] [PMID: 27661196]
[98]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[99]
Sun, W.; Fan, J.; Wang, S.; Kang, Y.; Du, J.; Peng, X. Biodegradable drug-loaded hydroxyapatite nanotherapeutic agent for targeted drug release in tumors. ACS Appl. Mater. Interfaces, 2018, 10(9), 7832-7840.
[http://dx.doi.org/10.1021/acsami.7b19281] [PMID: 29411602]
[100]
Zhao, Q.; Lin, Y.; Han, N.; Li, X.; Geng, H.; Wang, X.; Cui, Y.; Wang, S. Mesoporous carbon nanomaterials in drug delivery and biomedical application.Drug Deliv.,, 2017, 24(sup1), 94-107.
[http://dx.doi.org/10.1080/10717544.2017.1399300] [PMID: 29124979]
[101]
Weaver, C.L.; LaRosa, J.M.; Luo, X.; Cui, X.T. Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano, 2014, 8(2), 1834-1843.
[http://dx.doi.org/10.1021/nn406223e] [PMID: 24428340]
[102]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[103]
Ji, S.; Liu, C.; Zhang, B.; Yang, F.; Xu, J.; Long, J.; Jin, C.; Fu, D.; Ni, Q.; Yu, X. Carbon nanotubes in cancer diagnosis and therapy. Biochim. Biophys. Acta, 2010, 1806(1), 29-35.
[104]
Allen, T.M.; Cullis, P.R. Drug delivery systems: entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[105]
López-Gasco, P.; Iglesias, I.; Benedí, J.; Lozano, R.; Teijón, J.M.; Blanco, M.D. Paclitaxel-loaded polyester nanoparticles prepared by spray-drying technology: In vitro bioactivity evaluation. J. Microencapsul., 2011, 28(5), 417-429.
[http://dx.doi.org/10.3109/02652048.2011.576785] [PMID: 21736526]
[106]
Zhang, W.; Zhang, Z.; Zhang, Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res. Lett., 2011, 6(1), 555.
[http://dx.doi.org/10.1186/1556-276X-6-555] [PMID: 21995320]
[107]
Kang, B.; Yu, D.; Dai, Y.; Chang, S.; Chen, D.; Ding, Y. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as “bomb” agents. Small, 2009, 5(11), 1292-1301.
[http://dx.doi.org/10.1002/smll.200801820] [PMID: 19274646]
[108]
Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H. Supramolecular chemistry on water soluble carbon nanotubes for drug loading and delivery. ACS Nano, 2007, 1(1), 50-56.
[http://dx.doi.org/10.1021/nn700040t] [PMID: 19203129]
[109]
Nadine, W.S.K.; Liu, Z.; Dai, H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem., 2006, 118(4), 591-595.
[http://dx.doi.org/10.1002/ange.200503389]
[110]
Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface raman spectra:a potential cancer diagnostic marker. Nano Lett., 2007, 7(6), 1591-1597.
[http://dx.doi.org/10.1021/nl070472c] [PMID: 17474783]
[111]
Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed., 2014, 53(46), 12320-12364.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[112]
Some, S.; Gwon, A.R.; Hwang, E.; Bahn, G.H.; Yoon, Y.; Kim, Y.; Kim, S.H.; Bak, S.; Yang, J.; Jo, D.G.; Lee, H. Cancer therapy using ultrahigh hydrophobic drug-loaded graphene derivatives. Sci. Rep., 2014, 4, 6314.
[http://dx.doi.org/10.1038/srep06314] [PMID: 25204358]
[113]
Zhang, Z.; Wang, J.; Chen, C. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater., 2013, 25(28), 3869-3880.
[http://dx.doi.org/10.1002/adma.201301890] [PMID: 24048973]
[114]
Kam, N.W.; O’Connell, M.; Wisdom, J.A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancercell destruction. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11600-11605.
[http://dx.doi.org/10.1073/pnas.0502680102] [PMID: 16087878]
[115]
Robertson, C.A.; Evans, D.H.; Abrahamse, H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B, 2009, 96(1), 1-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.04.001] [PMID: 19406659]
[116]
Shi Kam, N.W.; Jessop, T.C.; Wender, P.A.; Dai, H. Nanotubemolecular transporters: internalization of carbon nanotube- protein conjugates into mammaliancells. J. Am. Chem. Soc., 2004, 126(22), 6850-6851.
[http://dx.doi.org/10.1021/ja0486059] [PMID: 15174838]
[117]
Cherukuri, P.; Bachilo, S.M.; Litovsky, S.H.; Weisman, R.B. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc., 2004, 126(48), 15638-15639.
[http://dx.doi.org/10.1021/ja0466311] [PMID: 15571374]
[118]
Zhang, M.; Wang, W.; Cui, Y.; Zhou, N.; Shen, J. Magnetofluorescent carbon quantum dot decorated multiwalled carbon nanotubes for dual-modaltargeted imaging in chemo-photothermal synergistic therapy. ACS Biomater. Sci. Eng., 2018, 4(1), 151-162.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00531]
[119]
Farrera, C.; Torres Andón, F.; Feliu, N. Carbon nanotubes as optical sensors in biomedicine. ACS Nano, 2017, 11(11), 10637-10643.
[http://dx.doi.org/10.1021/acsnano.7b06701] [PMID: 29087693]
[120]
Chan, M.S.; Liu, L.S.; Leung, H.M.; Lo, P.K. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl. Mater. Interfaces, 2017, 9(13), 11780-11789.
[121]
Dai, Q.; Bertleff-Zieschang, N.; Braunger, J.A.; Björnmalm, M.; Cortez-Jugo, C.; Caruso, F. Particle targeting in complex biological media. Adv. Healthc. Mater., 2018, 7(1)1700575
[http://dx.doi.org/10.1002/adhm.201700575] [PMID: 28809092]
[122]
Zhou, F.; Wu, S.; Wu, B.; Chen, W.R.; Xing, D. Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy. Small, 2011, 7(19), 2727-2735.
[http://dx.doi.org/10.1002/smll.201100669] [PMID: 21861293]
[123]
Zhang, Y.; Ali, S.F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A.S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 2010, 4(6), 3181-3186.
[http://dx.doi.org/10.1021/nn1007176] [PMID: 20481456]
[124]
Yan, L.; Zhao, F.; Li, S.; Hu, Z.; Zhao, Y. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale, 2011, 3(2), 362-382.
[http://dx.doi.org/10.1039/C0NR00647E] [PMID: 21157592]
[125]
Yang, K.; Wan, J.; Zhang, S.; Zhang, Y.; Lee, S-T.; Liu, Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano, 2011, 5(1), 516-522.
[http://dx.doi.org/10.1021/nn1024303] [PMID: 21162527]
[126]
Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 2010, 4(10), 5731-5736.
[http://dx.doi.org/10.1021/nn101390x] [PMID: 20925398]
[127]
Fisher, C.; Rider, A.E.; Han, Z.J.; Kumar, S.; Levchenko, I.; Ostrikov, K. Applications and nanotoxicity of carbon nanotubes and graphene in biomedicine. J. Nanomater., 2012, 2012, 1.
[http://dx.doi.org/10.1155/2012/315185]
[128]
Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S-T.; Liu, Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323.
[http://dx.doi.org/10.1021/nl100996u] [PMID: 20684528]
[129]
Yang, K.; Feng, L.; Shi, X.; Liu, Z. Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev., 2013, 42(2), 530-547.
[http://dx.doi.org/10.1039/C2CS35342C] [PMID: 23059655]
[130]
Ryman-Rasmussen, J.P.; Cesta, M.F.; Brody, A.R.; Shipley-Phillips, J.K.; Everitt, J.I.; Tewksbury, E.W.; Moss, O.R.; Wong, B.A.; Dodd, D.E.; Andersen, M.E.; Bonner, J.C. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat. Nanotechnol., 2009, 4(11), 747-751.
[http://dx.doi.org/10.1038/nnano.2009.305] [PMID: 19893520]
[131]
Liu, Z.; Yang, K.; Lee, S.T. Single-walled carbon nanotubes in biomedical imaging. J. Mater. Chem., 2011, 21(3), 586-598.
[http://dx.doi.org/10.1039/C0JM02020F]
[132]
Robinson, J.T.; Welsher, K.; Tabakman, S.M.; Sherlock, S.P.; Wang, H.; Luong, R.; Dai, H. High performance in vivo near-IR (>1 μm) imaging andphotothermal cancer therapy with carbon nanotubes. Nano Res., 2010, 3(11), 779-793.
[http://dx.doi.org/10.1007/s12274-010-0045-1] [PMID: 21804931]
[133]
Welsher, K.; Liu, Z.; Daranciang, D.; Dai, H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett., 2008, 8(2), 586-590.
[http://dx.doi.org/10.1021/nl072949q] [PMID: 18197719]
[134]
Welsher, K.; Liu, Z.; Sarah, P. Sherlock, Robinson, J.T.; Chen, Z.; Daranciang, D.; Dai, H. A route to brightly fluorescent carbon nanotubes for near-infraredimaging in mice. Nat. Nanotechnol., 2009, 4(11), 773.
[http://dx.doi.org/10.1038/nnano.2009.294] [PMID: 19893526]
[135]
Ley, C.; Bordas, S.P.A. What makes data science different? A discussion involving statistics 2.0 and computational sciences. Int. J. Data Sci. Anal., •••, 6(3), 167-175.
[136]
DiStasio, R.A., Jr; von Lilienfeld, O.A.; Tkatchenko, A. Collective many-body van der Waals interactions in molecular systems. Proc. Natl. Acad. Sci. USA, 2012, 109(37), 14791-14795.
[http://dx.doi.org/10.1073/pnas.1208121109] [PMID: 22923693]
[137]
Tkatchenko, A.; DiStasio, R.A., Jr; Car, R.; Scheffler, M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett., 2012, 108(23)236402
[http://dx.doi.org/10.1103/PhysRevLett.108.236402] [PMID: 23003978]
[138]
Peng, Q.; Crean, J.; Dearden, A.K.; Huang, C.; Wen, X.; Bordas, S.; De, S. Defectengineering of 2D monatomic-layer materials. Mod. Phys. Lett. B, 2013, 27(23)1330017
[http://dx.doi.org/10.1142/S0217984913300172]