Bioactive Compounds and Biological Activity of Croton Species (Euphorbiaceae): An Overview

Page: [383 - 393] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Croton species are widely spread around the world, and present a varied chemical composition distributed in many classes of secondary metabolites, such as terpenoides, alkaloids, phenolic compounds and phenylpropanoids. These compounds can be obtained by different extraction methods, and more recently, with supercritical fluids. The crude and isolated extracts may have applications due to their biological activities in animals and humans.

Methods: The text was written based on literature data from 1996 onwards.

Results: The research showed in a concise way the botanical and taxonomic aspects of Croton and the success of its application is in studies related to the biological activities of the plant parts. It was also related to the chemical composition of its extracts and isolated compounds, obtained by many methods.

Conclusion: In summary, the review feature studies reported the use of extracts and isolated Croton compounds due to their biological effects with antioxidant, antimicrobial, anti-inflammatory, neuroprotective, antitumor, anticancer, cytotoxic, insecticidal and allelopathic activities, with potential application in food, cosmetics, pharmaceuticals, and agrochemicals products.

Keywords: Croton, folk medicine, medicinal plants, bioactive extracts, phytocompounds, biological activity, supercritical fluid extraction.

Graphical Abstract

[1]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[2]
Arcanjo, D.D.; Albuquerque, A.C.; Melo-Neto, B.; Santana, L.C.; Medeiros, M.G.; Citó, A. Bioactivity evaluation against Artemia salina Leach of medicinal plants used in Brazilian Northeastern folk medicine. Braz. J. Biol., 2012, 72(3), 505-509.
[http://dx.doi.org/10.1590/S1519-69842012000300013] [PMID: 22990821]
[3]
Mateescu, I.; Paun, L.; Popescu, S.; Roata, G.; Sidoroff, M. medicinal and aromatic plants - A statistical study on the role of phytotherapy in human health. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Anim. Sci. Biotechnol., 2014, 71, 14-19.
[4]
Stefanucci, A.; Uysal, S.; Ceylan, R.; Zengin, G. natural occurring molecules -peptides: A fascinating world of bioactive. Curr. Bioact. Compd., 2018, 14, 3-8.
[http://dx.doi.org/10.2174/1573407213666170405124107]
[5]
Medeiros, N.S.; Almeida, D.C.; Lima, J.D.; Wohlemberg, M.; Machado, F.; Massolini, M.; Agostini, F.; Bortolazzi, S.; Dani, C. In vitro antioxidant activity of passion fruit (Passiflora alata) Extract by different kinds of treatment on rat liver. Curr. Bioact. Compd., 2018, 14, 21-25.
[http://dx.doi.org/10.2174/1573407213666161118120014]
[6]
Kumar, V.; Kaithwas, G.; Anwar, F.; Rahman, M.; Patel, D.K.; Singh, Y.; Verma, A. Effect of variable doses of Paederia Foetida L. combat against experimentally-induced systemic and topical inflammation in wistar rats. Curr. Bioact. Compd., 2018, 14, 70-79.
[http://dx.doi.org/10.2174/1573407213666161214122912]
[7]
Islam, M.T.; Sousa, L.R.; Mata, A.M.O.F. da; Alencar, M.V.O.B. de.; Lima, R.M.T. de.; Sousa, J.M.C. e; Melo-Cavalcante, A.A.C. Antioxidant capacity of the methanol extract of Dysophylla auricularia. Curr. Bioact. Compd., 2018, 14, 92-98.
[http://dx.doi.org/10.2174/1573407213666161128143915]
[8]
Aliouche, L.; Larguet, H.; Amrani, A.; Brouard, I.; Benayache, S.; Zama, D.; Meraihi, Z.; Benayache, F. Isolation, antioxidant and antimicrobial activities of Ecdysteroids from. Curr. Bioact. Compd., 2018, 14, 60-66.
[http://dx.doi.org/10.2174/1573407214666171211154922]
[9]
Lahlou, M. The success of natural products in drug discovery. Pharmacol. Pharm., 2013, 4, 17-31.
[http://dx.doi.org/10.4236/pp.2013.43A003]
[10]
Ngo, L.T.; Okogun, J.I.; Folk, W.R. 21st century natural product research and drug development and traditional medicines. Nat. Prod. Rep., 2013, 30(4), 584-592.
[http://dx.doi.org/10.1039/c3np20120a] [PMID: 23450245]
[11]
Maroyi, A. Traditional usage, phytochemistry and pharmacology of Croton sylvaticus Hochst. ex C. Krauss. Asian Pac. J. Trop. Med., 2017, 10(5), 423-429.
[http://dx.doi.org/10.1016/j.apjtm.2017.05.002] [PMID: 28647178]
[12]
Santos, H.S.; Bandeira, P.N.; Lemos, T.L.G.; Santiago, G.M.P. Chemical composition and larvicidal activity against Aedes aegypti L. (Diptera: Culicidae) of essential oils from leaves, stalks and roots of the Croton nepetaefolius Baill (Euphorbiaceae). Int. J. Mosq. Res., 2017, 4, 19-22.
[13]
Alves, M.; Araújo, M. de F.L.; Gusmão, C.L.S. Neto, Amaro de Castro Lira de Carvalho, R.; Benko-Iseppon, A.M. Diversity and Uses of the Genus Croton (Euphorbiaceae) in Northeastern Brazil In: Medicinal Plants Biodiversity and Drugs; Taylor & Francis Group: New York, 2012; pp. 106-141.
[14]
Kibazohi, O.; Sangwan, R.S. Vegetable oil production potential from Jatropha curcas, Croton megalocarpus, Aleurites moluccana, Moringa oleifera and Pachira glabra: assessment of renewable energy resources for bio-energy production in Africa. Biomass Bioenergy, 2011, 35, 1352-1356.
[http://dx.doi.org/10.1016/j.biombioe.2010.12.048]
[15]
Singha, S.; Banerjee, S.; Chandra, G. Synergistic Effect of Croton caudatus (Fruits) and Tiliacora acuminata (Flowers) extracts against filarial vector Culex quinquefasciatus. Asian Pac. J. Trop. Biomed., 2011, 1, S159-S164.
[http://dx.doi.org/10.1016/S2221-1691(11)60147-0]
[16]
Compagnone, R.S.; Chavez, K.; Mateu, E.; Orsini, G.; Arvelo, F.; Suárez, A.I. Composition and cytotoxic activity of essential oils from Croton matourensis and Croton micans from Venezuela. Rec. Nat. Prod., 2010, 4, 101-108.
[17]
Bernardino, A.C.S.S.; Teixeira, A.M.R.; de Menezes, J.E.S.A.; Pinto, C.C.C.; Santos, H.S.; Freire, P.T.C.; Coutinho, H.D.M.; Sena, D.M. Junior.; Bandeira, P.N.; Braz-Filho, R. Spectroscopic and microbiological characterization of labdane diterpene 15,16-Epoxy-4-Hydroxy-Labda-13(16),14-Dien-3,12-Dione isolated from the stems of Croton jacobinensis. J. Mol. Struct., 2017, 1147, 335-344.
[http://dx.doi.org/10.1016/j.molstruc.2017.06.084]
[18]
Song, J.T.; Liu, X.Y.; Li, A.L.; Wang, X.L.; Shen, T.; Ren, D.M.; Lou, H.X.; Wang, X.N. Cytotoxic abietane-type diterpenoids from twigs and leaves of Croton laevigatus. Phytochem. Lett., 2017, 22, 241-246.
[http://dx.doi.org/10.1016/j.phytol.2017.10.007]
[19]
Pinto, C.C.C.; de Menezes, J.E.S.A.; Siqueira, S.M.C.; Melo, D.S.; Feitosa, C.R.S.; Santos, H.S. Chemical composition and larvicidal activity against Aedes aegypti Larvae of Essential Oils from Croton jacobinenesis Baill. Bol. Latinoam. Caribe Plantas Med. Aromat., 2016, 15, 122-127.
[20]
Zhao, B.Q.; Peng, S.; He, W.J.; Liu, Y.H.; Wang, J.F.; Zhou, X.J. Antitubercular and cytotoxic tigliane-type diterpenoids from Croton tiglium. Bioorg. Med. Chem. Lett., 2016, 26(20), 4996-4999.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.002] [PMID: 27623549]
[21]
Pan, Z.; Ning, D.; Wu, X.; Huang, S.; Li, D.; Lv, S. New clerodane diterpenoids from the twigs and leaves of Croton euryphyllus. Bioorg. Med. Chem. Lett., 2015, 25(6), 1329-1332.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.033] [PMID: 25690785]
[22]
Lavor, A.K.L.S.; Matias, E.F.F.; Alves, E.F.; Santos, B.S.; Figueredo, F.G.; Lima, L.F.; Leite, N.F.; Sobral-Souza, C.E.; Andrade, J.C.; Alencar, L.B.B.; Brito, D.I.V.; Albuquerque, R.S.; Coutinho, H.D.M. Association between drugs and herbal products: In vitro enhancement of the antibiotic activity by fractions from leaves of Croton campestris A. (Euphorbiaceae). Eur. J. Integr. Med., 2014, 6, 301-306.
[http://dx.doi.org/10.1016/j.eujim.2014.03.002]
[23]
Sul, Y.H.; Lee, M.S.; Cha, E.Y.; Thuong, P.T.; Khoi, N.M.; Song, I.S. An ent-kaurane diterpenoid from Croton tonkinensis induces apoptosis by regulating AMP-activated protein kinase in SK-HEP1 human hepatocellular carcinoma cells. Biol. Pharm. Bull., 2013, 36(1), 158-164.
[http://dx.doi.org/10.1248/bpb.b12-00873] [PMID: 23302650]
[24]
Dória, G.A.A.; Silva, W.J.; Carvalho, G.A.; Alves, P.B.; Cavalcanti, S.C.H. A study of the larvicidal activity of two Croton species from northeastern Brazil against Aedes aegypti. Pharm. Biol., 2010, 48(6), 615-620.
[http://dx.doi.org/10.3109/13880200903222952] [PMID: 20645733]
[25]
Mulholland, D.A.; Langat, M.K.; Crouch, N.R.; Coley, H.M.; Mutambi, E.M.; Nuzillard, J.M. Cembranolides from the stem bark of the southern African medicinal plant, Croton gratissimus (Euphorbiaceae). Phytochemistry, 2010, 71(11-12), 1381-1386.
[http://dx.doi.org/10.1016/j.phytochem.2010.05.014] [PMID: 20542300]
[26]
Özkal, S.G.; Yener, M.E. Supercritical carbon dioxide extraction of flaxseed oil: Effect of extraction parameters and mass transfer modeling. J. Supercrit. Fluids, 2016, 112, 76-80.
[http://dx.doi.org/10.1016/j.supflu.2016.02.013]
[27]
Cardenas-Toro, F.P.; Forster-Carneiro, T.; Rostagno, M.A.; Petenate, A.J.; Maugeri, F.; Meireles, M.A.A. Integrated supercritical fluid extraction and subcritical water hydrolysis for the recovery of bioactive compounds from pressed palm fiber. J. Supercrit. Fluids, 2014, 93, 42-48.
[http://dx.doi.org/10.1016/j.supflu.2014.02.009]
[28]
Martinez-Correa, H.A.; Magalhães, P.M.; Queiroga, C.L.; Peixoto, C.A.; Oliveira, A.L.; Cabral, F.A. Extracts from Pitanga (Eugenia uniflora L.) leaves: Influence of extraction process on antioxidant properties and yield of phenolic compounds. J. Supercrit. Fluids, 2011, 55, 998-1006.
[http://dx.doi.org/10.1016/j.supflu.2010.09.001]
[29]
Sahena, F.; Zaidul, I.S.M.; Jinap, S.; Karim, A.A.; Abbas, K.A.; Norulaini, N.A.N.; Omar, A.K.M. Application of supercritical CO2 in lipid extraction - A review. J. Food Eng., 2009, 95, 240-253.
[http://dx.doi.org/10.1016/j.jfoodeng.2009.06.026]
[30]
Bijekar, S.; Gayatri, M.C. Ethanomedicinal properties of Euphorbiaceae family-A comprehensive review. Int. J. Phytomed., 2014, 6, 144-156.
[31]
Webster, G.L. Euphorbiaceae.The families and genera of vascular plants - XI: Flowering Plants. Eudicots Malpighiales; Kubitzki, K., Ed.; Springer: Hamburg, 2014, Vol. XI, pp. 51-216.
[32]
Mwine, T.J.; Van Damme, P. Why do Euphorbiaceae tick as medicinal plants? A review of Euphorbiaceae family and its medicinal features. J. Med. Plants Res., 2011, 5, 652-662.
[33]
Araújo, F.M.; Dantas, M.C.S.M.; Silva, L.S.; Aona, L.Y.S.; Tavares, I.F.; de Souza-Neta, L.C. antibacterial activity and chemical composition of the essential oil of Croton heliotropiifolius Kunth from Amargosa, Bahia, Brazil. Ind. Crops Prod., 2017, 105, 203-206.
[http://dx.doi.org/10.1016/j.indcrop.2017.05.016]
[34]
Brito, S.S. da S.; Silva, F.; Malheiro, R.; Baptista, P.; Pereira, J.A. Croton argyrophyllus Kunth and Croton heliotropiifolius Kunth: Phytochemical characterization and bioactive properties. Ind. Crops Prod., 2018, 113, 308-315.
[http://dx.doi.org/10.1016/j.indcrop.2018.01.044]
[35]
Meireles, D.R.P.; Fernandes, H.M.B.; Rolim, T.L.; Batista, T.M.; Mangueira, V.M.; de Sousa, T.K.G.; Pita, J.C.L.R.; Xavier, A.L.; Beltrão, D.M.; Tavares, J.F.; Silva, M.S.; Medeiros, K.K.P.; Sobral, M.V. Toxicity and antitumor efficacy of Croton polyandrus oil against Ehrlich Ascites Carcinoma cells. Brazilian J. Pharmacogn., 2016, 26, 751-758.
[http://dx.doi.org/10.1016/j.bjp.2016.05.014]
[36]
Berry, P.E.; Hipp, A.L.; Wurdack, K.J.; Van Ee, B.; Riina, R. Molecular phylogenetics of the giant genus Croton and tribe Crotoneae (Euphorbiaceae sensu stricto) using ITS and TRNL-TRNF DNA sequence data. Am. J. Bot., 2005, 92(9), 1520-1534.
[http://dx.doi.org/10.3732/ajb.92.9.1520] [PMID: 21646170]
[37]
Crepaldi, C.G.; Campos, J.L.A.; Albuquerque, U.P.; Sales, M.F. Richness and ethnobotany of the family Euphorbiaceae in a tropical semiarid landscape of northeastern Brazil. S. Afr. J. Bot., 2016, 102, 157-165.
[http://dx.doi.org/10.1016/j.sajb.2015.06.010]
[38]
Furlan, C.M.; Santos, K.P.; Sedano-Partida, M.D.; da Motta, L.B.; Santos, D.Y.A.C.; Salatino, M.L.F.; Negri, G.; Berry, P.E.; van Ee, B.W.; Salatino, A. Flavonoids and antioxidant potential of nine argentinian species of Croton (Euphorbiaceae). Rev. Bras. Bot. Braz. J. Bot., 2015, 38, 693-702.
[http://dx.doi.org/10.1007/s40415-014-0115-9]
[39]
Peres, M.T.L.P.; Delle Monache, F.; Cruz, A.B.; Pizzolatti, M.G.; Yunes, R.A. Chemical composition and antimicrobial activity of Croton urucurana Baillon (Euphorbiaceae). J. Ethnopharmacol., 1997, 56(3), 223-226.
[http://dx.doi.org/10.1016/S0378-8741(97)00039-1] [PMID: 9201612]
[40]
Martins, A.P.; Salgueiro, L.R.; Gonçalves, M.J.; Vila, R.; Tomi, F.; Adzet, T.; da Cunha, A.P.; Cañigueral, S.; Casanova, J. Antimicrobial activity and chemical composition of the bark oil of Croton stellulifer, an endemic species from S. Tomé e Príncipe. Planta Med., 2000, 66(7), 647-650.
[http://dx.doi.org/10.1055/s-2000-8623] [PMID: 11105572]
[41]
Kim, J.; Jang, M.; Shin, E.; Kim, J.; Lee, S.H.; Park, C.G. Fumigant and contact toxicity of 22 wooden essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Pestic. Biochem. Physiol., 2016, 133, 35-43.
[http://dx.doi.org/10.1016/j.pestbp.2016.03.007] [PMID: 27742359]
[42]
Ramos, J.M.O.; Santos, C.A.; Santana, D.G.; Santos, D.A.; Alves, P.B.; Thomazzi, S.M. Chemical constituents and potential anti-inflammatory activity of the essential oil from the leaves of Croton argyrophyllus. Rev. Bras. Farmacogn., 2013, 23, 644-650.
[http://dx.doi.org/10.1590/S0102-695X2013005000045]
[43]
Divya, S.; Krishna, K.N.; Ramachandran, S.; Dhanaraju, M.D. Wound healing and in vitro antioxidant activities of Croton bonplandianum leaf extract in rats. Glob. J. Pharmacol., 2011, 5, 159-163.
[44]
Sisodia, S.; Singh, G.P. Bio-Efficacy of Croton bonplandianum Baill. on some weed and crop plants. Int. J. Pharma Bio Sci., 2012, 3, 707-715.
[45]
Júnior, F.E.B.; de Oliveira, D.R.; Boligon, A.A.; Athayde, M.L.; Kamdem, J.P.; Macedo, G.E.; da Silva, G.F.; de Menezes, I.R.A.; Costa, J.G.M.; Coutinho, H.D.M.; Kerntopf, M.R.; Posser, T. Protective effects of Croton campestris A. St-Hill in different ulcer models in rodents: evidence for the involvement of nitric oxide and prostaglandins. J. Ethnopharmacol., 2014, 153(2), 469-477.
[http://dx.doi.org/10.1016/j.jep.2014.03.005] [PMID: 24625391]
[46]
Oliveira-Tintino, C.D.M.; Pessoa, R.T.; Fernandes, M.N.M.; Alcântara, I.S.; da Silva, B.A.F.; de Oliveira, M.R.C.; Martins, A.O.B.P.B.; da Silva, M.D.S.; Tintino, S.R.; Rodrigues, F.F.G.; da Costa, J.G.M.; de Lima, S.G.; Kerntopf, M.R.; da Silva, T.G.; de Menezes, I.R.A. Anti-inflammatory and anti-edematogenic action of the Croton campestris A. St.-Hil (Euphorbiaceae) essential oil and the compound β-caryophyllene in in vivo models. Phytomedicine, 2018, 41, 82-95.
[http://dx.doi.org/10.1016/j.phymed.2018.02.004] [PMID: 29519324]
[47]
Moreira, E.L.G.; Rial, D.; Aguiar, A.S., Jr; Figueiredo, C.P.; Siqueira, J.M.; DalBó, S.; Horst, H.; de Oliveira, J.; Mancini, G.; dos Santos, T.S.; Villarinho, J.G.; Pinheiro, F.V.; Marino-Neto, J.; Ferreira, J.; De Bem, A.F.; Latini, A.; Pizzolatti, M.G.; Ribeiro-do-Valle, R.M.; Prediger, R.D.S. Proanthocyanidin-rich fraction from Croton celtidifolius Baill confers neuroprotection in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rat model of Parkinson’s disease. J. Neural Transm. (Vienna), 2010, 117(12), 1337-1351.
[http://dx.doi.org/10.1007/s00702-010-0464-x] [PMID: 20931248]
[48]
Wang, J.J.; Chung, H.Y.; Zhang, Y.B.; Li, G.Q.; Li, Y.L.; Huang, W.H.; Wang, G.C. Diterpenoids from the roots of Croton crassifolius and their anti-angiogenic activity. Phytochemistry, 2016, 122, 270-275.
[http://dx.doi.org/10.1016/j.phytochem.2015.12.011] [PMID: 26725185]
[49]
Sylvestre, M.; Pichette, A.; Longtin, A.; Nagau, F.; Legault, J. Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L. from Guadeloupe. J. Ethnopharmacol., 2006, 103(1), 99-102.
[http://dx.doi.org/10.1016/j.jep.2005.07.011] [PMID: 16168586]
[50]
Yang, L.; Zhang, Y.B.; Chen, L.F.; Chen, N.H.; Wu, Z.N.; Jiang, S.Q.; Jiang, L.; Li, G.Q.; Li, Y.L.; Wang, G.C. New labdane diterpenoids from Croton laui and their anti-inflammatory activities. Bioorg. Med. Chem. Lett., 2016, 26(19), 4687-4691.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.052] [PMID: 27575472]
[51]
Alonso-Castro, A.J.; Ortiz-Sánchez, E.; Domínguez, F.; López-Toledo, G.; Chávez, M.; Ortiz-Tello, Ade.J.; García-Carrancá, A. Antitumor effect of Croton lechleri Mull. Arg. (Euphorbiaceae). J. Ethnopharmacol., 2012, 140(2), 438-442.
[http://dx.doi.org/10.1016/j.jep.2012.01.009] [PMID: 22301443]
[52]
Namjoyan, F.; Kiashi, F.; Moosavi, Z.B.; Saffari, F.; Makhmalzadeh, B.S. Efficacy of Dragon’s blood cream on wound healing: A randomized, double-blind, placebo-controlled clinical trial. J. Tradit. Complement. Med., 2015, 6(1), 37-40.
[http://dx.doi.org/10.1016/j.jtcme.2014.11.029] [PMID: 26870678]
[53]
Leite, T.R.; Silva, M.A.P.; Santos, M.A.F. Allelopathic activity and chemical analysis of the essential oil of Croton limae A. P. S. Gomes, M. F. Sales & P. E. Berry (Euphorbiaceae). J. Agric. Sci., 2015, 7, 90-98.
[54]
Aderogba, M.A.; Ndhlala, A.R.; Van Staden, J. Acetylcholinesterase inhibitory activity and mutagenic effects of Croton penduliflorus leaf extract constituents. S. Afr. J. Bot., 2013, 87, 48-51.
[http://dx.doi.org/10.1016/j.sajb.2013.03.013]
[55]
Cordeiro, K.W.; Felipe, J.L.; Malange, K.F.; do Prado, P.R.; de Oliveira Figueiredo, P.; Garcez, F.R.; de Cássia Freitas, K.; Garcez, W.S.; Toffoli-Kadri, M.C. Anti-inflammatory and antinociceptive activities of Croton urucurana Baillon bark. J. Ethnopharmacol., 2016, 183, 128-135.
[http://dx.doi.org/10.1016/j.jep.2016.02.051] [PMID: 26944237]
[56]
Jose, A.R.; Adesina, J.M. Larvicidal Efficacy of Cola gigantea, Malacantha alnifolia and Croton zambesicus extracts as phytoinsecticides against malaria vector Anopheles stephensi (Diptera: Culicidae). J. Mosq. Res., 2015, 5, 1-5.
[http://dx.doi.org/10.5376/jmr.2015.05.0005]
[57]
Sun, Y.; Wang, M.; Ren, Q.; Li, S.; Xu, J.; Ohizumi, Y.; Xie, C.; Jin, D.Q.; Guo, Y. Two novel clerodane diterpenenes with NGF-potentiating activities from the twigs of Croton yanhuii. Fitoterapia, 2014, 95, 229-233.
[http://dx.doi.org/10.1016/j.fitote.2014.03.012] [PMID: 24685507]
[58]
Muliansyah, S.; Atikah, T.A. Extraction and transesterification of Croton tiglium oil seeds from central kalimantan, indonesia as an alternative biodiesel raw Materials. Asian J. Appl. Sci., 2014, 7, 140-149.
[http://dx.doi.org/10.3923/ajaps.2014.140.149]
[59]
Bantie, L.; Assefa, S.; Teklehaimanot, T.; Engidawork, E. In vivo antimalarial activity of the crude extract and solvent fractions of the leaves of Zehenria scabra (Cucurbitaceae) against Plasmodium berghei in Mice. J. Med. Plants Res., 2014, 8, 1230-1236.
[60]
Sutthivaiyakit, S.; Nareeboon, P.; Ruangrangsi, N.; Ruchirawat, S.; Pisutjaroenpong, S.; Mahidol, C. Labdane and pimarane diterpenes from Croton joufra. Phytochemistry, 2001, 56(8), 811-814.
[http://dx.doi.org/10.1016/S0031-9422(00)00382-4] [PMID: 11324909]
[61]
Santos, F.V.; Mesquita, S.F.P.; Faria, M.J.S.S.; Poersh, A.; Maciel, M.A.M.; Pinto, A.C.; Morimoto, H.K.; Cólus, I.M.S. Absence of mutagenicity in somatic and germ cells of mice submitted to subchronic treatment with an extract of Croton cajucara Benth. (Euphorbiaceae). Genet. Mol. Biol., 2006, 29, 159-165.
[http://dx.doi.org/10.1590/S1415-47572006000100029]
[62]
Rodrigues, F.F.G.; Costa, J.G.M.; Coutinho, H.D.M. Synergy effects of the antibiotics gentamicin and the essential oil of Croton zehntneri. Phytomedicine, 2009, 16(11), 1052-1055.
[http://dx.doi.org/10.1016/j.phymed.2009.04.004] [PMID: 19524417]
[63]
Bezerra, F.W.F.; da Costa, W.A.; de Oliveira, M.S.; de Aguiar Andrade, E.H. Carvalho Jr., R.N. de. Transesterification of palm pressed-fibers (Elaeis guineensis Jacq.) Oil by supercritical fluid carbon dioxide with entrainer ethanol. J. Supercrit. Fluids, 2018, 136, 136-143.
[http://dx.doi.org/10.1016/j.supflu.2018.02.020]
[64]
Brunner, G. Supercritical fluids: Technology and application to food processing. J. Food Eng., 2005, 67, 21-33.
[http://dx.doi.org/10.1016/j.jfoodeng.2004.05.060]
[65]
Piantino, C.R.; Aquino, F.W.B.; Follegatti-romero, L.A.; Cabral, F.A. Supercritical CO2 extraction of phenolic compounds from Baccharis dracunculifolia. J. Supercrit. Fluids, 2008, 47, 209-214.
[http://dx.doi.org/10.1016/j.supflu.2008.07.012]
[66]
Span, R.; Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data, 1996, 25, 1509-1596.
[http://dx.doi.org/10.1063/1.555991]
[67]
Solana, M.; Boschiero, I.; Acqua, S.D.; Bertucco, A. Extraction of bioactive enriched fractions from eruca sativa leaves by supercritical CO2 technology using different co-solvents. J. Supercrit. Fluids, 2014, 94, 245-251.
[http://dx.doi.org/10.1016/j.supflu.2014.08.022]
[68]
Soetaredjo, F.E.; Ismadji, S.; Liauw, M.Y.; Angkawijaya, A.E.; Ju, Y.H. catechin sublimation pressure and solubility in supercritical carbon dioxide. Fluid Phase Equilib., 2013, 358, 220-225.
[http://dx.doi.org/10.1016/j.fluid.2013.08.012]
[69]
Sousa, E.M.B.D.; Martínez, J.; Chiavone-Filho, O.; Rosa, P.T.V.; Domingos, T.; Meireles, M.A.A. Extraction of volatile oil from Croton zehntneri Pax et Hoff with pressurized CO2: solubility, composition and kinetics. J. Food Eng., 2005, 69, 325-333.
[http://dx.doi.org/10.1016/j.jfoodeng.2004.08.023]
[70]
Huang, W.; Wang, J.; Liang, Y.; Ge, W.; Wang, G.; Li, Y.; Chung, H.Y. Potent anti-angiogenic component in Croton crassifolius and its mechanism of action. J. Ethnopharmacol., 2015, 175, 185-191.
[http://dx.doi.org/10.1016/j.jep.2015.09.021] [PMID: 26386379]
[71]
Sarkaki, A.; Farbood, Y.; Dolatshahi, M.; Mansouri, S.M.T.; Khodadadi, A. neuroprotective effects of ellagic acid in a rat model of parkinson’s disease. Acta Med. Iran., 2016, 54(8), 494-502.
[PMID: 27701719]
[72]
Sisein, E.A. Biochemistry of free radicals and antioxidants. Sch. Acad. J. Biosci., 2014, 2, 110-118.
[73]
Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 2015, 30(1), 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[74]
Prior, R.L. Oxygen Radical Absorbance Capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits. J. Funct. Foods, 2015, 18, 797-810.
[http://dx.doi.org/10.1016/j.jff.2014.12.018]
[75]
Meng, D.; Zhang, P.; Zhang, L.; Wang, H.; Ho, C.T.; Li, S.; Shahidi, F.; Zhao, H. Detection of cellular redox reactions and antioxidant activity assays. J. Funct. Foods, 2017, 37, 467-479.
[http://dx.doi.org/10.1016/j.jff.2017.08.008]
[76]
Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods, 2015, 18, 757-781.
[http://dx.doi.org/10.1016/j.jff.2015.01.047]
[77]
Bogdan, C.; Iurian, S.; Tomuta, I.; Moldovan, M. Improvement of skin condition in striae distensae: development, characterization and clinical efficacy of a cosmetic product containing Punica granatum seed oil and Croton lechleri resin extract. Drug Des. Devel. Ther., 2017, 11, 521-531.
[http://dx.doi.org/10.2147/DDDT.S128470] [PMID: 28280300]
[78]
Dodge, L.E.; Choi, J.W.; Kelley, K.E.; Herńandez-D Iaz, S.; Hauser, R. Medications as a potential source of exposure to parabens in the U.S. population. Environ. Res., 2018, 164, 580-584.
[http://dx.doi.org/10.1016/j.envres.2018.03.035] [PMID: 29625341]
[79]
Love, M.J.; Bhandari, D.; Dobson, R.C.J.; Billington, C. Potential for Bacteriophage Endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics (Basel), 2018, 7(1), 1-25.
[http://dx.doi.org/10.3390/antibiotics7010017] [PMID: 29495476]
[80]
Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem., 2018, 143, 922-935.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.095] [PMID: 29227932]
[81]
David, B.; Wolfender, J.L.; Dias, D.A. the pharmaceutical industry and natural products: Historical status and new trends. Phytochem. Rev., 2015, 14, 299-315.
[http://dx.doi.org/10.1007/s11101-014-9367-z]
[82]
Gyawali, R.; Ibrahim, S.A. Natural Products as Antimicrobial Agents. Food Control, 2014, 46, 412-429.
[http://dx.doi.org/10.1016/j.foodcont.2014.05.047]
[83]
Akhalwaya, S.; van Vuuren, S.; Patel, M. An in vitro investigation of indigenous South African medicinal plants used to treat oral infections. J. Ethnopharmacol., 2018, 210, 359-371.
[http://dx.doi.org/10.1016/j.jep.2017.09.002] [PMID: 28888760]
[84]
Majouli, K.; Hamdi, A.; Abdelhamid, A.; Bouraoui, A.; Kenani, A. Anti-inflammatory activity and gastroprotective effect of Hertia cheirifolia L. roots extract. J. Ethnopharmacol., 2018, 217, 7-10.
[http://dx.doi.org/10.1016/j.jep.2018.02.010] [PMID: 29428240]
[85]
Dvorakova, M.; Landa, P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol. Res., 2017, 124, 126-145.
[http://dx.doi.org/10.1016/j.phrs.2017.08.002] [PMID: 28803136]
[86]
Tran, Q.T.N.; Wong, W.S.F.; Chai, C.L.L. Labdane diterpenoids as potential anti-inflammatory agents. Pharmacol. Res., 2017, 124, 43-63.
[http://dx.doi.org/10.1016/j.phrs.2017.07.019] [PMID: 28751221]
[87]
Taofiq, O.; Martins, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Anti-inflammatory potential of mushroom extracts and isolated metabolites. Trends Food Sci. Technol., 2016, 50, 193-210.
[http://dx.doi.org/10.1016/j.tifs.2016.02.005]
[88]
Bellik, Y.; Boukraâ, L.; Alzahrani, H.A.; Bakhotmah, B.A.; Abdellah, F.; Hammoudi, S.M.; Iguer-Ouada, M. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules, 2012, 18(1), 322-353.
[http://dx.doi.org/10.3390/molecules18010322] [PMID: 23271469]
[89]
Ma, L.; Chen, H.; Dong, P.; Lu, X. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem., 2013, 139(1-4), 503-508.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.030] [PMID: 23561137]
[90]
Moro, C.; Palacios, I.; Lozano, M.; D’Arrigo, M.; Guillamón, E.; Villares, A.; Martínez, J.A.; García-Lafuente, A. Anti-Inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 Macrophages. Food Chem., 2012, 130, 350-355.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.049]
[91]
Zhao, J.; Fang, F.; Yu, L.; Wang, G.; Yang, L. Anti-nociceptive and anti-inflammatory effects of Croton crassifolius ethanol extract. J. Ethnopharmacol., 2012, 142(2), 367-373.
[http://dx.doi.org/10.1016/j.jep.2012.04.050] [PMID: 22617377]
[92]
Bouvier-Müller, A.; Ducongé, F. Nucleic acid aptamers for neurodegenerative diseases. Biochimie, 2018, 145, 73-83.
[http://dx.doi.org/10.1016/j.biochi.2017.10.026] [PMID: 29104136]
[93]
Losada-Barreiro, S.; Bravo-Díaz, C. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. Eur. J. Med. Chem., 2017, 133, 379-402.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.061] [PMID: 28415050]
[94]
Ebrahimi, A.; Schluesener, H. Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res. Rev., 2012, 11(2), 329-345.
[http://dx.doi.org/10.1016/j.arr.2012.01.006] [PMID: 22336470]
[95]
Rivas-Arancibia, S.; Gallegos-Ríos, C.; Gomez-Crisostomo, N.; Ferreira-Garcidueñas, E.; Briseño, D.F.; Navarro, L.; Rodríguez-Martínez, E. Oxidative Stress and Neurodegenerative Disease. Neurodegenerative Diseases - Processes, Prevention, Protection and Monitoring; InTech: Rijeka, 2011, p. 558.
[http://dx.doi.org/10.5772/28857]
[96]
Ge, H.; Liang, C.; Ren, S.; Yue, C.; Wu, J. Prognostic value of DcR3 in solid tumors: A meta-analysis. Clin. Chim. Acta, 2018, 481, 126-131.
[http://dx.doi.org/10.1016/j.cca.2018.02.038] [PMID: 29499202]
[97]
Ochwang’i, D.O.; Kimwele, C.N.; Oduma, J.A.; Gathumbi, P.K.; Kiama, S.G.; Efferth, T. Cytotoxic activity of medicinal plants of the Kakamega County (Kenya) against drug-sensitive and multidrug-resistant cancer cells. J. Ethnopharmacol., 2018, 215, 233-240.
[http://dx.doi.org/10.1016/j.jep.2018.01.004] [PMID: 29309859]
[98]
Patmanidis, S.; Charalampidis, A.C.; Kordonis, I.; Mitsis, G.D.; Papavassilopoulos, G.P. Tumor growth modeling: Parameter estimation with Maximum Likelihood methods. Comput. Methods Programs Biomed., 2018, 160, 1-10.
[http://dx.doi.org/10.1016/j.cmpb.2018.03.014] [PMID: 29728236]
[99]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[100]
Lawler, S.P. Environmental safety review of methoprene and bacterially-derived pesticides commonly used for sustained mosquito control. Ecotoxicol. Environ. Saf., 2017, 139, 335-343.
[http://dx.doi.org/10.1016/j.ecoenv.2016.12.038] [PMID: 28187397]
[101]
Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod., 2015, 76, 174-187.
[http://dx.doi.org/10.1016/j.indcrop.2015.06.050]
[102]
Liu, Z.L.; Liu, Q.Z.; Du, S.S.; Deng, Z.W. Mosquito larvicidal activity of alkaloids and limonoids derived from Evodia rutaecarpa unripe fruits against Aedes albopictus (Diptera: Culicidae). Parasitol. Res., 2012, 111(3), 991-996.
[http://dx.doi.org/10.1007/s00436-012-2923-9] [PMID: 22526296]
[103]
Chellappandian, M.; Vasantha-Srinivasan, P.; Senthil-Nathan, S.; Karthi, S.; Thanigaivel, A.; Ponsankar, A.; Kalaivani, K.; Hunter, W.B. Botanical essential oils and uses as mosquitocides and repellents against dengue. Environ. Int., 2018, 113, 214-230.
[http://dx.doi.org/10.1016/j.envint.2017.12.038] [PMID: 29453089]
[104]
Adeniyi, S.A.; Orjiekwe, C.L.; Ehiagbonare, J.E.; Arimah, B.D. Preliminary phytochemical analysis and insecticidal activity of ethanolic extracts of four tropical plants (Vernonia amygdalina, Sida acuta, Ocimum gratissimum and Telfaria occidentalis) against Beans Weevil (Acanthscelides obtectus). Int. J. Phys. Sci., 2010, 5, 753-762.
[105]
Bagavan, A.; Rahuman, A.A. Evaluation of larvicidal activity of medicinal plant extracts against three mosquito vectors. Asian Pac. J. Trop. Med., 2011, 4(1), 29-34.
[http://dx.doi.org/10.1016/S1995-7645(11)60027-8] [PMID: 21771411]
[106]
Park, C.G.; Shin, E.; Kim, J. Insecticidal activities of essential oils, Gaultheria fragrantissima and Illicium verum, their components and analogs against Callosobruchus chinensis adults. J. Asia Pac. Entomol., 2016, 19, 269-273.
[http://dx.doi.org/10.1016/j.aspen.2016.03.001]
[107]
Batista, C. de C.R.; De Oliveira, M.S.; Araújo, M.E.; Rodrigues, A.M.C.; Botelho, J.R.S.; Da Silva Souza Filho, A.P.; Machado, N.T.; Carvalho Jr, R.N. Supercritical CO2 extraction of Açaí (Euterpe oleracea) berry oil: Global yield, fatty acids, allelopathic activities, and determination of phenolic and anthocyanins total compounds in the residual pulp. J. Supercrit. Fluids, 2016, 107, 364-369.
[http://dx.doi.org/10.1016/j.supflu.2015.10.006]
[108]
Fonseca, J.C.; Barbosa, M.A.; Silva, I.C.A.; Duarte-Almeida, J.M.; Castro, A.H.F.; dos Santos Lima, L.A.R. Antioxidant and allelopathic activities of Smilax brasiliensis sprengel (Smilacaceae). S. Afr. J. Bot., 2017, 111, 336-340.
[http://dx.doi.org/10.1016/j.sajb.2017.04.003]
[109]
Jelassi, A.; El Ayeb-Zakhama, A.; Ben Nejma, A.; Chaari, A.; Harzallah-Skhiri, F.; Ben Jannet, H. Phytochemical composition and allelopathic potential of three Tunisian Acacia species. Ind. Crops Prod., 2016, 83, 339-345.
[http://dx.doi.org/10.1016/j.indcrop.2016.01.020]
[110]
de Oliveira, M.S.; da Costa, W.A.; Pereira, D.S.; Botelho, J.R.S.; de Alencar Menezes, T.O.; de Aguiar Andrade, E.H.; da Silva, S.H.M.; da Silva Sousa Filho, A.P.; de Carvalho, R.N. Chemical composition and phytotoxic activity of clove (Syzygium aromaticum) essential oil obtained with supercritical CO2. J. Supercrit. Fluids, 2016, 118, 185-193.
[http://dx.doi.org/10.1016/j.supflu.2016.08.010]
[111]
Farooq, M.; Jabran, K.; Cheema, Z.A.; Wahid, A.; Siddique, K.H. The role of allelopathy in agricultural pest management. Pest Manag. Sci., 2011, 67(5), 493-506.
[http://dx.doi.org/10.1002/ps.2091] [PMID: 21254327]
[112]
Yusoff, N.; Johari, I.S.; Fikri, N.; Shahidi, M.; Mat, N. allelopathic assessment of selected weed species from BRIS soil in Terengganu, Malaysia. Int. J. Sci. Appl. Technol., 2017, 2, 1-9.
[113]
Sisodia, S.; Siddiqui, M.B. Allelopathic effect by aqueous extracts of different parts of Croton bonplandianum Baill. on some crop and weed plants J. Agric. Ext. Rural Dev, 2010, 2, 022-028.