Tuberculosis - Present Medication and Therapeutic Prospects

Page: [630 - 656] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Background: Tuberculosis (TB) has been present in the history of human civilization since time immemorial and has caused more deaths than any other infectious disease. It is still considered one of the ten most common epidemiologic causes of death in the world. As a transmissible disease, it is initiated by rod-shaped (bacillus) mycobacteria. The management of tuberculosis became possible owing to several discoveries beginning in 1882 with the isolation of the TB bacillus by Robert Koch. The diagnosis of TB was enabled by finding a staining method for TB bacteria identification (1883). It was soon realized that a large-scale policy for the treatment and prevention of tuberculosis was necessary, which resulted in the foundation of International Union against Tuberculosis and Lung Diseases (1902). An antituberculosis vaccine was developed in 1921 and has been in therapeutic use since then. TB treatment regimens have changed over the decades and the latest recommendations are known as Directly Observed Treatment Short-course (DOTS, WHO 1993).

Methods: A search of bibliographic databases was performed for peer-reviewed research literature. A focused review question and inclusion criteria were applied. Standard tools were used to assess the quality of retrieved papers.

Results: A total of 112 papers were included comprising original publications and reviews. The paper overviews anti-TB drugs according to their mechanism of action. The chemical structure, metabolism and unwanted effects of such drugs have been discussed. The most recent treatment regimens and new drugs, including those in clinical trials, are also presented.

Conclusion: Despite a 22% decrease in the tuberculosis fatality rate observed between 2000 and 2015, the disease remains one of the ten prime causes of death worldwide. Increasing bacterial resistance and expensive, prolonged therapies are the main reasons for efforts to find effective drugs or antituberculosis regimens, especially to cure multidrug-resistant tuberculosis.

Keywords: Tuberculosis infection, action mechanisms of drugs, structure, medication guidelines, tuberculosis treatment, vaccine.

[1]
World Health Organization. Global Tuberculosis Report, 2017.
[2]
Hsieh, C.J.; Lin, L.C.; Kuo, B.I.; Chiang, C.H.; Su, W.J.; Shih, J.F. Exploring the efficacy of a case management model using DOTS in the adherence of patients with pulmonary tuberculosis. J. Clin. Nurs., 2008, 17(7), 869-875.
[http://dx.doi.org/10.1111/j.1365-2702.2006.01924.x] [PMID: 17850292]
[3]
Lee, S.H. Tuberculosis infection and latent tuberculosis. Tuberc. Respir. Dis. (Seoul), 2016, 79(4), 201-206.
[http://dx.doi.org/10.4046/trd.2016.79.4.201] [PMID: 27790271]
[4]
Podany, A.T.; Swindells, S. Current strategies to treat tuberculosis. F1000 Res., 2016, 5, 1-8.
[http://dx.doi.org/10.12688/f1000research.7403.1] [PMID: 27853505]
[5]
Hargreaves, S.; Lönnroth, K.; Nellums, L.B.; Olaru, I.D.; Nathavitharana, R.R.; Norredam, M.; Friedland, J.S. Multidrug-resistant tuberculosis and migration to Europe. Clin. Microbiol. Infect., 2017, 23(3), 141-146.
[http://dx.doi.org/10.1016/j.cmi.2016.09.009] [PMID: 27665703]
[6]
Fox, G.J.; Schaaf, H.S.; Mandalakas, A.; Chiappini, E.; Zumla, A.; Marais, B.J. Preventing the spread of multidrug-resistant tuberculosis and protecting contacts of infectious cases. Clin. Microbiol. Infect., 2017, 23(3), 147-153.
[http://dx.doi.org/10.1016/j.cmi.2016.08.024] [PMID: 27592087]
[7]
Dheda, K.; Chang, K.C.; Guglielmetti, L.; Furin, J.; Schaaf, H.S.; Chesov, D.; Esmail, A.; Lange, C. Clinical management of adults and children with multidrug-resistant and extensively drug-resistant tuberculosis. Clin. Microbiol. Infect., 2017, 23(3), 131-140.
[http://dx.doi.org/10.1016/j.cmi.2016.10.008] [PMID: 27756712]
[8]
Almeida Da Silva, P.E.; Palomino, J.C. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J. Antimicrob. Chemother., 2011, 66(7), 1417-1430.
[http://dx.doi.org/10.1093/jac/dkr173] [PMID: 21558086]
[9]
Palomino, J.C.; Martin, A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel), 2014, 3(3), 317-340.
[http://dx.doi.org/10.3390/antibiotics3030317] [PMID: 27025748]
[10]
Caminero, J.A.; Scardigli, A. Classification of antituberculosis drugs: a new proposal based on the most recent evidence. Eur. Respir. J., 2015, 46(4), 887-893.
[http://dx.doi.org/10.1183/13993003.00432-2015] [PMID: 26424519]
[11]
Rendon, A.; Tiberi, S.; Scardigli, A.; D’Ambrosio, L.; Centis, R.; Caminero, J.A.; Migliori, G.B. Classification of drugs to treat multidrug-resistant tuberculosis (MDR-TB): evidence and perspectives. J. Thorac. Dis., 2016, 8(10), 2666-2671.
[http://dx.doi.org/10.21037/jtd.2016.10.14] [PMID: 27867538]
[12]
D’Ambrosio, L.; Centis, R.; Sotgiu, G.; Pontali, E.; Spanevello, A.; Migliori, G.B. New anti-tuberculosis drugs and regimens: 2015 update. ERJ Open Res., 2015, 1(1), 1-15.
[http://dx.doi.org/10.1183/23120541.00010-2015] [PMID: 27730131]
[13]
van den Boogaard, J.; Kibiki, G.S.; Kisanga, E.R.; Boeree, M.J.; Aarnoutse, R.E. New drugs against tuberculosis: problems, progress, and evaluation of agents in clinical development. Antimicrob. Agents Chemother., 2009, 53(3), 849-862.
[http://dx.doi.org/10.1128/AAC.00749-08] [PMID: 19075046]
[14]
Horsburgh, C.R., Jr; Barry, C.E., III; Lange, C. Treatment of tuberculosis. N. Engl. J. Med., 2015, 373(22), 2149-2160.
[http://dx.doi.org/10.1056/NEJMra1413919] [PMID: 26605929]
[15]
Riska, P.F.; Jacobs, W.R., Jr; Alland, D. Molecular determinants of drug resistance in tuberculosis. Int. J. Tuberc. Lung Dis., 2000, 4(2)(Suppl. 1), S4-S10.
[PMID: 10688142]
[16]
Kolyva, A.S.; Karakousis, P.C. Old and new TB drugs: mechanisms of action and resistance In: Understanding Tuberculosis - New approaches to fighting against Drug Resistance; Baltimore, M.D., USA, 2012.
[http://dx.doi.org/10.5772/30992]
[17]
Migliori, G.B.; Lange, C.; Centis, R.; Sotgiu, G.; Mütterlein, R.; Hoffmann, H.; Kliiman, K.; De Iaco, G.; Lauria, F.N.; Richardson, M.D.; Spanevello, A.; Cirillo, D.M. TBNET Study Group. Resistance to second-line injectables and treatment outcomes in multidrug-resistant and extensively drug-resistant tuberculosis cases. Eur. Respir. J., 2008, 31(6), 1155-1159.
[http://dx.doi.org/10.1183/09031936.00028708] [PMID: 18515555]
[18]
Karumbi, J.; Garner, P. Directly observed therapy for treating tuberculosis. Cochrane Database Syst. Rev., 2007, 5, CD003343
[http://dx.doi.org/10.1002/14651858.CD003343.pub3] [PMID: 26022367]
[19]
Joshi, J.M. Tuberculosis chemotherapy in the 21 century: back to the basics. Lung India, 2011, 28(3), 193-200.
[http://dx.doi.org/10.4103/0970-2113.83977] [PMID: 21886955]
[20]
Arbex, M.A. Varella, Mde.C.; Siqueira, H.R.; Mello, F.A. Antituberculosis drugs: drug interactions, adverse effects, and use in special situations. Part 1: first-line drugs. J. Bras. Pneumol., 2010, 36(5), 626-640.
[http://dx.doi.org/10.1590/S1806-37132010000500016] [PMID: 21085830]
[21]
Smith, T.; Wolff, K.A.; Nguyen, L. Molecular biology of drug resistance in Mycobacterium tuberculosis. Curr. Top. Microbiol. Immunol., 2013, 374, 53-80.
[http://dx.doi.org/10.1007/82_2012_279] [PMID: 23179675]
[22]
World Health Organization. Treatment guidelines for drug-resistant tuberculosis, 2016.
[23]
Zetola, N.M.; Shin, S.S.; Tumedi, K.A.; Moeti, K.; Ncube, R.; Nicol, M.; Collman, R.G.; Klausner, J.D.; Modongo, C. Mixed Mycobacterium tuberculosis complex infections and false-negative results for rifampin resistance by GeneXpert MTB/RIF are associated with poor clinical outcomes. J. Clin. Microbiol., 2014, 52(7), 2422-2429.
[http://dx.doi.org/10.1128/JCM.02489-13] [PMID: 24789181]
[24]
Horng, Y.T.; Jeng, W.Y.; Chen, Y.Y.; Liu, C.H.; Dou, H.Y.; Lee, J.J.; Chang, K.C.; Chien, C.C.; Soo, P.C. Molecular analysis of codon 548 in the rpoB gene involved in Mycobacterium tuberculosis resistance to rifampin. Antimicrob. Agents Chemother., 2015, 59(3), 1542-1548.
[http://dx.doi.org/10.1128/AAC.04374-14] [PMID: 25534743]
[25]
Yendapally, R.; Lee, R.E. Design, synthesis, and evaluation of novel ethambutol analogues. Bioorg. Med. Chem. Lett., 2008, 18(5), 1607-1611.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.065] [PMID: 18242089]
[26]
Belanger, A.E.; Besra, G.S.; Ford, M.E. Mikusová; K.; Belisle, J.T.; Brennan, P.J.; Inamine, J.M. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antibacterial drug ethambutol. Proc. Natl. Acad. Sci. USA, 1996, 93, 11919-11924.
[http://dx.doi.org/10.1073/pnas.93.21.11919] [PMID: 8876238]
[27]
Goude, R.; Amin, A.G.; Chatterjee, D.; Parish, T. The arabinosyltransferase EmbC is inhibited by ethambutol in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2009, 53(10), 4138-4146.
[http://dx.doi.org/10.1128/AAC.00162-09] [PMID: 19596878]
[28]
Peets, E.A.; Buyske, D.A. Comparative metabolism of ethambutol and its L-isomer. Biochem. Pharmacol., 1964, 13, 1403-1419.
[http://dx.doi.org/10.1016/0006-2952(64)90189-3] [PMID: 14222189]
[29]
Martins, F.; Santos, S.; Ventura, C.; Elvas-Leitão, R.; Santos, L.; Vitorino, S.; Reis, M.; Miranda, V.; Correia, H.F.; Aires-de-Sousa, J.; Kovalishyn, V.; Latino, D.A.R.S.; Ramos, J.; Viveiros, M. Design, synthesis and biological evaluation of novel isoniazid derivatives with potent antitubercular activity. Eur. J. Med. Chem., 2014, 81, 119-138.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.077] [PMID: 24836065]
[30]
Banerjee, A.; Dubnau, E.; Quemard, A.; Balasubramanian, V.; Um, K.S.; Wilson, T.; Collins, D.; de Lisle, G.; Jacobs, W.R., Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science, 1994, 263(5144), 227-230.
[http://dx.doi.org/10.1126/science.8284673] [PMID: 8284673]
[31]
Wang, J.Y.; Burger, R.M.; Drlica, K. Role of superoxide in catalase-peroxidase-mediated isoniazid action against mycobacteria. Antimicrob. Agents Chemother., 1998, 42(3), 709-711.
[http://dx.doi.org/10.1128/AAC.42.3.709] [PMID: 9517959]
[32]
Mdluli, K.; Slayden, R.A.; Zhu, Y.; Ramaswamy, S.; Pan, X.; Mead, D.; Crane, D.D.; Musser, J.M.; Barry, C.E., III Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science, 1998, 280(5369), 1607-1610.
[http://dx.doi.org/10.1126/science.280.5369.1607] [PMID: 9616124]
[33]
Slayden, R.A.; Lee, R.E.; Barry, C.E., III Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Mol. Microbiol., 2000, 38(3), 514-525.
[http://dx.doi.org/10.1046/j.1365-2958.2000.02145.x] [PMID: 11069675]
[34]
Kremer, L.; Dover, L.G.; Morbidoni, H.R.; Vilchèze, C.; Maughan, W.N.; Baulard, A.; Tu, S.C.; Honoré, N.; Deretic, V.; Sacchettini, J.C.; Locht, C.; Jacobs, W.R., Jr; Besra, G.S. Inhibition of InhA activity, but not KasA activity, induces formation of a KasA-containing complex in mycobacteria. J. Biol. Chem., 2003, 278(23), 20547-20554.
[http://dx.doi.org/10.1074/jbc.M302435200] [PMID: 12654922]
[35]
Vilchèze, C.; Weisbrod, T.R.; Chen, B.; Kremer, L.; Hazbón, M.H.; Wang, F.; Alland, D.; Sacchettini, J.C.; Jacobs, W.R., Jr Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob. Agents Chemother., 2005, 49(2), 708-720.
[http://dx.doi.org/10.1128/AAC.49.2.708-720.2005] [PMID: 15673755]
[36]
Timmins, G.S.; Deretic, V. Mechanisms of action of isoniazid. Mol. Microbiol., 2006, 62(5), 1220-1227.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05467.x] [PMID: 17074073]
[37]
Unissa, A.N.; Subbian, S.; Hanna, L.E.; Selvakumar, N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect. Genet. Evol., 2016, 45, 474-492.
[http://dx.doi.org/10.1016/j.meegid.2016.09.004] [PMID: 27612406]
[38]
Zhang, Y.; Heym, B.; Allen, B.; Young, D.; Cole, S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature, 1992, 358(6387), 591-593.
[http://dx.doi.org/10.1038/358591a0] [PMID: 1501713]
[39]
Basso, L.A.; Zheng, R.; Musser, J.M.; Jacobs, W.R., Jr; Blanchard, J.S. Mechanisms of isoniazid resistance in Mycobacterium tuberculosis: enzymatic characterization of enoyl reductase mutants identified in isoniazid-resistant clinical isolates. J. Infect. Dis., 1998, 178(3), 769-775.
[http://dx.doi.org/10.1086/515362] [PMID: 9728546]
[40]
Slayden, R.A.; Barry, C.E., III The genetics and biochemistry of isoniazid resistance in Mycobacterium tuberculosis. Microbes Infect., 2000, 2(6), 659-669.
[http://dx.doi.org/10.1016/S1286-4579(00)00359-2] [PMID: 10884617]
[41]
Zhang, Y.; Yew, W.W. Mechanisms of drug resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis., 2009, 13(11), 1320-1330.
[http://dx.doi.org/10.5588/ijtld.15.0389] [PMID: 19861002]
[42]
Ellard, G.A.; Gammon, P.T. Pharmacokinetics of isoniazid metabolism in man. J. Pharmacokinet. Biopharm., 1976, 4(2), 83-113.
[http://dx.doi.org/10.1007/BF01086149] [PMID: 950592]
[43]
Wang, P.; Pradhan, K.; Zhong, X.B.; Ma, X. Isoniazid metabolism and hepatotoxicity. Acta Pharm. Sin. B, 2016, 6(5), 384-392.
[http://dx.doi.org/10.1016/j.apsb.2016.07.014] [PMID: 27709007]
[44]
Baulard, A.R.; Betts, J.C.; Engohang-Ndong, J.; Quan, S.; McAdam, R.A.; Brennan, P.J.; Locht, C.; Besra, G.S. Activation of the pro-drug ethionamide is regulated in mycobacteria. J. Biol. Chem., 2000, 275(36), 28326-28331.
[http://dx.doi.org/10.1074/jbc.M003744200] [PMID: 10869356]
[45]
Nishida, C.R.; Ortiz de Montellano, P.R. Bioactivation of antituberculosis thioamide and thiourea prodrugs by bacterial and mammalian flavin monooxygenases. Chem. Biol. Interact., 2011, 192(1-2), 21-25.
[http://dx.doi.org/10.1016/j.cbi.2010.09.015] [PMID: 20863819]
[46]
Nikiforov, P.O.; Surade, S.; Blaszczyk, M.; Delorme, V.; Brodin, P.; Baulard, A.R.; Blundell, T.L.; Abell, C. A fragment merging approach towards the development of small molecule inhibitors of Mycobacterium tuberculosis EthR for use as ethionamide boosters. Org. Biomol. Chem., 2016, 14(7), 2318-2326.
[http://dx.doi.org/10.1039/C5OB02630J] [PMID: 26806381]
[47]
Palmer, A.L.; Leykam, V.L.; Larkin, A.; Krueger, S.K.; Phillips, I.R.; Shephard, E.A.; Williams, D.E. Metabolism and pharmacokinetics of the anti-tuberculosis drug ethionamide in a flavin-containing monooxygenase null mouse. Pharmaceuticals (Basel), 2012, 5(11), 1147-1159.
[http://dx.doi.org/10.3390/ph5111147] [PMID: 23580869]
[48]
Boshoff, H.I.; Mizrahi, V.; Barry, C.E., III Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I. J. Bacteriol., 2002, 184(8), 2167-2172.
[http://dx.doi.org/10.1128/JB.184.8.2167-2172.2002] [PMID: 11914348]
[49]
Sayahi, H.; Zimhony, O.; Jacobs, W.R., Jr; Shekhtman, A.; Welch, J.T. Pyrazinamide, but not pyrazinoic acid, is a competitive inhibitor of NADPH binding to Mycobacterium tuberculosis fatty acid synthase I. Bioorg. Med. Chem. Lett., 2011, 21(16), 4804-4807.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.055] [PMID: 21775138]
[50]
Zimhony, O.; Cox, J.S.; Welch, J.T.; Vilchèze, C.; Jacobs, W.R., Jr Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat. Med., 2000, 6(9), 1043-1047.
[http://dx.doi.org/10.1038/79558] [PMID: 10973326]
[51]
Lacroix, C.; Hoang, T.P.; Nouveau, J.; Guyonnaud, C.; Laine, G.; Duwoos, H.; Lafont, O. Pharmacokinetics of pyrazinamide and its metabolites in healthy subjects. Eur. J. Clin. Pharmacol., 1989, 36(4), 395-400.
[http://dx.doi.org/10.1007/BF00558302] [PMID: 2737233]
[52]
Bareggi, S.R.; Cerutti, R.; Pirola, R.; Riva, R.; Cisternino, M. Clinical pharmacokinetics and metabolism of pyrazinamide in healthy volunteers. Arzneimittelforschung, 1987, 37(7), 849-854.
[PMID: 3675682]
[53]
Chen, J.; Zhang, S.; Cui, P.; Shi, W.; Zhang, W.; Zhang, Y. Identification of novel mutations associated with cycloserine resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2017, 72(12), 3272-3276.
[http://dx.doi.org/10.1093/jac/dkx316] [PMID: 28961957]
[54]
Bruning, J.B.; Murillo, A.C.; Chacon, O.; Barletta, R.G.; Sacchettini, J.C. Structure of the Mycobacterium tuberculosis D-alanine: D-alanine ligase, a target of the antituberculosis drug D-cycloserine. Antimicrob. Agents Chemother., 2011, 55(1), 291-301.
[http://dx.doi.org/10.1128/AAC.00558-10] [PMID: 20956591]
[55]
Prosser, G.A.; de Carvalho, L.P. Reinterpreting the mechanism of inhibition of Mycobacterium tuberculosis D-alanine: D-alanine ligase by D-cycloserine. Biochemistry, 2013, 52(40), 7145-7149.
[http://dx.doi.org/10.1021/bi400839f] [PMID: 24033232]
[56]
Vora, A. Terizidone. J. Assoc. Physicians India, 2010, 58, 267-268.
[PMID: 21046890]
[57]
Gler, M.T.; Skripconoka, V.; Sanchez-Garavito, E.; Xiao, H.; Cabrera-Rivero, J.L.; Vargas-Vasquez, D.E.; Gao, M.; Awad, M.; Park, S.K.; Shim, T.S.; Suh, G.Y.; Danilovits, M.; Ogata, H.; Kurve, A.; Chang, J.; Suzuki, K.; Tupasi, T.; Koh, W.J.; Seaworth, B.; Geiter, L.J.; Wells, C.D. Delamanid for multidrug-resistant pulmonary tuberculosis. N. Engl. J. Med., 2012, 366(23), 2151-2160.
[http://dx.doi.org/10.1056/NEJMoa1112433] [PMID: 22670901]
[58]
Skripconoka, V.; Danilovits, M.; Pehme, L.; Tomson, T.; Skenders, G.; Kummik, T.; Cirule, A.; Leimane, V.; Kurve, A.; Levina, K.; Geiter, L.J.; Manissero, D.; Wells, C.D. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur. Respir. J., 2013, 41(6), 1393-1400.
[http://dx.doi.org/10.1183/09031936.00125812] [PMID: 23018916]
[59]
Sasahara, K.; Shimokawa, Y.; Hirao, Y.; Koyama, N.; Kitano, K.; Shibata, M.; Umehara, K. Pharmacokinetics and metabolism of delamanid, a novel anti-tuberculosis drug, in animals and humans: importance of albumin metabolism in vivo. Drug Metab. Dispos., 2015, 43(8), 1267-1276.
[http://dx.doi.org/10.1124/dmd.115.064527] [PMID: 26055620]
[60]
Shimokawa, Y.; Sasahara, K.; Koyama, N.; Kitano, K.; Shibata, M.; Yoda, N.; Umehara, K. Metabolic mechanism of delamanid, a new anti-tuberculosis drug, in human plasma. Drug Metab. Dispos., 2015, 43(8), 1277-1283.
[http://dx.doi.org/10.1124/dmd.115.064550] [PMID: 26055621]
[61]
Singh, R.; Manjunatha, U.; Boshoff, H.I.; Ha, Y.H.; Niyomrattanakit, P.; Ledwidge, R.; Dowd, C.S.; Lee, I.Y.; Kim, P.; Zhang, L.; Kang, S.; Keller, T.H.; Jiricek, J.; Barry, C.E., III PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science, 2008, 322(5906), 1392-1395.
[http://dx.doi.org/10.1126/science.1164571] [PMID: 19039139]
[62]
Matsumoto, M.; Hashizume, H.; Tomishige, T.; Kawasaki, M.; Tsubouchi, H.; Sasaki, H.; Shimokawa, Y.; Komatsu, M. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med., 2006, 3(11), e466
[http://dx.doi.org/10.1371/journal.pmed.0030466] [PMID: 17132069]
[63]
Kwon, Y.S.; Jeong, B.H.; Koh, W.J. Delamanid when other anti-tuberculosis-treatment regimens failed due to resistance or tolerability. Expert Opin. Pharmacother., 2015, 16(2), 253-261.
[http://dx.doi.org/10.1517/14656566.2015.973853] [PMID: 25327169]
[64]
Citron, K.M.; Thomas, G.O. Ocular toxicity from ethambutol. Thorax, 1986, 41(10), 737-739.
[http://dx.doi.org/10.1136/thx.41.10.737] [PMID: 3787505]
[65]
Chan, R.Y.; Kwok, A.K. Ocular toxicity of ethambutol. Hong Kong Med. J., 2006, 12(1), 56-60.
[PMID: 16495590]
[66]
Schaberg, T.; Rebhan, K.; Lode, H. Risk factors for side-effects of isoniazid, rifampin and pyrazinamide in patients hospitalized for pulmonary tuberculosis. Eur. Respir. J., 1996, 9(10), 2026-2030.
[http://dx.doi.org/10.1183/09031936.96.09102026] [PMID: 8902462]
[67]
Javadi, M.R.; Shalviri, G.; Gholami, K.; Salamzadeh, J.; Maghooli, G.; Mirsaeedi, S.M. Adverse reactions of anti-tuberculosis drugs in hospitalized patients: incidence, severity and risk factors. Pharmacoepidemiol. Drug Saf., 2007, 16(10), 1104-1110.
[http://dx.doi.org/10.1002/pds.1468] [PMID: 17823987]
[68]
Yee, D.; Valiquette, C.; Pelletier, M.; Parisien, I.; Rocher, I.; Menzies, D. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am. J. Respir. Crit. Care Med., 2003, 167(11), 1472-1477.
[http://dx.doi.org/10.1164/rccm.200206-626OC] [PMID: 12569078]
[69]
Gholami, K.; Kamali, E.; Hajiabdolbaghi, M.; Shalviri, G. Evaluation of anti-tuberculosis induced adverse reactions in hospitalized patients. Pharm. Pract. (Granada), 2006, 4(3), 134-138.
[PMID: 25214900]
[70]
Guidelines for the Management of Adverse Drug Effects of Antimycobacterial Agents. Lawrence Flick Memorial Tuberculosis Clinic; Philadelphia Tuberculosis Control Program, 1998.
[71]
Saraf, G.; Akshata, J.S.; Kuruthukulangara, S.; Thippeswamy, H.; Reddy, S.K.; Buggi, S.; Chaturvedi, S.K. Cycloserine induced delirium during treatment of multi-drug resistant tuberculosis (MDR-TB). Egypt. J. Chest Dis. Tuberc., 2015, 64, 449-451.
[http://dx.doi.org/10.1016/j.ejcdt.2014.11.032]
[72]
Lemke, T.L. Williams, D.A., Roche, V.F.; Zito, S.W; Foye’s Principles of Medicinal Chemistry 7th ed., 2012.
[73]
Somoskovi, A.; Parsons, L.M.; Salfinger, M. The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir. Res., 2001, 2(3), 164-168.
[http://dx.doi.org/10.1186/rr54] [PMID: 11686881]
[74]
Horne, D.J.; Spitters, C.; Narita, M. Experience with rifabutin replacing rifampin in the treatment of tuberculosis. Int. J. Tuberc. Lung Dis., 2011, 15(11), 1485-1489.
[http://dx.doi.org/10.5588/ijtld.11.0068] [PMID: 22008761]
[75]
Saito, K.; Warrier, T.; Somersan-Karakaya, S.; Kaminski, L.; Mi, J.; Jiang, X.; Park, S.; Shigyo, K.; Gold, B.; Roberts, J.; Weber, E.; Jacobs, W.R., Jr; Nathan, C.F. Rifamycin action on RNA polymerase in antibiotic-tolerant Mycobacterium tuberculosis results in differentially detectable populations. Proc. Natl. Acad. Sci. USA, 2017, 114(24), E4832-E4840.
[http://dx.doi.org/10.1073/pnas.1705385114] [PMID: 28559332]
[76]
Battaglia, R.; Pianezzola, E.; Salgarollo, G.; Zini, G.; Strolin Benedetti, M. Absorption, disposition and preliminary metabolic pathway of 14C-rifabutin in animals and man. J. Antimicrob. Chemother., 1990, 26(6), 813-822.
[http://dx.doi.org/10.1093/jac/26.6.813] [PMID: 1964448]
[77]
Banerjee, U.C.; Saxena, B.; Chisti, Y. Biotransformations of rifamycins: process possibilities. Biotechnol. Adv., 1992, 10(4), 577-595.
[http://dx.doi.org/10.1016/0734-9750(92)91454-M] [PMID: 14543707]
[78]
Niemi, M.; Backman, J.T.; Fromm, M.F.; Neuvonen, P.J.; Kivistö, K.T. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin. Pharmacokinet., 2003, 42(9), 819-850.
[http://dx.doi.org/10.2165/00003088-200342090-00003] [PMID: 12882588]
[79]
Buniva, G.; Sassella, D.; Frigo, G.M. Pharmacokinetics of rifapentine in man. Proc. Int. Congr. Chemother., 1983, pp. 29-33.
[80]
Holdiness, M.R. Clinical pharmacokinetics of the antituberculosis drugs. Clin. Pharmacokinet., 1984, 9(6), 511-544.
[http://dx.doi.org/10.2165/00003088-198409060-00003] [PMID: 6391781]
[81]
Fiese, E.F.; Steffen, S.H. Comparison of the acid stability of azithromycin and erythromycin A. J. Antimicrob. Chemother., 1990, 25(Suppl. A), 39-47.
[http://dx.doi.org/10.1093/jac/25.suppl_A.39] [PMID: 2154437]
[82]
Roberts, M.C.; Sutcliffe, J.; Courvalin, P.; Jensen, L.B.; Rood, J.; Seppala, H. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob. Agents Chemother., 1999, 43(12), 2823-2830.
[http://dx.doi.org/10.1128/AAC.43.12.2823] [PMID: 10582867]
[83]
Ferrero, J.L.; Bopp, B.A.; Marsh, K.C.; Quigley, S.C.; Johnson, M.J.; Anderson, D.J.; Lamm, J.E.; Tolman, K.G.; Sanders, S.W.; Cavanaugh, J.H. Metabolism and disposition of clarithromycin in man. Drug Metab. Dispos., 1990, 18(4), 441-446.
[PMID: 1976065]
[84]
Rodrigues, A.D.; Roberts, E.M.; Mulford, D.J.; Yao, Y.; Ouellet, D. Oxidative metabolism of clarithromycin in the presence of human liver microsomes. Major role for the cytochrome P4503A (CYP3A) subfamily. Drug Metab. Dispos., 1997, 25(5), 623-630.
[PMID: 9152603]
[85]
Fraschini, F.; Scaglione, F.; Demartini, G. Clarithromycin clinical pharmacokinetics. Clin. Pharmacokinet., 1993, 25(3), 189-204.
[http://dx.doi.org/10.2165/00003088-199325030-00003] [PMID: 8222460]
[86]
Gillespie, S.H.; Crook, A.M.; McHugh, T.D.; Mendel, C.M.; Meredith, S.K.; Murray, S.R.; Pappas, F.; Phillips, P.P.; Nunn, A.J. REMoxTB Consortium. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N. Engl. J. Med., 2014, 371(17), 1577-1587.
[http://dx.doi.org/10.1056/NEJMoa1407426] [PMID: 25196020]
[87]
Alipanah, N.; Cattamanchi, A.; Menzies, R.; Hopewell, P.C.; Chaisson, R.E.; Nahid, P. Treatment of non-cavitary pulmonary tuberculosis with shortened fluoroquinolone-based regimens: a meta-analysis. Int. J. Tuberc. Lung Dis., 2016, 20(11), 1522-1528.
[http://dx.doi.org/10.5588/ijtld.16.0217] [PMID: 27776595]
[88]
Momekov, G.; Momekova, D.; Stavrakov, G.; Voynikov, Y.; Peikov, P. Para-aminosalicylic acid–biopharmaceutical, pharmacological, and clinical features and resurgence as antituberculous agent. Pharmacia, 2015, 62, 25-51.
[89]
Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.; Neefs, J.M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707), 223-227.
[http://dx.doi.org/10.1126/science.1106753] [PMID: 15591164]
[90]
van Heeswijk, R.P.G.; Dannemann, B.; Hoetelmans, R.M.W. Bedaquiline: a review of human pharmacokinetics and drug-drug interactions. J. Antimicrob. Chemother., 2014, 69(9), 2310-2318.
[http://dx.doi.org/10.1093/jac/dku171] [PMID: 24860154]
[91]
Haagsma, A.C.; Abdillahi-Ibrahim, R.; Wagner, M.J.; Krab, K.; Vergauwen, K.; Guillemont, J.; Andries, K.; Lill, H.; Koul, A.; Bald, D. Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob. Agents Chemother., 2009, 53(3), 1290-1292.
[http://dx.doi.org/10.1128/AAC.01393-08] [PMID: 19075053]
[92]
Rouan, M.C.; Lounis, N.; Gevers, T.; Dillen, L.; Gilissen, R.; Raoof, A.; Andries, K. Pharmacokinetics and pharmacodynamics of TMC207 and its N-desmethyl metabolite in a murine model of tuberculosis. Antimicrob. Agents Chemother., 2012, 56(3), 1444-1451.
[http://dx.doi.org/10.1128/AAC.00720-11] [PMID: 22155815]
[93]
Pandie, M.; Wiesner, L.; McIlleron, H.; Hughes, J.; Siwendu, S.; Conradie, F.; Variava, E.; Maartens, G. Drug-drug interactions between bedaquiline and the antiretrovirals lopinavir/ritonavir and nevirapine in HIV-infected patients with drug-resistant TB. J. Antimicrob. Chemother., 2016, 71(4), 1037-1040.
[http://dx.doi.org/10.1093/jac/dkv447] [PMID: 26747099]
[94]
Svensson, E.M.; Murray, S.; Karlsson, M.O.; Dooley, K.E. Rifampicin and rifapentine significantly reduce concentrations of bedaquiline, a new anti-TB drug. J. Antimicrob. Chemother., 2015, 70(4), 1106-1114.
[http://dx.doi.org/10.1093/jac/dku504] [PMID: 25535219]
[95]
World Health Organization. The use of bedaquiline in the treatment of multidrug-resistant tuberculosis Interim policy guidance, 2013.
[96]
Field, S.K. Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther. Adv. Chronic Dis., 2015, 6(4), 170-184.
[http://dx.doi.org/10.1177/2040622315582325] [PMID: 26137207]
[97]
Goel, D. Bedaquiline: A novel drug to combat multiple drug-resistant tuberculosis. J. Pharmacol. Pharmacother., 2014, 5(1), 76-78.
[http://dx.doi.org/10.4103/0976-500X.124435] [PMID: 24554919]
[98]
Soni, I.; De Groote, M.A.; Dasgupta, A.; Chopra, S. Challenges facing the drug discovery pipeline for non-tuberculous mycobacteria. J. Med. Microbiol., 2016, 65(1), 1-8.
[http://dx.doi.org/10.1099/jmm.0.000198] [PMID: 26515915]
[99]
Swindells, S. New drugs to treat tuberculosis. F1000 Reports, 2012, 4-12.
[http://dx.doi.org/10.3410/M4-12]
[100]
Wolucka, B.A. Biosynthesis of D-arabinose in mycobacteria - a novel bacterial pathway with implications for antimycobacterial therapy. FEBS J., 2008, 275(11), 2691-2711.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06395.x] [PMID: 18422659]
[101]
Cole, S.T.; Riccardi, G. New tuberculosis drugs on the horizon. Curr. Opin. Microbiol., 2011, 14(5), 570-576.
[http://dx.doi.org/10.1016/j.mib.2011.07.022] [PMID: 21821466]
[102]
Lamichhane, G. Novel targets in M. tuberculosis: search for new drugs. Trends Mol. Med., 2011, 17(1), 25-33.
[http://dx.doi.org/10.1016/j.molmed.2010.10.004] [PMID: 21071272]
[103]
Manjunatha, U.; Boshoff, H.I.M.; Barry, C.E., III The mechanism of action of PA-824: Novel insights from transcriptional profiling. Commun. Integr. Biol., 2009, 2(3), 215-218.
[http://dx.doi.org/10.4161/cib.2.3.7926] [PMID: 19641733]
[104]
Sacksteder, K.A.; Protopopova, M.; Barry, C.E., III; Andries, K.; Nacy, C.A. Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol., 2012, 7(7), 823-837.
[http://dx.doi.org/10.2217/fmb.12.56] [PMID: 22827305]
[105]
Makarov, V.; Manina, G.; Mikusova, K.; Möllmann, U.; Ryabova, O.; Saint-Joanis, B.; Dhar, N.; Pasca, M.R.; Buroni, S.; Lucarelli, A.P.; Milano, A.; De Rossi, E.; Belanova, M.; Bobovska, A.; Dianiskova, P.; Kordulakova, J.; Sala, C.; Fullam, E.; Schneider, P.; McKinney, J.D.; Brodin, P.; Christophe, T.; Waddell, S.; Butcher, P.; Albrethsen, J.; Rosenkrands, I.; Brosch, R.; Nandi, V.; Bharath, S.; Gaonkar, S.; Shandil, R.K.; Balasubramanian, V.; Balganesh, T.; Tyagi, S.; Grosset, J.; Riccardi, G.; Cole, S.T. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science, 2009, 324(5928), 801-804.
[http://dx.doi.org/10.1126/science.1171583] [PMID: 19299584]
[106]
Makarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; van der Sar, A.M.; Raadsen, S.A.; Hartkoorn, R.C.; Ryabova, O.B.; Vocat, A.; Decosterd, L.A.; Widmer, N.; Buclin, T.; Bitter, W.; Andries, K.; Pojer, F.; Dyson, P.J.; Cole, S.T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med., 2014, 6(3), 372-383.
[http://dx.doi.org/10.1002/emmm.201303575] [PMID: 24500695]
[107]
Lechartier, B.; Hartkoorn, R.C.; Cole, S.T. In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2012, 56(11), 5790-5793.
[http://dx.doi.org/10.1128/AAC.01476-12] [PMID: 22926573]
[108]
Bald, D.; Koul, A. Respiratory ATP synthesis: the new generation of mycobacterial drug targets? FEMS Microbiol. Lett., 2010, 308(1), 1-7.
[http://dx.doi.org/10.1111/j.1574-6968.2010.01959.x] [PMID: 20402785]
[109]
Ottenhoff, T.H.E.; Kaufmann, S.H.E. Vaccines against tuberculosis: where are we and where do we need to go? PLoS Pathog., 2012, 8(5), e1002607
[http://dx.doi.org/10.1371/journal.ppat.1002607] [PMID: 22589713]
[110]
Rowland, R.; McShane, H. Tuberculosis vaccines in clinical trials. Expert Rev. Vaccines, 2011, 10(5), 645-658.
[http://dx.doi.org/10.1586/erv.11.28] [PMID: 21604985]
[111]
World Health Organization and Stop TB Partnership. Tuberculosis Vaccines, http://www.stoptb.org/wg/new_vaccines/assets/documents/TB%20vaccine%20brochure%20latest.pdf
[112]
Kaufmann, S.H.E.; Weiner, J.; von Reyn, C.F. Novel approaches to tuberculosis vaccine development. Int. J. Infect. Dis., 2017, 56, 263-267.
[http://dx.doi.org/10.1016/j.ijid.2016.10.018] [PMID: 27816661]
[113]
Bloom, B.R. New promise for vaccines against tuberculosis. N. Engl. J. Med., 2018, 379(17), 1672-1674.
[http://dx.doi.org/10.1056/NEJMe1812483] [PMID: 30252629]
[114]
Van Der Meeren, O.; Hatherill, M.; Nduba, V.; Wilkinson, R.J.; Muyoyeta, M.; Van Brakel, E.; Ayles, H.M.; Henostroza, G.; Thienemann, F.; Scriba, T.J.; Diacon, A.; Blatner, G.L.; Demoitié, M.A.; Tameris, M.; Malahleha, M.; Innes, J.C.; Hellström, E.; Martinson, N.; Singh, T.; Akite, E.J.; Khatoon Azam, A.; Bollaerts, A.; Ginsberg, A.M.; Evans, T.G.; Gillard, P.; Tait, D.R. Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N. Engl. J. Med., 2018, 379(17), 1621-1634.
[http://dx.doi.org/10.1056/NEJMoa1803484] [PMID: 30280651]