Protein & Peptide Letters

Author(s): Xiaoqing Cao, Jing Tang, Zhe Fu, Zhuo Feng, Siyuan Wang, Meifeng Yang, Chunyun Wu, Ying Wang* and Xinwang Yang*

DOI: 10.2174/0929866525666181114153136

DownloadDownload PDF Flyer Cite As
Identification and Characterization of a Novel Gene-encoded Antioxidant Peptide from Odorous Frog Skin

Page: [160 - 169] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Amphibian skin plays an essential role in protecting organisms from harmful external factors such as UV radiation. How amphibians protect themselves from reactive oxygen species following long-term sun exposure is an important and interesting question. Amphibian skins possess a novel antioxidant system composed of various Antioxidant Peptides (AOPs), which maintain redox homeostasis. However, only a few AOPs have been identified so far.

Methods: Using combinational methods of peptidomics and genomics, we characterized a novel gene-encoded antioxidant peptide (herein named OA-VI12) from Odorrana andersonii skin secretions, which was produced by the post-translational processing of a 59-residue prepropeptide. The amino acid sequence of the OA-V112 was 'VIPFLACRPLGL', with a molecular mass of 1298.6 Da and no observed post-transcriptional modifications. Functional analysis demonstrated that OA-VI12 was capable of scavenging ABTS+, DPPH, NO and decreasing the Fe3+ production.

Results: We determined that the C7 amino acid was responsible for ABTS+ and Fe3+ scavenging, activities, the F4, C7, and P9 amino acids were crucial for DPPH scavenging activity, and the P9 amino acid was responsible for NO scavenging activity. Unlike several other amphibian peptides, OA-VI12 did not accelerate wound healing in a full-thickness skin-wound mouse model and did not demonstrate direct microbial killing. Here, we identified and named a novel gene-encoded antioxidant peptide from the skin secretions of an odorous frog species, which may assist in the development of potential antioxidant candidates.

Conclusion: This study may help improve our understanding of the molecular basis of amphibians’ adaptation to environments experiencing long-term UV radiation.

Keywords: Odorrana andersonii, OA-VI12, antioxidant peptide, molecular basis, amphibian adaptation, UV radiation.