New Drug Discovery from Medicinal Plants and Phytoconstituents for Depressive Disorders

Page: [92 - 102] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background & Objective: Depression, a risk factor for several serious diseases, is a highly prevalent and life-threatening psychiatric disorder. It can affect the individual’s position in life and reduce the living standards. The research on the use of medicinal plants in treating this disease has increased enormously because of the possible low rehabilitation rate and side effects of available synthetic drugs, such as sexual dysfunction, nausea, fatigue, insomnia, hypersomnia, and weight gain.

Conclusion: Therefore, this review aimed to draw attention to the antidepressant effects of culinary herbs and traditional medicinal plants and their active components, thereby promoting their use in the development of more potent antidepressants with improved side effect profile.

Keywords: Antidepressant, depression, natural products, plants, rehabilitation rate, culinary herbs.

Graphical Abstract

[1]
Reddy MS. Depression: The disorder and the burden. Indian J Psychol Med 2010; 32(1): 1-2.
[2]
World Health Organization. Mental health in the workplace 2017.https://www.who.int/mental_health/world-mental-health-day/2017/en/
[3]
World Health Organization. Burden of mental and behavioural disorders 2001.https://www.who.int/whr/2001/chapter2/en/index4. html
[4]
World Health Organization. The global burden of disease 2008.http://www.who.int/healthinfo/global_burden_disease/GBD_ report_2004update_full.pdf
[5]
Ohayon MM. Specific characteristics of the pain/depression association in the general population. J Clin Psychiatry 2004; 12: 5-9.
[6]
Zuckerman B, Amaro H, Bauchner H, Cabral H. Depressive symptoms during pregnancy: Relationship to poor health behaviors. Am J Obstet Gynecol 1989; 160: 1107-11.
[7]
Kashani JH, Barbero GJ, Bolander FD. Depression in hospitalized pediatric patients. J Am Acad Child Adolesc Psychiatry 1981; 20: 123-34.
[8]
Sevilla-González MDR, Quintana-Mendoza BM, Aguilar-Salinas CA. Interaction between depression, obesity, and type 2 diabetes: A complex picture. Arch Med Res 2017; 48(7): 582-91.
[9]
Goodwin GM. Depression and associated physical diseases and symptoms. Dialogues Clin Neurosci 2006; 8(2): 259-65.
[10]
Bisschop MI, Kriegsman DM, Beekman AT, Deeg DJ. Chronic diseases and depression: The modifying role of psychosocial resources. Soc Sci Med 2004; 59(4): 721-33.
[11]
Huang CQ, Dong BR, Lu ZC, Yue JR, Liu QX. Chronic diseases and risk for depression in old age: A meta-analysis of published literature. Ageing Res Rev 2010; 9(2): 131-41.
[12]
Rabiei Z, Rabiei S. A review on antidepressant effect of medicinal plants. Bangladesh J Pharmacol 2017; 12: 1-11.
[13]
Benkeblia N. Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). Lebensm-Technol 2004; 37: 263-8.
[14]
Prakash D, Singh BN, Upadhyay G. Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chem 2007; 102: 1389-93.
[15]
Goldman IL, Kopelberg M, Debaene JE, Schwartz BS. Antiplatelet activity in onion (Allium cepa) is sulfur dependent. Thromb Haemost 1996; 76(3): 450-2.
[16]
Shenoy C, Patil MB, Kumar R, Patil S. Preliminary phytochemical investigation and wound healing activity of Allium cepa Linn (Lilliacea). Int J Pharm Pharm Sci 2009; 2: 167-76.
[17]
Kumari K, Mathew BC, Augusti KT. Antidiabetic and hypolipidemic effects of S-methyl cysteine sulfoxide isolated from Allium cepa Linn. Indian J Biochem Biophys 1995; 32(1): 49-54.
[18]
Sakakibara H, Yoshino S, Kawai Y, Terao J. Antidepressant-like effect of onion (Allium cepa L.) powder in a rat behavioral model of depression. Biosci Biotechnol Biochem 2008; 72(1): 94-100.
[19]
Breu W. Allium cepa L (Onion). Phytomedicine 1996; 3(3): 293-306.
[20]
Sakakibara H, Honda Y, Nakagawa S, Ashida H, Kanazawa K. Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J Agric Food Chem 2003; 51: 571-81.
[21]
Butterweck V, Jurgenliemk G, Nahrstedt A, Winterhoff H. Flavonoids from Hypericum perforatum show antidepressant activity in the forced swimming test. Planta Med 2000; 66: 3-6.
[22]
Butterweck V, Nishibe S, Sasaki T, Uchida M. Antidepressant effects of Apocynum venetum leaves in a forced swimming test. Biol Pharm Bull 2001; 24: 848-51.
[23]
Noldner M, Schotz K. Rutin is essential for the antidepressant activity of Hypericum perforatum extracts in the forced swimming test. Planta Med 2002; 68: 577-80.
[24]
Porsolt RD. Behavioral despairin ‘‘Antidepressants: Neurochemical, behavioral and clinical perspectives,’’ eds. Enna SJ, Malick JB, Richelson E, Raven Press, New York, pp. 121-39 1981.
[25]
Davis PH. Flora of Turkey and the east aegean islands. University Press Edinburgh 1972.
[26]
Cakilcioglu U, Sengun MT, Turkoglu D. An ethnobotanical survey of medicinal plants of Yazıkonak and Yurtbaşı districts of Elazığ Province, Turkey. J Med Plants Res 4(7): 567-72.
[27]
Cakilcioglu U, Khatun S, Turkoglu I, Hayta S. Ethnopharmacological survey of medicinal plants in Maden (Elazig-Turkey). J Ethnopharmacol 2011; 137(1): 469-86.
[28]
Papaioannou P, Lazari D, Karioti A, et al. Phenolic compounds with antioxidant activity from Anthemis tinctoria L. (Asteraceae). Z Naturforsch C 2007; 62(5-6): 326-30.
[29]
Quarenghi MV, Tereschuk ML, Baigori MD, Abdala LR. Antimicrobial activity of flowers from Anthemis cotula. Fitoterapia 2000; 71(6): 710-2.
[30]
Conforti F, Menichini F, Formisano C, et al. Anthemis wiedemanniana essential oil prevents LPS-induced production of NO in RAW 264.7 macrophages and exerts antiproliferative and antibacterial activities in vitro. Nat Prod Res 2012; 26(17): 1594-601.
[31]
De Mieri M, Monteleone G, Ismajili I, Kaiser M, Hamburger M. Antiprotozoal activity-based profiling of a dichloromethane extract from Anthemis nobilis flowers. J Nat Prod 2017; 24: 80(2): 459-70.
[32]
Baltaci S, Kolatan HE, Yilmaz O, Kivcak B. Anti-inflammatory activity of Anthemis aciphylla var. aciphylla Boiss. Turk J Biol 2011; 35: 757-62.
[33]
Karim A, Berrabah M, Mekhfi H, et al. Effect of essential oil of Anthemis mauritiana Maire & Sennen flowers on intestinal smooth muscle contractility. J Smooth Muscle Res 2010; 46(1): 65-75.
[34]
Jassbi AR, Firuzi O, Miri R, et al. Cytotoxic activity and chemical constituents of Anthemis mirheydari. Pharm Biol 2016; 54(10): 2044-9.
[35]
Saleh MM, Rizk AM. Flavonoids and coumarins of Anthemis pseudocotiola. Planta Med 1974; 25(1): 60-2.
[36]
Nejadhabibvash F. Phytochemical composition of the essential oil of Anthemis wiedemanniana Fisch. and C.A. Mey. (Asteraceae) from Iran during different growth stages. J Essent Oil Bear Pl 2017; 20(5): 1349-59.
[37]
Gonenc T, Argyropoulou C, Erdogan T, et al. Chemical constituents from Anthemis wiedemanniana Fisch. & Mey. Biochem Syst Ecol 2011; 39: 51-5.
[38]
Gürağaç Dereli FT, Ilhan M, Küpeli Akkol E. Discovery of new antidepressant agents: In vivo study on Anthemis wiedemanniana Fisch. & Mey. J Ethnopharmacol 2018; 15(226): 11-6.
[39]
Goncalves AE, Burger C, Amoah SK, Tolardo R, Biavatti MW, de Souza MM. The antidepressant-like effect of Hedyosmum brasiliense and its sesquiterpene lactone, podoandin in mice: Evidence for the involvement of adrenergic, dopaminergic and serotonergic systems. Eur J Pharmacol 2012; 674(2-3): 307-14.
[40]
Kiewert C, Kumar V, Hildmann O, et al. Role of GABAergic antagonism in the neuroprotective effects of bilobalideBrain Res 2007; 12: 1128(1): 70-8
[41]
Liu XG, Gao PY, Wang GS, et al. In vivo antidepressant activity of sesquiterpenes from the roots of Valeriana fauriei Briq. Fitoterapia 2012; 83: 599-603.
[42]
Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med 1992; 21(3): 334-50.
[43]
Kitani K, Yokozawa T, Osawa T. Interventions in aging and ageassociated pathologies by means of nutritional approaches. Annals of the New York Academy of Sci 2004; 1019: 424-6.
[44]
Choi YT, Jung CH, Lee SR, et al. The green tea polyphenol (-)- epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 2001; 21: 70(5): 603-14
[45]
Choi JY, Park CS, Kim DJ, et al. Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology 2002; 23(3): 367-74.
[46]
Sato Y, Nakatsuka H, Watanabe T, et al. Possible contribution of green tea drinking habits to the prevention of stroke. Tohoku J Exp Med 1989; 157(4): 337-43.
[47]
Smith DM, Dou QP. Green tea polyphenol epigallocatechin inhibits DNA replication and consequently induces leukemia cell apoptosis. Int J Mol Med 2001; 7: 645-52.
[48]
Tsuneki H, Ishizuka M, Terasawa MWJ, et al. Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacol 2004; 4: 18-27.
[49]
Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J. Green tea and thermogenesis: Interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord 2000; 24(2): 252-8.
[50]
Zhu WL, Shi HS, Wei YM, et al. Green tea polyphenols produce antidepressant-like effects in adult mice. Pharmacol Res 2012; 65(1): 74-80.
[51]
Parmar N, Rawat M, Kumar JV. Camellia sinensis (Green tea): A review. GJB 2012; 6(2): 52-9.
[52]
Tabassum I, Siddiqui ZN, Rizvi SJ. Effects of Ocimum sanctum and Camellia sinensis on stress-induced anxiety anddepression in male albino Rattus norvegicus. Indian J Pharmacol 2010; 42(5): 283-8.
[53]
Gold P, Wand Chrousos GP. The endocrinology of melancholic and atypical depression: Relation to neurocircuitry and somatic consequences. Proc Assoc Am Physicians 1999; 111: 22-34.
[54]
Young EA, Haskett RF, Murphy-Weinberg V, Watson SJ, Akil H. Loss of glucocorticoid fast feedback in depression. Arch Gen Psychiatry 1991; 48: 693-9.
[55]
Bhuiyan MZI, Begum J, Nandi NC, Akter F. Constituents of the essential oil from leaves and buds of clove (Syzigium caryophyllatum L.). Afr J Plant Sci 2010; 4(11): 451-4.
[56]
Cortés-Rojas DF, Souza CR, Oliveira WP. Encapsulation of eugenol rich clove extract in solid lipid carriers. J Food Eng 2014; 127: 34-42.
[57]
Velioglu Y, Mazza G. Characterization of flavonoids in petals of Rosa damascene by HPLC and spectral analysis. J Agric Food Chem 1991; 39(3): 463-7.
[58]
Moallem SA, Hosseinzadeh H, Ghoncheh H. Evaluation of Antidepressant effects of aerial parts of Echium vulgare on mice. Iran J Basic Med Sci 2007; 10: 189-96.
[59]
Mathiazhagan S, Anand S, Parthiban R, Sankaranarayanan B. Antidepressant-like effect of ethanolic extract from Caryophyllus aromaticus in albino rats. IOSR-JDMS 2013; 4(2): 37-40.
[60]
Rathore JS, Rathore MS, Singh M, Singh MM, Shekhswat NS. Micropropagation of mature tree of Citrus lime. Indian J Biotechnol 2007; 6: 239-44.
[61]
Gonzalez-Molina E, Dominguez-Perles R, Moreno DA, Garcia-Viguera C. Natural bioactive compounds of Citrus limon for food and health. J Pharm Biomed Anal 2010; 51(2): 327-45.
[62]
L M Lopes C, Gonçalves e Sá C, de Almeida AA, et al. Sedative, anxiolytic and antidepressant activities of Citrus limon (Burn) essential oil in mice. Pharmazie 2011; 623-7.
[63]
Komori T, Fujiwara H, Tanida M, Nomura J, Yokoyama MM. Effects of citrus fragrance on immune function and depressive states. Neuroimmunomodulation 1995; 2: 174-80.
[64]
Cherng WH, Wen-Sung L, Chi-Tang H, Lee-Yan S. Antidepressant-like effect of lemon essential oil is through a modulation in the levels of norepinephrine, dopamine, and serotonin in mice: Use of the tail suspension test. J Funct Foods 2013; 5: 370-9.
[65]
Yi Z, Yu Y, Liang Y, Zeng B. In vitro antioxidant and antimicrobial activities of the extract of pericarpium citri reticulatae of a new citrus cultivar and its main flavonoids. LWT − Food Sci Technol 2008; 41: 597-603.
[66]
Komiya M, Takeuchi T, Harada E. Lemon oil vapor causes an anti-stress effect via modulating the 5-HT and DA activities in mice. Behav Brain Res 172: 240-9.
[67]
Bailey J, Day C. Traditional treatments for diabetes from Asia and the West Indias. Proc Diabetes 1989; 3: 190-2.
[68]
Duke JA, Bogenschutz-Godwin MJ, Pu Celliar J, Duke PAK. Handbook of medicinal herbs. Boca Raton 2002.
[69]
Taniguchi M, Yanai M, Xiao YQ, Kido T, Baba K. Three isocoumarins from Coriandrum sativum. Phytochemistry 1996; 42(3): 843-6.
[70]
Sriti J, Talou T, Wannes WA, Cerny M, Marzouk B. Essential oil, fatty acid and sterol composition of Tunisian coriander fruit different parts. J Sci Food Agric 2009; 89(10): 1659-64.
[71]
Al-Mofleh IA, Alhaider AA, Mossa JS, Al-Sohaibani MO, Rafatullah S, Qureshi S. Protection of gastric mucosal damage by Coriandrum sativum L. pretreatment in Wistar albino rats. Environ Toxicol Pharmacol 2006; 22(1): 64-9.
[72]
Kharade SM, Gumate DS, Patil VM, Kokane SP, Naikwade NS. Behavioral and biochemical studies of seeds of Coriandrum sativum in various stress models of depression. Inter J Current Res Rev 2011; 3(3): 4-11.
[73]
Wolfman C, Viola H, Paladini A, Dajas F, Medina JH. Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol Biochem Behav 1994; 47: 1-4.
[74]
Avallone R, Zanoli P, Puia G, Kleinschnitz M, Schreier P, Baraldi M. Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem Pharmacol 200(59): 1387-94.
[75]
Picq M, Cheav SL, Prigent AF. Effect of two flavonoid compounds on central nervous system. Analgesic Life Sci 1991; 49: 1979-88.
[76]
Kang TH, Jeong SJ, Kim NY, Higuchi R, Kim YC. Sedative activity of two flavonol glycosides isolated from the flowers of Albizzia julibrissin Durazz. J Ethnopharmacol 2000; 71: 321-3.
[77]
The complete German Commission E Monographs. Therapetic guide to herbal medicines. 1998
[78]
Gurgel do VT. Couto FE, Santos Júnior JG, Viana GSB. Central effects of citral, myrcene and limonene, constituents of essential oil chemotypes from Lippia alba (Mill.). NE Brown Phytomed 2002; 9: 709-14.
[79]
Rios JL, Recio MC, Giner RM, Manez S. An update review of saffron and its active constituents. Phytother Res 1996; 10: 189-93.
[80]
Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L stigma and petal extracts in mice. BMC Pharmacol 2002; 2: 7.
[81]
Hosseinzadeh H, Karimi G, Niapoor M. Antidepressant effect of Crocus sativus L stigma extracts and their constituents, crocin and safranal, in mice. Acta Hortic 2004; (650): 435-45.
[82]
Karimi GR, Hosseinzadeh H, Khalegh PP. Study of antidepressant effect of aqueous and ethanolic extract of Crocus sativus in mice. Iran J Basic Med Sci 2001; 4: 11-5.
[83]
Willatgamuwa SA, Platel K, Saraswathi G, Srinivasan K. Anti-diabetic influence of dietary cumin seeds (Cuminum cyminum) in streptozotocin induced diabetic rats. Nutr Res 1998; 18: 131-42.
[84]
Al-Snafi AE. The pharmacological activities of Cuminum cyminum -A review. IOSR J Pharm 2016; 6(6): 46-65.
[85]
El-Hamidi A, Ahmed SS. The effect of plant age on content and composition of dill essential oil Anethum graveolens L. Pharmazie 1996; 21: 438-9.
[86]
Koppula S, Choi D. Cuminum cyminum extract attenuates scopolamine-induced memory loss and stress-induced urinary biochemical changes in rats: A noninvasive biochemical approach. Pharm Biol 2011; 49: 702-70.
[87]
Yu ZF, L.D. Kong, Y. Chen. Antidepressant activity of aqueous extracts of Curcuma longa in mice. J Ethnopharmacol 2002; 83: 161-5.
[88]
Li S, Yuan W, Deng G, Wang P, Yang P, Aggarwal BB. Chemical composition and product quality control of turmeric (Curcuma longa L.). Pharm Crop 2011; 5(1): 28-54.
[89]
Xu Y, Ku BS, Yao HY, et al. The effects of curcumin on depressive-like behaviors in mice. Eur J Pharmacol 2005; 518: 40-6.
[90]
Kulkarni SK, Bhutani MK, Bishoni M. Antidepressant activity of curcumin: Involvement of serotonin and dopamine. Psychopharmacol 2008; 201: 435-42.
[91]
Singh DP, Beloy J, McInerney JK, Day L. Impact of boron, calcium and genetic factors on vitamin C, carotenoids, phenolic acids, anthocyanins and antioxidant capacity of carrots (Daucus carota). Food Chem 2012; 132(3): 1161-70.
[92]
Zhang D, Hamauzu Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem 2004; 88: 503-9.
[93]
Gilani AH, Aziz N, Khan MA, et al. Ethnopharmacological evaluation of the anticonvulsant, sedative and antispasmodic activities of Lavandula stoechas L. J Ethnopharmacol 2000; 71: 161-7.
[94]
Vasudevan M, Gunnam KK, Parle M. Antinoceptive and antiinflamatory properties of Daucus carota seeds extracts. J Health Sci 2006; 52(5): 598-606.
[95]
Chatterjee A, Chandra PS. The Treatise on Indian medicinal plantsVol 4th New Delhi; National institute of science communication and information resources 1993; 39- 41.
[96]
Straub O. Key to Carotenoids. 2nd enlarged and revised ed. by Pfander H, Gerspacher M, Rychener M, Schwabe R. Birkha¨user Verlag, Basel 1987
[97]
Olson JA. Provitamin A function of carotenoids: The conversion of β-carotene into vitamin A. J Nutr 1989; 119: 105-8.
[98]
Babu PN, Nagaraju B, Yamini K, Dhananjaneyulu M, Venkateswarlu K, Mubina M. Evaluation of antidepressant activity of ethanolic extract of Dacus carota in mice. J Pharm Sci Res 2014; 6(2): 73-7.
[99]
Fenwick GR, Lutomski J, Nieman C. Liquorice, Glycyrrhiza glabra L.-Composition, uses and analysis. Food Chem 1990; 38: 119-43.
[100]
Fukai T, Marumo A, Kaitou K, Kanda T, Terada S, Nomura T. Anti Helicobacter pylori flavonoids from licorice extract. Life Sci 2002; 71: 1449-63.
[101]
Hikino H. Recent research on oriental medicinal plants., In: Wagner H, Hikino H, Farnsworth NR, EditorsEconomic And Medicinal Plant Research, London’ Academic Press. 1985.
[102]
Ambawade SD, Kasture VS, Kasture SB. Anxiolytic activity of Glycyrrhiza glabra L. J Nat Rem 2001; 2: 130-4.
[103]
Williamson EM. Liquorice. In: C.W. Daniels (Ed.), Potter’ s cyclopedia of herbal medicines. Saffron Walden, UK 2003; pp. 269-71.
[104]
Biondi DM, Rocco C, Ruberto G. Dihydrostilbene derivatives from Glycyrrhizin glabra leaves. J Nat Prod 2005; 68: 1099-102.
[105]
Näf R, Jaquier A. New lactones in liquorice (Glycyrrhiza glabra L.). Flavour Fragrance J 2006; 21: 193-7.
[106]
Hayashi H, Hiraoka N, Ikeshiro Y, Yammamoto H, Yoshikawa T. Seasonal variation of glycyrrhizin and isoliquiritigenin glycosides in the root of Glycyrrhiza glabra L. Biol Pharm Bull 1998; 21(9): 987-9.
[107]
Blumenthal M, Goldberg A. Brinckmann J Herbal Medicine: Expanded Commission E Monographs. American Botanical Council Newton 2000; pp. 233-6.
[108]
Dhingra D, Sharma A. Evaluation of antidepressant-like activity of glycyrrhizin in mice. Indian J Pharmacol 2005; 37: 390-4.
[109]
Wang WX, Hu XY, Zhao ZY, et al. Antidepressant-like effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis in the forced swimming test and tail suspension test in mice. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 1179-84.
[110]
Bombardelli E, Morazzoni P. Hypericum perforatum. Fitoterapia 1995; 66: 43-68.
[111]
Newall CA, Anderson LA, Phillipson JD. Herbal medicines: A guide for health-care professionals1996.
[112]
Barnes J, Anderson LA, Phillipson JD. St John’s wort (Hypericum perforatum L.): Review of its chemistry, pharmacology and clinical properties. J Pharm Pharmacol 2001; 53: 583-600.
[113]
Butterweck V, Jürgenliemk G, Nahrstedt A, Winterhoff H. Flavonoids from Hypericum perforatum show antidepressant activity in the Forced Swimming Test. Planta Med 2000; 66; 2000; 2: 6
[114]
Noeldner M, Schotz K. Rutin is essential for the antidepressant activity of Hypericum perforatum extracts in the forced swimming test. Planta Med 2002; 68: 577-80.
[115]
Cervo L, Rozio M, Ekalle-Soppo CB, Guiso G, Morazzoni P, Caccia S. Role of hyperforin in the antidepressant-like activity of Hypericum perforatum extracts. Psychopharmacology (Berl) 2002; 164: 423-8.
[116]
Butterweck V, Petereit F, Winterhoff H, Nahrstedt A. Solubilized hypericin and pseudohypericin from Hypericum perforatum exert antidepressant activity in the forced swimming test. Planta Med64 1998; 291-4.
[117]
Butterweck V, Wall A, Liefländer-Wulf U, Winterhoff H, Nahrstedt A. Effects of the total extract and fractions of Hypericum perforatum in animal assays for antidepressant activity. Pharmacopsychiatry 1997; 30(2): 117-24.
[118]
Butterweck V, Schmidt MSt. John’s wort: Role of active compounds for its mechanism of action and efficacy. Wien Med Wochenschr 2007; 157: 356-61.
[119]
Hajhashemi V, Ghannadi A, Sharif B. Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia. Mill J Ethnopharmacol 2003; 89: 67-71.
[120]
Hritcu L, Cioanca O, Hancianu M. Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats. Phytomedicine 2012; 19: 529-34.
[121]
Rahmati B, Kiasalari Z, Roghani M, Khalili M, Ansari F. Antidepressant and anxiolytic activity of Lavandula officinalis aerial parts hydroalcoholic extract in scopolamine-treated rats. Pharm Biol 2017; 55(1): 958-65.
[122]
Harborne JB, Williams CA. Phytochemistry of the genus Lavandula.In M Lis-Balchim, ed, Lavender.Taylor & Francis New York, 2002; pp. 86-99.
[123]
Lis BM. A Chemotaxonomic reappraisal of the Section Ciconium Pelargonium (Geraniaceae). S Afr J Bot 1996; 62: 277-9.
[124]
Takeda H, Tsuji M, Inazu M, Egashira T, Matsumiya T. Rosmarinic acid and caffeic acid produce antidepressive-like effect in the forced swimming test in mice. Eur J Pharmacol 2002; 449: 261-7.
[125]
Takeda H, Tsuji M, Matsumiya T, Kubo M. Identification of rosmarinic acid as a novel antidepressive substance in the leaves of Perilla frutescens Britton var. acuta Kudo (Perillae Herba). Nihon Shinkei Seishin Yakurigaku Zasshi 2002; 22: 15-22.
[126]
Nakazawa T, Yasuda T, Ueda J, Ohsawa K. Antidepressant-like effects of apigenin and 2,4,5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test. Biol Pharm Bull 2003; 26: 474-80.
[127]
Yi LT, Li JM, Li YC, Pan Y, Xu Q, Kong LD. Antidepressant-like behavioral and neurochemical effects of the citrus-associated chemical apigenin. Life Sci 2008; 82: 741-51.
[128]
Saki K, Bahmani M, Rafieian-Kopaei M. The effect of most important medicinal plants on two important psychiatric disorders (anxiety and depression): A review. Asian Pac J Trop Med 2014; 7: 34-42.
[129]
López-Romero JC, González-Ríos H, Peña-Ramos A, et al. Seasonal effect on the biological activities of Litsea glaucescens Kunth extracts. Evid Based Complement Alternat Med 2018; 20: 1-11.
[130]
Guzmán-Gutiérrez SL, Gómez-Cansino R, García-Zebadúa JC, Jiménez-Pérez NC, Reyes-Chilpa R. Antidepressant activity of Litsea glaucescens essential oil: Identification of β-pinene and linalool as active principles. J Ethnopharmacol 2012; 28: 143(2): 673-9
[131]
Guzmán-Gutiérrez SL, Bonilla-Jaime H, Gómez-Cansino R, Reyes-Chilpa R. Linalool and β-pinene exert their antidepressant-like activity through the monoaminergic pathway. Life Sci 2015; 1(128): 24-9.
[132]
Dimitrova Z, Dimov B, Manolova N, Pancheva S, Ilieva D, Shishkov S. Antiherpes effect of Melissa officinalis L. extracts. Acta Microbiol Bulg 1993; 29: 65-72.
[133]
Chakurski I, Matev M, Koichev A, Angelova I, Stefanov G. Treatment of chronic colitis with an herbal combination of Taraxacum officinale, Hypericum perforatum, Melissa officinalis, Calendula officinalis and Foeniculum vulgare. Vutr Boles 1981; 20: 51-4.
[134]
Soulimani R, Fleurentin J, Mortier F, Misslin R, Derrieu G, Pelt JM. Neurotropic action of the hydroalcoholic extract of Melissa officinalis in the mouse. Planta Med 1991; 57: 105-9.
[135]
Allahverdiyev A, Duran N, Ozguven M, Koltas S. Antiviral activity of the volatile oils of Melissa officinalis L. against Herpes simplex virus type-2. Phytomedicine 2004; 11(7-8): 657-61.
[136]
Moradkhani H, Sargsyan E, Bibak H, et al. Melissa officinalis L., a valuable medicine plant. A review. J Med Plants Res 2010; 4: 2753-9.
[137]
Argyropoulos D, Müller J. Effect of convective, vacuum and freeze drying on sorption behavior and bioactive compounds of lemon balm (Melissa officinalis L.). J Appl Res. Med Aromat Plants 2014; 1: 59-69.
[138]
Awad R, Muhammad A, Durst T, Trudeau VL, Arnason JT. Bioassay guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity. Phytother Res 2009; 23: 1075-81.
[139]
Lin SH, Chou ML, Chen WC, et al. A medicinal herb, Melissa officinalis L. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter. J Ethnopharmacol 2015; 175: 266-72.
[140]
Brasseur T, Angenot L. Contribution a l’etude pharmacognostique de la passiflore. J Pharm Belg 1984; 39(1): 15.
[141]
Soulimani R, Younos C, Jarmouni S, Bousta D, Misslin R, Mortier F. Behavioural effects of Passiflora incarnata L. and its indole alkaloid and flavonoid derivatives and maltol in the mouse. J Ethnopharmacol 1997; 57(1): 11-20.
[142]
Lutomski J, Wrocinski T. Buil Inst Ros Lec 1960; 6: 176.
[143]
Jafarpoor N, Abbasi-Maleki S, Asadi-Samani M, Khayatnouri MH. Evaluation of antidepressant-like effect of hydroalcoholic extract of Passiflora incarnata in animal models of depression in male mice. J Herb Med Pharmacol 2014; 3(1): 41-5.
[144]
Passos CS, Simões-Pires CA, Nurisso A, et al. Indole alkaloids of Psychotria as multifunctional cholinesterases and monoamine oxidases inhibitors. Phytochemistry 2013; 86: 8-20.
[145]
Santosh P, Venugopl R, Nilakash AS, Kunjbihari S, Mangala L. Antidepressant activity of methanolic extract of Passiflora foetida leaves in mice. Int J Pharm Pharm Sci 2011; 3(1): 112-5.
[146]
Al-Sereiti MR, Abu-Amer KM, Sen P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol 1999; 37(2): 124-30.
[147]
Hosseinzadeh H, Nourbakhsh M. Effect of Rosmarinus officinalis L. aerial parts extract on morphine withdrawal syndrome in mice. Phytother Res 2003; 17: 938-41.
[148]
Machado DG, Bettio LEB, Cunha MP, et al. Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: Involvement of the monoaminergic system. Biol Psychiatry 2009; 33: 642-50.
[149]
Machado DG, Cunha MP, Neis VB, et al. Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chem 2013; 136: 999-1005.
[150]
Sasaki K, El Omri A, Kondo S, Han J, Isoda H. Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behav Brain Res 2013; 238: 86-94.
[151]
Shanmugavalli N, Umashankar V. Raheem. Antimicrobial activity of Vanilla planifolia. Indian J Sci Technol 2009; 2: 39-40.
[152]
Shyamala BN, Naidu MM, Sulochanamma G, Srinivas P. Studies on the antioxidant activities of natural vanilla extract and its constituent compounds through in vitro models. J Agric Food Chem 2007; 55: 7738-43.
[153]
Shoeb A, Chowta M, Pallempati G, Rai A, Singh A. Evaluation of antidepressant activity of vanillin in mice. Indian J Pharmacol 2013; 45(2): 141-4.
[154]
Pérez Silva A, Gunata Z, Lepoutre JP, Odoux E. New insight on the genesis and fate of odor-active compounds in vanilla beans (Vanilla planifolia G. Jackson) during traditional curing. Food Res Int 2011; 44: 2930-7.
[155]
Archana R, Namasivayam A. Antistressor effect of Withania somnifera. J Ethnopharmacol 1999; 64(1): 91-3.
[156]
Nadkarni AK. Indian Materia Medica 3rd Ed, Vol 1, Popular Book Depot, Bombay 1954. 292-4.
[157]
Misra L, Mishra P, Pandey A, Sangwan RS, Sangwan NS, Tuli R. Withanolides from Withania somnifera roots. Phytochemistry 2008; 69(4): 1000-4.
[158]
Bhattacharya SK, Bhattacharya A, Sairam K, Ghosal S. Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: An experimental study. Phytomedicine 2000; 7(6): 463-9.
[159]
Luscher B, Shen Q, Sahir N. The GABA ergic deficit hypothesis of major depressive disorder. Mol Psychiatry 2011; 16(4): 383-406.
[160]
Mustafa T, Shrivastava KC. Ginger (Zingiber officinale) in migraine headache. J Ethnopharmacol 1990; 29: 267-73.
[161]
Langner E, Greifenberg S, Gruenwald J. Ginger: history and use. Adv Ther 1998; 15: 25-44.
[162]
Shukla Y, Singh M. Cancer preventive properties of ginger. A brief review. Food Chem Toxicol 2007; 45: 683-90.
[163]
Phukan S, Adhikari K. Study of the antidepressant and antinociceptive activity of ethanolic extract of rhizomes of Zingiber officinale in experimental animals. Int J Pharm Sci Rev Res 2017; 8(7): 3004-9.
[164]
Ittiyavirah SP, Paul M. In silico docking analysis of constituents of Zingiber officinale as antidepressant. J Pharmacognosy Phytother 2013; 5(6): 101-5.