Halogenated Compounds from Corals: Chemical Diversity and Biological Activities

Page: [1204 - 1218] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

As important marine biological resources, corals produce a large amount of active organic compounds in their secondary metabolic processes, including numerous brominated, chlorinated, and iodinated compounds. These compounds, with novel structures and unique activities, guide the discovery and research of important lead compounds and novel biological mechanisms. Through a large number of literature surveys, this paper summarized a total of 145 halogenated secondary metabolites which were roughly divided into four major classes of terpenes, prostaglandins, steroids and alkaloids, and they were mainly isolated from ten coral families, Ellisellidae, Gorgoniidae, Briareidae, Plexauridae, Anthothelidae, Alcyoniidae, Clavularidae, Tubiporidae, Nephtheidae and Dendrophyllidae to the best of our knowledge. In addition, their organism species, structure composition and biological activity were also discussed in the form of a chart in this essay.

Keywords: Marine, corals, metabolites, halogenated, bioactivity, chemical diversity.

Graphical Abstract

[1]
Wen, Z.; Guo, Y.W.; Ernesto, M.; Guido, C. Chemical studies on sesquiterpenes in soft coral Lobophytum sp. from the South China Sea. Nat. Prod. R&D, 2005, 17(6), 740-725.
[2]
Xiao-Hong, A.I.; Chen, Y.X.; Shu-Hua, Q.I. Recent progress in the chemical and pharmacological study of chinese corals. J. Guangzhou Univ., 2006, 5, 49-56.
[3]
Ciereszko, L.S.; Sifford, D.H.; Weinheimer, A.J. Chemistry of coelenterates. I. Occurrence of terpenoid compounds in gorgonians. Ann. N. Y. Acad. Sci., 1960, 90(3), 917.
[4]
Weinheimer, A.J.; Spraggins, R.L. The occurrence of two new prostaglandin derivatives (15-epi-PGA2 and its acetate, methyl ester) in the gorgonian Plexaura homomalla chemistry of coelenterates. XV. Tetrahedron Lett., 1969, 10(59), 5185-5188.
[5]
Shi, Q.W.; Li-Geng, L.I.; Huo, C.H.; Zhang, M.L.; Wang, Y.F. Research outline of marine natural products. Chin. Tradit. Herb Drugs, 2010, 41(7), 1031-1047.
[6]
Haefner, B. Drugs from the deep: Marine natural products as drug candidates. Drug Discov. Today, 2003, 8(12), 536-544.
[7]
Schwartsmann, G.; Rocha, A.B.D.; Berlinck, R.G.; Jimeno, J. Marine organisms as a source of new anticancer agents. Lancet Oncol., 2001, 2(4), 221-225.
[8]
Spinney, L. Fishing for novel drugs. Drug Discov. Today, 2003, 8(17), 770-771.
[9]
Newman, D.J.; Cragg, G.M. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod., 2004, 67(8), 1216-1238.
[10]
Simmons, T.L.; Andrianasolo, E.; Mcphail, K.; Flatt, P.; Gerwick, W.H. Marine natural products as anticancer drugs. Mol. Cancer Ther., 2005, 4(2), 333.
[11]
Núñezpons, L.; Carbone, M.; Vázquez, J.; Gavagnin, M.; Avila, C. Lipophilic defenses from Alcyonium soft corals of Antarctica. J. Chem. Ecol., 2013, 39(5), 675-685.
[12]
Carbone, M.; Núñezpons, L.; Castelluccio, F.; Avila, C.; Gavagnin, M. Illudalane sesquiterpenoids of the alcyopterosin series from the antarctic marine soft coral alcyonium grandis. J. Nat. Prod., 2009, 72(7), 1357-1360.
[13]
Palermo, J.A.; Brasco, M.F.; Spagnuolo, C.; Seldes, A.M. Illudalane sesquiterpenoids from the soft coral alcyonium paessleri: The first natural nitrate esters. J. Org. Chem., 2000, 65(15), 4482-4486.
[14]
Tholl, D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol., 2006, 9(3), 297-304.
[15]
Sun, J.F.; Han, Z.; Zhou, X.F.; Yang, B.; Lin, X.; Liu, J.; Peng, Y.; Yang, X.W.; Liu, Y. Antifouling briarane type diterpenoids from south china sea gorgonians dichotella gemmacea. Tetrahedron, 2013, 69(2), 871-880.
[16]
Tanaka, C.; Yamamoto, Y.; Otsuka, M.; Tanaka, J.; Ichiba, T.; Marriott, G.; Rachmat, R.; Higa, T. Briarane diterpenes from two species of octocorals, Ellisella sp. and Pteroeides sp. J. Nat. Prod., 2004, 67(8), 1368-1373.
[17]
Isaacs, S.; Carmely, S.; Kashman, Y. Juncins A-F, Six new Briarane diterpenoids from the gorgonian Junceella juncea. J. Nat. Prod., 2004, 53(3), 596-602.
[18]
Qi, S.H.; Zhang, S.; Huang, H.; Xiao, Z.H.; Huang, J.S.; Li, Q.X. New briaranes from the south china sea gorgonian junceella juncea. J. Nat. Prod., 2004, 67(11), 1907.
[19]
Qi, S.H.; Si, Z.S.Z.; Qian, P.Y.; Xiao, Z.H.; Li, M.Y. Ten new antifouling Briarane diterpenoids from the south china sea gorgonian junceella juncea. Tetrahedron, 2007, 38(3), 9123-9130.
[20]
Sung, P.J.; Fan, T.Y.; Fang, L.S.; Wu, S.L.; Li, J.J.; Chen, M.C.; Cheng, Y.M.; Wang, G.H. Briarane derivatives from the gorgonian coral Junceella fragilis. Chem. Pharm. Bull., 2004, 35(19), 1429-1431.
[21]
Qi, S.H.; Zhang, S.; Qian, P.Y.; Xu, H.H. Antifeedant and antifouling briaranes from the South China Sea gorgonian Junceella juncea. Chem. Nat. Compd., 2009, 45(1), 49-54.
[22]
He, H.Y.; Faulkner, D.J. New chlorinated diterpenes from the gorgonian Junceella gemmacea. ChemInform, 1991, 47(20-21), 3271-3280.
[23]
Wang, S.S.; Chen, Y.H.; Chang, J.Y.; Hwang, T.L.; Chen, C.H. Ashraf; Khalil, T.; Shen, Y.C. Juncenolides H – K, new Briarane diterpenoids from Junceella juncea. Helv. Chim. Acta, 2009, 92(10), 2092-2100.
[24]
Liaw, C.C.; Kuo, Y.H.; Lin, Y.S.; Hwang, T.L.; Shen, Y.C. Frajunolides L-O, four new 8-hydroxybriarane diterpenoids from the gorgonian Junceella fragilis. Mar. Drugs, 2011, 9(9), 1477.
[25]
Gribble, G.W. Biological activity of recently discovered halogenated marine natural products. Mar. Drugs, 2015, 13(7), 4044.
[26]
Li, C.; La, M.P.; Tang, H.; Pan, W.H.; Sun, P.; Krohn, K.; Yi, Y.H.; Li, L.; Zhang, W. Bioactive briarane diterpenoids from the south china sea gorgonian Dichotella gemmacea. Bioorg. Med. Chem. Lett., 2012, 22(13), 4368.
[27]
Zhou, Y. Secondary metabolites of five species of willow corals in the south china sea and their chemical taxonomic significance (in Chinese). PhD Thesis, the Ocean University of China: Qingdao 2011.
[28]
Chang, J.Y.; Liaw, C.C.; Fazary, A.E.; Hwang, T.L.; Shen, Y.C. New Briarane diterpenoids from the gorgonian coral Junceella juncea. Mar. Drugs, 2012, 10(6), 1321.
[29]
Li, C.; Jiang, M.; La, M.P.; Li, T.J.; Tang, H.; Sun, P.; Liu, B.; Yi, Y.; Liu, Z. Chemistry and tumor cell growth inhibitory activity of 11,20-epoxy-3Z,5(6) E-diene Briaranes from the South China gorgonian Dichotella gemmacea. Mar. Drugs, 2013, 11(5), 1565-1582.
[30]
Sun, J.F.; Huang, H.; Chai, X.Y.; Yang, X.W.; Meng, L.; Huang, C.G.; Zhou, X.F.; Yang, B.; Hu, J.; Chen, X.Q. Dichotellides A-E, five new iodine-containing briarane type diterpenoids from Dichotella gemmacea. Tetrahedron, 2011, 67(6), 1245-1250.
[31]
Wang, S.H.; Chang, Y.C.; Chiang, M.Y.; Chen, Y.H.; Hwang, T.L.; Weng, C.F.; Sung, P.J. Chlorinated briarane diterpenoids from the sea whip gorgonian corals Junceella fragilis and Ellisella robusta (Ellisellidae). Chem. Pharm. Bull., 2010, 58(7), 928-933.
[32]
Lei, H.; Sun, J.F.; Han, Z.; Zhou, X.F.; Yang, B.; Liu, Y. ChemInform Abstract: Fragilisinins A-L, new briarane-type diterpenoids from gorgonian Junceella fragilis. ChemInform, 2014, 4(10), 5261-5271.
[33]
Cheng, W.; Li, X.; Yin, F.; Van, O. L.; Lin, W. Halogenated briarane diterpenes with acetyl migration from the gorgonian coral Junceella fragilis. (Chem. Biodiver.)2017, 14(5)
[34]
Subrahmanyam, C.; Kulatheeswaran, R.; Ward, R.S. Briarane diterpenes from the Indian Ocean gorgonian Gorgonella umbraculum. J. Nat. Prod., 1998, 61(9), 1120-1122.
[35]
Shin, J.; Park, M.; Fenical, W. The junceellolides, new anti-inflammatory diterpenoids of the briarane class from the chinese gorgonian junceella fragilis. Tetrahedron, 1989, 45(6), 1633-1638.
[36]
Su, Y.D.; Cheng, C.H.; Chen, W.F.; Chang, Y.C.; Chen, Y.H.; Hwang, T.L.; Wen, Z.H.; Wang, W.H.; Fang, L.S.; Chen, J.J. Briarenolide J, the first 12-chlorobriarane diterpenoid from an octocoral Briareum sp. (Briareidae). Tetrahedron Lett., 2014, 55(44), 6065-6067.
[37]
Lin, M.C.; Chen, B.W.; Huang, C.Y.; Dai, C.F.; Hwang, T.L.; Sheu, J.H. Eunicellin-based diterpenoids from the Formosan soft coral Klyxum molle with inhibitory activity on superoxide generation and elastase release by neutrophils. J. Nat. Prod., 2013, 76(9), 1661-1667.
[38]
Look, S.A.; Fenical, W.; Engen, D.V.; Clardy, J. Erythrolides: Unique marine diterpenoids interrelated by a naturally occurring di-π-methane rearrangement. J. Am. Chem. Soc., 1984, 106(17), 5026-5027.
[39]
Pordesimo, E.O.; Schmitz, F.J.; Ciereszko, L.S.; Hossain, M.B.; Helm, D.V.D. New briarein diterpenes from the Caribbean gorgonians Erythropodium caribaeorum and Briareum sp. J. Org. Chem., 1991, 56(7), 2344-2357.
[40]
Sheu, J.H.; Sung, P.J.; Cheng, M.C.; Liu, H.Y.; Fang, L.S.; Duh, C.Y.; Chiang, M.Y. Novel cytotoxic diterpenes, excavatolides A-E, isolated from the Formosan gorgonian Briareum excavatum. J. Nat. Prod., 1998, 61(5), 602-608.
[41]
Kobayashi, J.; Cheng, J.F.; Nakamura, H.; Ohizumi, Y.; Tomotake, Y.; Matsuzaki, T.; Grace, K.J.S.; Jacobs, R.S.; Kato, Y.; Brinen, L.S. Structure and stereochemistry of brianolide, a new antiinflammatory diterpenoid from the Okinawan gorgonian Briareum sp. Experientia, 1991, 47(5), 501-502.
[42]
Sung, P.J.; Li, G.Y.; Su, Y.D.; Lin, M.R.; Chang, Y.C.; Kung, T.H.; Lin, C.S.; Chen, Y.H.; Su, J.H.; Lu, M.C. Excavatoids O and P, new 12-hydroxybriaranes from the octocoral Briareum excavatum. Mar. Drugs, 2010, 8(10), 2639.
[43]
Elastatinal was used as a positive control in anti-inflammatory activity testing. This compound displayed inhibitory effects on elastase release by human neutrophils (IC50 = 31.0 μM).
[44]
Sung, P.J.; Lin, M.R.; Chiang, M.Y. ChemInform abstract: The structure and absolute stereochemistry of Briaexcavatin U, a new chlorinated briarane from a cultured octocoral Briareum excavatum. ChemInform, 2009, 40(27), 154-155.
[45]
Sung, P.J.; Chiang, M.Y.; Tsai, W.T.; Su, J.H.; Su, Y.M.; Wu, Y.C. ChemInform Abstract: Chlorinated briarane-type diterpenoids from the gorgonian coral Ellisella robusta (Ellisellidae). ChemInform, 2007, 63(52), 12860-12865.
[46]
Sung, P.J.; Li, G.Y.; Chen, Y.P.; Huang, I.C.; Chen, B.Y.; Wang, S.H.; Huang, S.K. ChemInform Abstract: Fragilide E, a novel chlorinated 20-acetoxybriarane from the gorgonian coral Junceella fragilis. ChemInform, 2009, 40(42), 454-455.
[47]
Sung, P.J. ChemInform abstract: New briarane-related diterpenoids from the Sea Whip gorgonian coral Junceella fragilis (Ellisellidae). ChemInform, 2015, 42(1), 1074-1078.
[48]
Kate, A.S.K.S.; Richard, K.R.; Ramanathan, B.R.; Kerr, R.G.K.G. A halogenated pseudopterane diterpene from the Bahamian octocoral Pseudopterogorgia acerosa. Cancer. J. Chem., 2010, 88(4), 318-322.
[49]
Fattorusso, E.; Luciano, P.; Putra, M.Y.; Taglialatela-Scafati, O.; Ianaro, A.; Panza, E.; Bavestrello, G.; Cerrano, C. Chloroscabrolides, chlorinated norcembranoids from the Indonesian soft coral Sinularia sp. Tetrahedron, 2011, 67(41), 7983-7988.
[50]
Rudi, A.; Shmul, G.; Benayahu, Y.; Kashman, Y. Sinularectin, a new diterpenoid from the softcoral Sinularia erecta. ChemInform, 2006, 37(33), 2937-2939.
[51]
ChiaChing. L.; YuChi, L.; YunSheng, L.; ChungHsiung, C.; TsongLong, H. Four new briarane diterpenoids from Taiwanese gorgonian Junceella fragilis. Mar. Drugs, 2013, 11(6), 2042-2053.
[52]
Lai, D.; Li, Y.; Xu, M.; Deng, Z.; Ofwegen, L.V.; Qian, P.; Proksch, P.; Lin, W. Sinulariols A-S, 19-oxygenated cembranoids from the Chinese soft coral Sinularia rigida. Tetrahedron, 2011, 67(33), 6018-6029.
[53]
Yan, P.; Deng, Z.; Leen, V.O.; Peter, P.; Lin, W. ChemInform Abstract: Lobophytones H-N, biscembranoids from the Chinese soft coral Lobophytum pauciflorum. Chem. Pharm. Bull., 2010, 58(12), 1591-1595.
[54]
Yan, P.; Deng, Z.; Ofwegen, L.V.; Proksch, P.; Lin, W. Lobophytones O-T, new biscembranoids and cembranoid from soft coral Lobophytum pauciflorum. Mar. Drugs, 2010, 8(11), 2837.
[55]
Watanabe, K.; Sekine, M.; Iguchi, K. Isolation and structures of new halogenated prostanoids from the Okinawan soft coral Clavularia viridis. J. Nat. Prod., 2003, 66(11), 1434-1440.
[56]
Iguchi, K.; Kaneta, S.; Mori, K.; Yamada, Y.; Honda, A.; Mori, Y. Chlorovulones, new halogenated marine prostanoids with an antitumor activity from the stolonifer clavularia viridis Quoy and Gaimard. Tetrahedron Lett., 1985, 26(47), 5787-5790.
[57]
Nagaoka, H.; Iguchi, K.; Miyakoshi, T.; Yamada, N.; Yamada, Y. Determination of absolute configuration of chlorovulones by cd measurement and by enantioselective synthesis of (-)-chlorovulone II1. Tetrahedron Lett., 1986, 27(2), 223-226.
[58]
Iguchi, K.; Kaneta, S.; Mori, K.; Yamada, Y.; Honda, A.; Mori, Y. ChemInform abstract: Bromovulone I (Ia) and iodovulone I (Ib), unprecedented brominated and iodinated marine prostanoids with antitumor activity, isolated from the Japanese stolonifer Clavularia viridis Quoy and Gaimard. ChemInform, 1986, 17(49), 981-982.
[59]
Ciavatta, M.L.; Gresa, M.P.L.; Manzo, E.; Gavagnin, M.; Wahidulla, S.; Cimino, G. New C21Δ20 pregnanes, inhibitors of mitochondrial respiratory chain, from Indopacific octocoral Carijoa sp. Tetrahedron Lett., 2004, 45(41), 7745-7748.
[60]
Baker, B.J.; Okuda, R.K.; Yu, P.T.K.; Scheuer, P.J. Punaglandins: Halogenated antitumor eicosanoids from the octocoral Telesto riisei. ChemInform, 1985, 16(42), 2976-2977.
[61]
Baker, B.J.; Scheuer, P.J. The punaglandins: 10-chloroprostanoids from the octocoral Telesto riisei. J. Nat. Prod., 1994, 57(10), 1346-1353.
[62]
Tomáš-Řezanka. Valery M. Dembitsky. Brominated oxylipins andoxylipin glycosides from Red Sea Corals. Eur. J. Org. Chem., 2003, 2003(2), 309-316.
[63]
Watanabe, K.; Sekine, M.; Takahashi, H.; Iguchi, K. New halogenated marine prostanoids with cytotoxic activity from the Okinawan soft coral Clavularia viridis. J. Nat. Prod., 2001, 64(11), 1421-1425.
[64]
Bligh, E.L.G.; Dyer, W.J.A. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 1959, 37(8), 911-917.
[65]
Dorta, E.; Diaz-Marrero, A.R.; Cueto, M.; D’Croz, L.; Mate, J.L.; Darias, J. Carijenone, a novel class of bicyclic prostanoid from the eastern pacific octocoral carijoa multiflora. ChemInform, 2004, 35(43), 2229.
[66]
Dorta, E.; Diaz-Marrero, A.R.; Cueto, M.; D’Croz, L.; Mate, J.L.; San-Martin, A.; Darias, J. Unusual chlorinated pregnanes from the eastern pacific octocoral Carijoa multiflora. ChemInform, 2004, 35(21), 915-918.
[67]
Iwashima, M.; Nara, K.; Nakamichi, Y.; Iguchi, K. Three new chlorinated marine steroids, yonarasterols G, H and I, isolated from the Okinawan soft coral, Clavularia viridis. Steroids, 2001, 66(1), 25-32.
[68]
Wen, Z.; Margherita, G.; Wei, G.Y.; Zhong, H.T. Shanghai; Napoli, I. Chemical studies on the South China Sea stony coral Tubastraea sp. Chin. J. Nat. Med., 2006, 4(2), 94-97.
[69]
Bialonska, D.; Zjawiony, J.K. Aplysinopsins--marine indole alkaloids: Chemistry, bioactivity and ecological significance. Mar. Drugs, 2009, 7(2), 166-183.
[70]
Guella, G.; Mancini, I.; Zibrowius, H.; Pietra, F. ChemInform Abstract: Novel aplysinopsin-type alkaloids from scleractinian corals of the family Dendrophylliidae of the Mediterranean and the Philippines. Configurational-assignment criteria, stereospecific synthesis, and photoisomerization. ChemInform, 1988, 19(38), 773-782.
[71]
Fattorusso, E.; Lanzotti, V.; Magno, S.; Novellino, E. Tryptophan derivatives from a Mediterranean anthozoan, astroides calycularis. J. Nat. Prod., 1985, 48(6), 924-927.
[72]
Cachet, N.; Loffredo, L.; Vicente, O.O.; Thomas, O.P. Chemical diversity in the scleractinian coral Astroides calycularis. Phytochem. Lett., 2013, 6(2), 205-208.
[73]
Iwagawa, T.; Miyazaki, M.; Okamura, H.; Nakatani, M.; Doe, M.; Takemura, K. Three novel bis (indole) alkaloids from a stony coral, Tubastraea sp. Tetrahedron Lett., 2003, 44(12), 2533-2535.
[74]
Iwagawa, T.; Miyazaki, M.; Yokogawa, Y.; Okamura, H.; Nakatani, M.; Doe, M.; Morimoto, Y.; Takemura, K. ChemInform Abstract: Aplysinopsin dimers from a stony coral. Tubastraea aurea. ChemInform, 2008, 39(50)
[http://dx.doi.org/10.1002/chin.200850202]
[75]
Koh, E.G.; Sweatman, H. Erratum to ‘Chemical warfare among scleractinians: Bioactive natural products from Tubastraea faulkneri Wells kill larvae of potential competitors’. J. Exp. Mar. Biol. Ecol., 2001, 256(1), 137-138.
[76]
Pénez, N.; Culioli, G.; Pérez, T.; Briand, J.F.; Thomas, O.P.; Blache, Y. Antifouling properties of simple indole and purine alkaloids from the Mediterranean gorgonian Paramuricea clavata. J. Nat. Prod., 2011, 74(10), 2304-2308.
[77]
Guella, G.; Mancini, I.; Zibrowius, H.; Pietra, F. ChemInform Abstract: Aplysinopsin-type alkaloids from Dendrophyllia sp., a scleractinian coral of the family Dendrophylliidae of the Philippines. Facile photochemical (Z/E) photoisomerization and thermal reversal. ChemInform, 1990, 21(5), 1444-1450.
[78]
Alam, M.; Sanduja, R.; Wellington, G.M.; Alam, M.; Sanduja, R.; Wellington, G.M. Tubastraine: Isolation and structure of a novel alkaloid from the stony coral Tubastraea micrantha. Heterocycles, 1988, 27(3), 719-723.