Phosphomolybdic Acid (PMA)-catalyzed One-pot Synthesis of 2,3- Dihydroquinazolines

Page: [683 - 687] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

We have developed a new method for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones in good to excellent yields via phosphomolybdic acid (PMA)-catalyzed cyclocondensation of 2- aminobenzamides with aldehydes or ketones in N,N-dimethylformamide (DMF) at room temperature. The present method proves to be efficient in terms of short reaction time, high yield, simple workup and easy purification.

Keywords: 2, 3-dihydroquinazolinones, phosphomolybdic acid, 2-aminobenzamide, synthesis, ketone, aldehyde.

Graphical Abstract

[1]
Erlanson, D.A.; McDowell, R.S.; O’Brien, T. J. Med. Chem., 2004, 47, 3463-3482.
[2]
Hameed, A.; Al-Rashida, M.; Uroos, M.; Ali, S.A. Arshia; Ishtiaq, M.; Khan, K.M. Expert Opin. Ther. Pat., 2018, 28, 281-297.
[3]
Michael, J.P. Nat. Prod. Rep., 2005, 22, 627-646.
[4]
Khan, I.; Zaib, S.; Batool, S.; Abbas, N.; Ashraf, Z.; Iqbal, J.; Saeed, A. Bioorg. Med. Chem., 2016, 24, 2361-2381.
[5]
Moore, J.A.; Sutherland, G.J.; Sowerby, R.; Kelly, E.G.; Palermo, S.; Webster, W. J. Org. Chem., 1969, 34, 887-892.
[6]
Abdel-Jalil, R.J.; Voelter, W.; Saeed, M. Tetrahedron Lett., 2004, 45, 3475-3476.
[7]
Chen, J.X.; Wu, H.Y.; Su, W.K. Chin. Chem. Lett., 2007, 18, 536-538.
[8]
Shaabani, A.; Maleki, A.; Mofakham, H. Synth. Commun., 2008, 38, 3751-3759.
[9]
Choghamarani, A.G.; Taghipour, T. Lett. Org. Chem., 2011, 8, 470-476.
[10]
Bunce, R.A.; Nammalwar, B. J. Heterocycl. Chem., 2011, 48, 991-997.
[11]
Rostami, A.; Tavakoli, A. Chin. Chem. Lett., 2011, 22, 1317-1320.
[12]
Abdollahi-Alibeik, M.; Shabani, E. Chin. Chem. Lett., 2011, 22, 1163-1166.
[13]
Dar, B.A.; Sahu, A.K.; Patidar, P.; Sharma, P.R.; Mupparapu, N.; Vyas, D.; Maity, S.; Sharma, M.; Singh, B. J. Ind. Eng. Chem., 2013, 19, 407-412.
[14]
Xie, Z-B.; Zhang, S-G.; Jiang, G-F.; Sun, D-Z.; Le, Z-G. J. Green Chem. Lett. Rev., 2015, 8, 95-98.
[15]
Kozhevnikov, I.V. Chem. Rev., 1998, 98, 171-198.
[16]
Mizuno, N.; Misono, M. Chem. Rev., 1998, 98, 199-218.
[17]
Misono, M.; Ono, I.; Koyano, G.; Aoshima, A. Pure Appl. Chem., 2000, 72, 1305-1311.
[18]
Kaur, J.; Griffin, K.; Harrison, B.; Kozhevnikov, I.V. J. Catal., 2002, 208, 448-455.
[19]
Kozhevnikova, E.F.; Derouane, E.G.; Kozhevnikov, I.V. Chem. Commun., 2002, 11, 1178-1179.
[20]
Firouzabadi, H.; Iranpoor, N.; Amani, K. Synthesis, 2003, 3, 408-412.
[21]
Kumar, G.D.K.; Baskaran, S. Synlett, 2004, 10, 1719-1722.
[22]
Kumar, G.D.K.; Baskaran, S.A. J. Org. Chem., 2005, 70, 4520-4523.
[23]
Kadam, S.T.; Lee, H.; Kim, S.S. Appl. Organometal. Chem., 2010, 24, 67-70.
[24]
Huang, G.L.; Liu, B.; Teng, M.Y.; Chen, Y.G. Synth. Commun., 2014, 44, 1786-1794.
[25]
Huang, G.L.; Liu, B.; Teng, M.Y.; Chen, Y.G. Lett. Org. Chem., 2015, 12, 104-108.
[26]
Huang, G.L.; Liu, B.; Teng, M.Y.; Chen, Y.G. Lett. Org. Chem., 2016, 13, 453-458.
[27]
Davoodnia, A.; Allameh, S.; Fakhari, A.R.; Tavakoli-Hoseini, N. Chin. Chem. Lett., 2010, 21, 550-553.
[28]
Rostamizadeh, S.; Amini, A.M.; Aryan, R.; Ghaieni, H.R.; Shadjou, N. Synth. Commun., 2008, 38, 3567-3576.
[29]
Wang, M.; Gao, J.J.; Song, Z.G.; Wang, L. Org. Prep. Proced. Int., 2012, 44, 159-163.
[30]
Rostami, A.; Tavakoli, A. Chin. Chem. Lett., 2011, 22, 1317-1320.
[31]
Zhang, S-G.; Xie, Z-B.; Liu, L-S.; Liang, M.; Le, Z-G. Chin. Chem. Lett., 2017, 28, 101-104.
[32]
Yale, H.L.; Kalkstein, M. J. Med. Chem., 1967, 10, 334-336.
[33]
Safaei, H.R.; Shekouhy, M.; Ghorbanzadeh, S. Chem. Select, 2018, 3, 4750-4759.
[34]
Kumar, M. Richa.; Sharma, S.; Bhatt, V.; Kumar, N. Adv. Synth. Catal., 2015, 357, 2862-2868.
[35]
Chinigo, G.M.; Paige, M.; Grindrod, S.; Hamel, E.; Dakshanamurthy, S.; Chruszcz, M.; Minor, W.; Brown, M.L. J. Med. Chem., 2008, 51, 4620-4631.
[36]
Yale, H.L.; Kalkstein, M. J. Med. Chem., 1967, 10, 334-336.