[1]
De Stefano C, Fontanella F, Di Freca AS. Feature selection in high dimensional data by a filter-based genetic algorithm. Proc European Conf Appl Evol Comput 2017; 506-21.
[2]
Gao L, Ye M, Lu X, Huang D. Hybrid method based on information gain and support vector machine for gene selection in cancer classification. Genomics Proteomics Bioinformatics 2017; 15(6): 389-95.
[3]
Alshamlan HM. DQB: A novel dynamic quantitive classification model using artificial bee colony algorithm with application on gene expression profiles. Saudi J Biol Sci 2018; 25(5): 932-46.
[4]
Fajila MNF, Nawarathna RD. New feature selection method for high dimensional gene data. Proc Symp Stat Comput Model Appl 2016; 67-70.
[5]
Wang Y, Tetko IV, Hall MA, et al. Gene selection from microarray data for cancer classification--a machine learning approach. Comput Biol Chem 2005; 29(1): 37-46.
[6]
Yang CS, Chuang LY, Ke CH, Yang CH. A hybrid feature selection method for microarray classification. IAENG Intl J Comput Sci 2008; 35: 3.
[7]
Mishra D. Hybridized univariate and multivariate filter based approaches for gene selection. Int J Pharma Bio Sci 2016; 7(3): 1215-26.
[8]
Sahu B, Mishra D. A novel feature selection algorithm using particle swarm optimization for cancer microarray data. Procedia Eng 2012; 38: 27-31.
[9]
Alshamlan HM. Co-ABC: Correlation artificial bee colony algorithm for biomarker gene discovery using gene expression profile. Saudi J Biol Sci 2018; 25(5): 895-903.
[10]
Kim C, Li H, Shin SY, Hwang KB. An efficient and effective wrapper based on paired t-test for learning naive bayes classifiers from large-scale domains. Procedia Comput Sci 2013; 23: 102-12.
[11]
Sun M, Xiong L, Sun H, Jiang D. A ga-based feature selection for high-dimensional data clustering. Proc Genetic Evol Comput 2009; pp. 769-72.
[12]
Zhu Z, Ong YS, Dash M. Markov Blanket-Embedded Genetic Algorithm for Gene Selection. Pattern Recognit 2007; 49(11): 3236-48.
[13]
Jimenez F, Sanchez G, Garcia JM, Sciavicco G, Miralles L. Multi-objective evolutionary feature selection for online sales forecasting. Neurocomputing 2017; 234: 75-92.
[14]
Gunavathi C, Premalatha K. Performance analysis of genetic algorithm with knn and svm for feature selection in tumor classification. Int J Comput Electr Autom Control Inf Eng 2014; 8(8): 1490-7.
[15]
Alba E, Garcia-Nieto J, Jourdan L, Talbi EG. Gene selection in cancer classification using pso/svm and ga/svm hybrid algorithms. Proceedings of the Evolutionary Computation 2007; CEC 2007 IEEE Congress on IEEE. 284-90.
[16]
Yu L, Liu H. Redundancy based feature selection for microarray data. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining 2004; 737-42.
[17]
Ruiz R, Riquelme JC, Aguilar-Ruiz JS. Incremental wrapper-based gene selection from microarray data for cancer classification. Pattern Recognit 2006; 39(12): 2383-92.
[18]
Li T, Zhang C, Ogihara M. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 2004; 20(15): 2429-37.
[19]
Chai H, Domeniconi C. An evaluation of gene selection methods for multi-class microarray data classification. Proceedings of the Second European Workshop on Data Mining and Text Mining in Bioinformatics 2004; 3-10.
[21]
Motieghader H, Najafi A, Sadeghi B, Masoudi-Nejad A. A hybrid gene selection algorithm for microarray cancer classification using genetic algorithm and learning automata. Informatics Med Unlocked 2017; 9: 246-54.
[22]
Sharma A, Imoto S, Miyano S. A top-r feature selection algorithm for microarray gene expression data. IEEE/ACM Trans Comput Biol Bioinformatics 2012; 9: 754-64.
[23]
Fajila MNF, Akmal Jahan MAC. The Effect of Evolutionary Algorithm in Gene Subset Selection for Cancer Classification. Intl J Modern Education Comput Sci 2018; 10(7): 60-6.