Natural Compounds Therapeutic Features in Brain Disorders by Experimental, Bioinformatics and Cheminformatics Methods

Page: [78 - 98] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Background: Synthetic compounds with pharmaceutical applications in brain disorders are daily designed and synthesized, with well first effects but also seldom severe side effects. This imposes the search for alternative therapies based on the pharmaceutical potentials of natural compounds. The natural compounds isolated from various plants and arthropods venom are well known for their antimicrobial (antibacterial, antiviral) and antiinflammatory activities, but more studies are needed for a better understanding of their structural and pharmacological features with new therapeutic applications.

Objectives: Here we present some structural and pharmaceutical features of natural compounds isolated from plants and arthropods venom relevant for their efficiency and potency in brain disorders. We present the polytherapeutic effects of natural compounds belonging to terpenes (limonene), monoterpenoids (1,8-cineole) and stilbenes (resveratrol), as well as natural peptides (apamin, mastoparan and melittin).

Methods: Various experimental and in silico methods are presented with special attention on bioinformatics (natural compounds database, artificial neural network) and cheminformatics (QSAR, drug design, computational mutagenesis, molecular docking).

Results: In the present paper we reviewed: (i) recent studies regarding the pharmacological potential of natural compounds in the brain; (ii) the most useful databases containing molecular and functional features of natural compounds; and (iii) the most important molecular descriptors of natural compounds in comparison with a few synthetic compounds.

Conclusion: Our paper indicates that natural compounds are a real alternative for nervous system therapy and represents a helpful tool for the future papers focused on the study of the natural compounds.

Keywords: Natural compounds, bioinformatics, Structure-Activity Relationship (SAR), antioxidant, antimicrobial, brain disorders.

[1]
Avram, S.; Mernea, M.; Mihailescu, D.; Duda-Seiman, D.; Duda-Seiman, C. Advanced QSAR methods evaluated polycyclic aromatic compounds duality as drugs and inductors in psychiatric disorders. Curr. Org. Chem., 2013, 17(23), 2880-2890.
[http://dx.doi.org/10.2174/13852728113179990132]
[2]
Avram, S.; Borcan, F.; Borcan, L.C.; Milac, A.L.; Mihailescu, D. QSAR Approaches Applied to Antidepressants Induced Neurogenesis--in vivo and in silico Applications. Mini Rev. Med. Chem., 2015, 16(3), 230-240.
[http://dx.doi.org/10.2174/1389557515666150909144215] [PMID: 26349492]
[3]
Brown, A.S.; Derkits, E.J. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am. J. Psychiatry, 2010, 167(3), 261-280.
[http://dx.doi.org/10.1176/appi.ajp.2009.09030361] [PMID: 20123911]
[4]
Hsu, C.W.; Lee, Y.; Lee, C.Y.; Lin, P.Y. Neurotoxicity and nephrotoxicity caused by combined use of lithium and risperidone: a case report and literature review. BMC Pharmacol. Toxico., 2016, 17, 59.
[http://dx.doi.org/10.1186/s40360-016-0101-x] [PMID: 27964751]
[5]
Nikolic, K.; Mavridis, L.; Djikic, T.; Vucicevic, J.; Agbaba, D.; Yelekci, K.; Mitchell, J.B. Drug design for CNS diseases: polypharmacological profiling of compounds using cheminformatic, 3D-QSAR and virtual screening methodologies. Front. Neurosci., 2016, 10, 265.
[http://dx.doi.org/10.3389/fnins.2016.00265] [PMID: 27375423]
[6]
Crane, E.A.; Gademann, K. Capturing biological activity in natural product fragments by chemical synthesis. Angew. Chem. Int. Ed. Engl., 2016, 55(12), 3882-3902.
[http://dx.doi.org/10.1002/anie.201505863] [PMID: 26833854]
[7]
Jamila, F.; Mostafa, E. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. J. Ethnopharmacol., 2014, 154(1), 76-87.
[http://dx.doi.org/10.1016/j.jep.2014.03.016] [PMID: 24685583]
[8]
Nejatbakhsh, F.; Karegar-Borzi, H.; Amin, G.; Eslaminejad, A.; Hosseini, M.; Bozorgi, M.; Gharabaghi, M.A. Squill Oxymel, a traditional formulation from Drimia Maritima (L.) Stearn, as an add-on treatment in patients with moderate to severe persistent asthma: A pilot, triple-blind, randomized clinical trial. J. Ethnopharmacol., 2017, 196, 186-192.
[http://dx.doi.org/10.1016/j.jep.2016.12.032] [PMID: 27998692]
[9]
Avram, S.; Mernea, M.; Bagci, E.; Hritcu, L.; Borcan, L.C.; Mihailescu, D.F. Advanced structure-activity relationships applied to Mentha spicata L. subsp. spicata essential oil compounds as AChE and NMDA ligands, in comparison with donepezil, galantamine and memantine - new approach in brain disorders pharmacology. CNS Neurol. Disord. Drug Targets, 2017, 16(7), 800-811.
[http://dx.doi.org/10.2174/1871527316666170113115004] [PMID: 28088901]
[10]
Islam, M.A.; Khandker, S.S.; Alam, F.; Khalil, M.I.; Kamal, M.A.; Gan, S.H. Alzheimer’s Disease and natural products: future regimens emerging from nature. Curr. Top. Med. Chem., 2017, 17(12), 1408-1428.
[http://dx.doi.org/10.2174/1568026617666170103163054] [PMID: 28049401]
[11]
Yu, N.; Xiong, Y.; Wang, C. Bu-Zhong-Yi-Qi decoction, the water extract of Chinese traditional herbal medicine, enhances cisplatin cytotoxicity in a549/ddp cells through induction of apoptosis and autophagy. BioMed Res. Int., 2017, 20173692797
[http://dx.doi.org/10.1155/2017/3692797] [PMID: 28154825]
[12]
Bérdy, J. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. (Tokyo), 2012, 65(8), 385-395.
[http://dx.doi.org/10.1038/ja.2012.27] [PMID: 22511224]
[13]
Damale, M.G.; Harke, S.N.; Kalam Khan, F.A.; Shinde, D.B.; Sangshetti, J.N. Recent advances in multidimensional QSAR (4D-6D): a critical review. Mini Rev. Med. Chem., 2014, 14(1), 35-55.
[http://dx.doi.org/10.2174/13895575113136660104] [PMID: 24195665]
[14]
Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 2006, 34(Database issue), D668-D672.
[http://dx.doi.org/10.1093/nar/gkj067] [PMID: 16381955]
[15]
Foo, D.B. Available at: http://foodb.ca/ (Accessed Date: 29 January 2017)
[16]
Bento, A.P.; Gaulton, A.; Hersey, A.; Bellis, L.J.; Chambers, J.; Davies, M.; Krüger, F.A.; Light, Y.; Mak, L.; McGlinchey, S.; Nowotka, M.; Papadatos, G.; Santos, R.; Overington, J.P. The ChEMBL bioactivity database: an update. Nucleic Acids Res., 2014, 42(Database issue), D1083-D1090.
[http://dx.doi.org/10.1093/nar/gkt1031] [PMID: 24214965]
[17]
Lacrămă, A-M.; Putz, M.; Ostafe, V. A Spectral-SAR model for the anionic-cationic interaction in ionic liquids: application to Vibrio fischeri ecotoxicity. Int. J. Mol. Sci., 2007, 8(8), 842.
[http://dx.doi.org/10.3390/i8080842]
[18]
Putz, M.V.; Putz, A-M.; Lazea, M.; Ienciu, L.; Chiriac, A. Quantum-SAR extension of the spectral-SAR algorithm: application to polyphenolic anticancer bioactivity. Int. J. Mol. Sci., 2009, 10(3), 1193-1214.
[http://dx.doi.org/10.3390/ijms10031193] [PMID: 19399244]
[19]
Putz, M.V.; Ionaşcu, C.; Putz, A-M.; Ostafe, V. Alert-QSAR. Implications for electrophilic theory of chemical carcinogenesis. Int. J. Mol. Sci., 2011, 12(8), 5098-5134.
[http://dx.doi.org/10.3390/ijms12085098] [PMID: 21954348]
[20]
Putz, M.; Lacrămă, A-M. Introducing spectral structure activity relationship (S-SAR) analysis. application to ecotoxicology. Int. J. Mol. Sci., 2007, 8(5), 363.
[http://dx.doi.org/10.3390/i8050363]
[21]
Putz, M.V.; Dudaş, N.A. Determining chemical reactivity driving biological activity from SMILES transformations: the bonding mechanism of anti-HIV pyrimidines. Molecules, 2013, 18(8), 9061-9116.
[http://dx.doi.org/10.3390/molecules18089061] [PMID: 23903183]
[22]
Putz, M.V.; Dudaş, N.A. Variational principles for mechanistic quantitative structure–activity relationship (QSAR) studies: application on uracil derivatives’ anti-HIV action. Struct. Chem., 2013, 24(6), 1873-1893.
[http://dx.doi.org/10.1007/s11224-013-0249-6]
[23]
Prachayasittikul, V.; Worachartcheewan, A.; Shoombuatong, W.; Songtawee, N.; Simeon, S.; Prachayasittikul, V.; Nantasenamat, C. Computer-Aided Drug Design of Bioactive Natural Products. Curr. Top. Med. Chem., 2015, 15(18), 1780-1800.
[http://dx.doi.org/10.2174/1568026615666150506151101] [PMID: 25961523]
[24]
Andrade, C.H.; Pasqualoto, K.F.; Ferreira, E.I.; Hopfinger, A.J. 4D-QSAR: perspectives in drug design. Molecules, 2010, 15(5), 3281-3294.
[http://dx.doi.org/10.3390/molecules15053281] [PMID: 20657478]
[25]
Avram, S.; Buiu, C.; Duda-Seiman, C.; Borcan, F.; Duda-Seiman, D.; Mihailescu, D. Evaluation of the pharmacological descriptors related to the induction of antimicrobial activity by using QSAR and computational mutagenesis. Recent Trends on QSAR in the Pharmaceutical Perceptions, 2012, (36), 63-98.
[http://dx.doi.org/10.2174/978160805379711201010063]
[26]
Kubinyi, H. QSAR: Hansch analysis and related approaches; VCH, 1993.
[http://dx.doi.org/10.1002/9783527616824]
[27]
Hopfinger, A.J.; Wang, S.; Tokarski, J.S.; Jin, B.Q.; Albuquerque, M.; Madhav, P.J.; Duraiswami, C. Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J. Am. Chem. Soc., 1997, 119(43), 10509-10524.
[http://dx.doi.org/10.1021/ja9718937]
[28]
Avram, S.; Mihailescu, D.; Borcan, F.; Milac, A.L. Prediction of improved antimicrobial mastoparan derivatives by 3D-QSAR-CoMSIA/CoMFA and computational mutagenesis. Monatsh. Chem., 2012, 143(4), 535-543.
[http://dx.doi.org/10.1007/s00706-011-0713-1]
[29]
Avram, S.; Buiu, C.; Borcan, F.; Milac, A.L. More effective antimicrobial mastoparan derivatives, generated by 3D-QSAR-Almond and computational mutagenesis. Mol. Biosyst., 2012, 8(2), 587-594.
[http://dx.doi.org/10.1039/C1MB05297G] [PMID: 22086548]
[30]
Avram, S.; Duda-Seiman, D.; Borcan, F.; Radu, B.; Duda-Seiman, C.; Mihailescu, D. Evaluation of antimicrobial activity of new mastoparan derivatives using QSAR and computational mutagenesis. Int. J. Pept. Res. Ther., 2011, 17(1), 7-17.
[http://dx.doi.org/10.1007/s10989-010-9235-7]
[31]
MOE (The Molecular Operating Environment), 2012.10.. Chemical Computing Group Inc., 2012.
[32]
Cruciani, C.; Crivori, P.; Carrupt, P.A.; Testa, B. Molecular fields in quantitative structure-permeation relationships: the VolSurf approach. J. Mol. Struct. THEOCHEM, 2000, 503(1-2), 17-30.
[http://dx.doi.org/10.1016/S0166-1280(99)00360-7]
[33]
Islam, M.R.; Zaman, A.; Jahan, I.; Chakravorty, R.; Chakraborty, S. In silico QSAR analysis of quercetin reveals its potential as therapeutic drug for Alzheimer’s disease. J. Young Pharm., 2013, 5(4), 173-179.
[http://dx.doi.org/10.1016/j.jyp.2013.11.005] [PMID: 24563598]
[34]
Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[35]
Herrera-Rueda, M.A.; Navarrete-Vazquez, G.; Aguirre-Crespo, F.; Maldonado-Velazquez, M.G.; Vergara-Galicia, J.; Canul, H.C.; Garcia-Mera, X.; Prado-Prado, F.J. Review of theoretical models to study natural products with antiprotozoal activity. Curr. Drug Targets, 2017, 18(5), 605-616.
[http://dx.doi.org/:10.2174/1389450117666161222161335] [PMID: 28017125]
[36]
Awasthi, M.; Singh, S.; Pandey, V.P.; Dwivedi, U.N. Alzheimer’s disease: An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. J. Neurol. Sci., 2016, 361, 256-271.
[http://dx.doi.org/10.1016/j.jns.2016.01.008] [PMID: 26810552]
[37]
Pirtskhalava, M.; Gabrielian, A.; Cruz, P.; Griggs, H.L.; Squires, R.B.; Hurt, D.E.; Grigolava, M.; Chubinidze, M.; Gogoladze, G.; Vishnepolsky, B.; Alekseyev, V.; Rosenthal, A.; Tartakovsky, M. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res., 2016, 44(13), 6503.
[http://dx.doi.org/10.1093/nar/gkw243] [PMID: 27060142]
[38]
The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res., 2015, 43(Database issue), D204-D212.
[http://dx.doi.org/ 10.1093/nar/gku989] [PMID: 25348405]
[39]
Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A.C.; Liu, Y.; Maciejewski, A.; Arndt, D.; Wilson, M.; Neveu, V.; Tang, A.; Gabriel, G.; Ly, C.; Adamjee, S.; Dame, Z.T.; Han, B.; Zhou, Y.; Wishart, D.S. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res., 2014, 42(Database issue), D1091-D1097.
[http://dx.doi.org/10.1093/nar/gkt1068] [PMID: 24203711]
[40]
Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res., 2012, 40(Database issue), D1100-D1107.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[41]
Scalbert, A.; Andres-Lacueva, C.; Arita, M.; Kroon, P.; Manach, C.; Urpi-Sarda, M.; Wishart, D. Databases on food phytochemicals and their health-promoting effects. J. Agric. Food Chem., 2011, 59(9), 4331-4348.
[http://dx.doi.org/10.1021/jf200591d] [PMID: 21438636]
[42]
Li, Z.; Li, Y.; Sun, L.; Tang, Y.; Liu, L.; Zhu, W. Artificial neural network cascade identifies multi-P450 inhibitors in natural compounds. PeerJ, 2015, 3 e1524
[http://dx.doi.org/10.7717/peerj.1524] [PMID: 26719820]
[43]
ChEMBL CHEMBL485259 - Compound Report Card. Available at: www.ebi.ac.uk/chembldb/index.php/compound/inspect/CHEMBL485259 (Accessed Date: 29 JANUARY 2017).
[44]
ChEMBL ChEMBL449062 - Compound Report Card. Available at: www.ebi.ac.uk/chembldb/index.php/compound/inspect/ChEMBL449062 (Accessed Date: 29 JANUARY 2017).
[45]
ChEMBL CHEMBL25306 - Compound Report Card. Available at: www.ebi.ac.uk/chembldb/index.php/compound/inspect/ChEMBL25306 (Accessed Date: 29 JANUARY 2017).
[46]
ChEMBL CHEMBL165 - Compound Report Card. Available at: www.ebi.ac.uk/chembldb/index.php/compound/inspect/ChEMBL165 (Accessed Date: 29 JANUARY 2017).
[47]
ChEMBL CHEMBL118 - Compund Report Card. Available at: www.ebi.ac.uk/chembldb/index.php/compound/inspect/CHEMBL118 (Accessed Date: 29 JANUARY 2017).
[48]
ChEMBL CHEMBL174 - Compound Report Card. Available at: www.ebi.ac.uk/chembldb/index.php/compound/inspect/CHEMBL174 (Accessed Date: 29 JANUARY 2017).
[49]
ChEMBL CHEMBL161 – Compound Report Card. Available at: www.ebi.ac.uk/chembldb/index.php/compound/inspect/CHEMBL161 (Accessed Date: 29 JANUARY 2017).
[50]
ChEMBL CHEMBL130 - Compund Report Card. Available at: www.ebi.ac.uk/chembldb/index.php/compound/inspect/ (Accessed Date: 29 JANUARY 2017).
[51]
ChEMBL CHEMBL102 - Compound Report Card. Available at: www.ebi.ac.uk/chembldb/index.php/compound/inspect/CHEMBL102 (Accessed Date: 29 JANUARY 2017).
[52]
Morita, K.; Abe, Y.; Itano, A.; Musha, I.; Koga, T.; Yamazaki, T.; Yamanouchi, H. [Successful treatment with chloramphenicol in four pediatric cases of intractable bacterial meningitis] No To Hattatsu, 2016, 48(1), 29-33.
[PMID: 27012107]
[53]
Brouwer, M.C.; McIntyre, P.; Prasad, K.; van de Beek, D. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst. Rev., 2015, (9) CD004405
[http://dx.doi.org/10.1002/14651858.CD004405.pub5] [PMID: 26362566]
[54]
Clark, D.E. In silico prediction of blood-brain barrier permeation. Drug Discov. Today, 2003, 8(20), 927-933.
[http://dx.doi.org/10.1016/S1359-6446(03)02827-7] [PMID: 14554156]
[55]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[56]
Gogoladze, G.; Grigolava, M.; Vishnepolsky, B.; Chubinidze, M.; Duroux, P.; Lefranc, M.P.; Pirtskhalava, M. DBAASP: database of antimicrobial activity and structure of peptides. FEMS Microbiol. Lett., 2014, 357(1), 63-68.
[http://dx.doi.org/10.1111/1574-6968.12489] [PMID: 24888447]
[57]
Brouwer, M.C.; Thwaites, G.E.; Tunkel, A.R.; van de Beek, D. Dilemmas in the diagnosis of acute community-acquired bacterial meningitis. Lancet, 2012, 380(9854), 1684-1692.
[http://dx.doi.org/10.1016/S0140-6736(12)61185-4] [PMID: 23141617]
[58]
Kim, S.R.; Shin, Y.S.; Kim, J.H.; Choi, M.; Yoo, S-H. Differences in Type Composition of Symptom Clusters as Predictors of Quality of Life in Patients with Meningioma and Glioma. World Neurosurg., 2017, 98, 50-59.
[http://dx.doi.org/10.1016/j.wneu.2016.10.085] [PMID: 27794512]
[59]
Xue, J.; Li, H.; Deng, X.; Ma, Z.; Fu, Q.; Ma, S. L-Menthone confers antidepressant-like effects in an unpredictable chronic mild stress mouse model via NLRP3 inflammasome-mediated inflammatory cytokines and central neurotransmitters. Pharmacol. Biochem. Behav., 2015, 134, 42-48.
[http://dx.doi.org/10.1016/j.pbb.2015.04.014] [PMID: 25937574]
[60]
Finnell, J.E.; Lombard, C.M.; Melson, M.N.; Singh, N.P.; Nagarkatti, M.; Nagarkatti, P.; Fadel, J.R.; Wood, C.S.; Wood, S.K. The protective effects of resveratrol on social stress-induced cytokine release and depressive-like behavior. Brain Behav. Immun., 2017, 59, 147-157.
[http://dx.doi.org/10.1016/j.bbi.2016.08.019] [PMID: 27592314]
[61]
Reinisalo, M.; Kårlund, A.; Koskela, A.; Kaarniranta, K.; Karjalainen, R.O. Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxid. Med. Cell. Longev., 2015, 2015 340520
[http://dx.doi.org/10.1155/2015/340520] [PMID: 26180583]
[62]
Snoussi, M.; Noumi, E.; Trabelsi, N.; Flamini, G.; Papetti, A.; De Feo, V. Mentha spicata essential oil: chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of vibrio spp. strains. Molecules, 2015, 20(8), 14402-14424.
[http://dx.doi.org/10.3390/molecules200814402] [PMID: 26262604]
[63]
Moss, M.; Oliver, L. Plasma 1,8-cineole correlates with cognitive performance following exposure to rosemary essential oil aroma. Ther. Adv. Psychopharmacol., 2012, 2(3), 103-113.
[http://dx.doi.org/10.1177/2045125312436573] [PMID: 23983963]
[64]
Sebei, K.; Sakouhi, F.; Herchi, W.; Khouja, M.L.; Boukhchina, S. Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biol. Res., 2015, 48(1), 7.
[http://dx.doi.org/10.1186/0717-6287-48-7] [PMID: 25654423]
[65]
Bourgou, S.; Rahali, F.Z.; Ourghemmi, I.; Saïdani Tounsi, M. Changes of peel essential oil composition of four Tunisian citrus during fruit maturation. ScientificWorldJournal, 2012, 2012 528593
[http://dx.doi.org/10.1100/2012/528593] [PMID: 22645427]
[66]
Dhananjayan, K.; Sumathy, A.; Sivanandy, P. Molecular docking studies and in-vitro acetylcholinesterase inhibition by terpenoids and flavonoids. Asian J. Res. Chem, 2013, 6(11), 1011-1017.
[67]
Miyazawa, M.; Watanabe, H.; Umemoto, K.; Kameoka, H. Inhibition of acetylcholinesterase activity by essential oils of Mentha species. J. Agric. Food Chem., 1998, 46(9), 3431-3434.
[http://dx.doi.org/10.1021/jf9707041]
[68]
Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1), D1045-D1053.
[http://dx.doi.org/10.1093/nar/gkv1072] [PMID: 26481362]
[69]
Vendrely, V.; Peuchant, E.; Buscail, E.; Moranvillier, I.; Rousseau, B.; Bedel, A.; Brillac, A.; de Verneuil, H.; Moreau-Gaudry, F.; Dabernat, S. Resveratrol and capsaicin used together as food complements reduce tumor growth and rescue full efficiency of low dose gemcitabine in a pancreatic cancer model. Cancer Lett., 2017, 390, 91-102.
[http://dx.doi.org/10.1016/j.canlet.2017.01.002] [PMID: 28089829]
[70]
Latruffe, N. Natural Products and Inflammation. Molecules, 2017, 22(1)E120
[http://dx.doi.org/10.3390/molecules22010120] [PMID: 28085099]
[71]
Borges, A.; Abreu, A.C.; Dias, C.; Saavedra, M.J.; Borges, F.; Simões, M. New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules, 2016, 21(7)E877
[http://dx.doi.org/10.3390/molecules21070877] [PMID: 27399652]
[72]
Evans, H.M.; Howe, P.R.; Wong, R.H. Effects of resveratrol on cognitive performance, mood and cerebrovascular function in post-menopausal women; a 14-week randomised placebo-controlled intervention trial. Nutrients, 2017, 9(1)E27
[http://dx.doi.org/10.3390/nu9010027] [PMID: 28054939]
[73]
Diaz-Gerevini, G.T.; Repossi, G.; Dain, A.; Tarres, M.C.; Das, U.N.; Eynard, A.R. Beneficial action of resveratrol: How and why? Nutrition, 2016, 32(2), 174-178.
[http://dx.doi.org/10.1016/j.nut.2015.08.017] [PMID: 26706021]
[74]
Tellone, E.; Galtieri, A.; Russo, A.; Ficarra, S. How does resveratrol influence the genesis of some neurodegenerative diseases? Neural Regen. Res., 2016, 11(1), 86-87.
[http://dx.doi.org/10.4103/1673-5374.175047] [PMID: 26981091]
[75]
Tellone, E.; Galtieri, A.; Russo, A.; Giardina, B.; Ficarra, S. Resveratrol: A Focus on Several Neurodegenerative Diseases. Oxid. Med. Cell. Longev., 2015, 2015392169
[http://dx.doi.org/10.1155/2015/392169] [PMID: 26180587]
[76]
Kodali, M.; Parihar, V.K.; Hattiangady, B.; Mishra, V.; Shuai, B.; Shetty, A.K. Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation. Sci. Rep., 2015, 5, 8075.
[http://dx.doi.org/10.1038/srep08075] [PMID: 25627672]
[77]
Lu, X.; Ma, L.; Ruan, L.; Kong, Y.; Mou, H.; Zhang, Z.; Wang, Z.; Wang, J.M.; Le, Y. Resveratrol differentially modulates inflammatory responses of microglia and astrocytes. J. Neuroinflammation, 2010, 7, 46.
[http://dx.doi.org/10.1186/1742-2094-7-46] [PMID: 20712904]
[78]
Sheu, J.N.; Liao, W.C.; Wu, U.I.; Shyu, L.Y.; Mai, F.D.; Chen, L.Y.; Chen, M.J.; Youn, S.C.; Chang, H.M. Resveratrol suppresses calcium-mediated microglial activation and rescues hippocampal neurons of adult rats following acute bacterial meningitis. Comp. Immunol. Microbiol. Infect. Dis., 2013, 36(2), 137-148.
[http://dx.doi.org/10.1016/j.cimid.2012.11.002] [PMID: 23273676]
[79]
Jiang, H.; Zhang, L.; Kuo, J.; Kuo, K.; Gautam, S.C.; Groc, L.; Rodriguez, A.I.; Koubi, D.; Hunter, T.J.; Corcoran, G.B.; Seidman, M.D.; Levine, R.A. Resveratrol-induced apoptotic death in human U251 glioma cells. Mol. Cancer Ther., 2005, 4(4), 554-561.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0056] [PMID: 15827328]
[80]
Andrade-Ochoa, S.; Nevárez-Moorillón, G.V.; Sánchez-Torres, L.E.; Villanueva-García, M.; Sánchez-Ramírez, B.E.; Rodríguez-Valdez, L.M.; Rivera-Chavira, B.E. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complement. Altern. Med., 2015, 15, 332.
[http://dx.doi.org/10.1186/s12906-015-0858-2] [PMID: 26400221]
[81]
Khan, A.; Vaibhav, K.; Javed, H.; Tabassum, R.; Ahmed, M.E.; Khan, M.M.; Khan, M.B.; Shrivastava, P.; Islam, F.; Siddiqui, M.S.; Safhi, M.M.; Islam, F. 1,8-cineole (eucalyptol) mitigates inflammation in amyloid Beta toxicated PC12 cells: relevance to Alzheimer’s disease. Neurochem. Res., 2014, 39(2), 344-352.
[http://dx.doi.org/10.1007/s11064-013-1231-9] [PMID: 24379109]
[82]
Sadlon, A.E.; Lamson, D.W. Immune-modifying and antimicrobial effects of Eucalyptus oil and simple inhalation devices. Altern. Med. Rev., 2010, 15(1), 33-47.
[PMID: 20359267]
[83]
Mate, J.; Periago, P.M.; Palop, A. When nanoemulsified, D-limonene reduces Listeria monocytogenes heat resistance about one hundred times. Food Control, 2016, 59, 824-828.
[http://dx.doi.org/10.1016/j.foodcont.2015.07.020]
[84]
da Fonseca, C.O.; Simão, M.; Lins, I.R.; Caetano, R.O.; Futuro, D.; Quirico-Santos, T. Efficacy of monoterpene perillyl alcohol upon survival rate of patients with recurrent glioblastoma. J. Cancer Res. Clin. Oncol., 2011, 137(2), 287-293.
[http://dx.doi.org/10.1007/s00432-010-0873-0] [PMID: 20401670]
[85]
Santos, L.; Pieroni, M.; Menegasso, A.; Pinto, J.; Palma, M. M. A new scenario of bioprospecting of Hymenoptera venoms through proteomic approach J. of Ven. Anim. and Tox. including Trop. Dis, 2011, 17(4)
[http://dx.doi.org/10.1590/S1678-91992011000400003]
[86]
Mortari, M.R.; Cunha, A.O.S.; de Oliveira, L.; Vieira, E.B.; Gelfuso, E.A.; Coutinho-Netto, J.; Ferreira dos Santos, W. Anticonvulsant and behavioural effects of the denatured venom of the social wasp Polybia occidentalis (Polistinae, Vespidae). Basic Clin. Pharmacol. Toxicol., 2005, 97(5), 289-295.
[http://dx.doi.org/10.1111/j.1742-7843.2005.pto_137.x] [PMID: 16236140]
[87]
Cunha, A.O.; Mortari, M.R.; Oliveira, L.; Carolino, R.O.; Coutinho-Netto, J.; dos Santos, W.F. Anticonvulsant effects of the wasp Polybia ignobilis venom on chemically induced seizures and action on GABA and glutamate receptors. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2005, 141(1), 50-57.
[http://dx.doi.org/10.1016/j.cca.2005.05.004] [PMID: 15953769]
[88]
Kim, H.J.; Jeon, B.S. Is acupuncture efficacious therapy in Parkinson’s disease? J. Neurol. Sci., 2014, 341(1-2), 1-7.
[http://dx.doi.org/10.1016/j.jns.2014.04.016] [PMID: 24798223]
[89]
Yang, E.J.; Jiang, J.H.; Lee, S.M.; Yang, S.C.; Hwang, H.S.; Lee, M.S.; Choi, S.M. Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. J. Neuroinflammation, 2010, 7, 69.
[http://dx.doi.org/10.1186/1742-2094-7-69] [PMID: 20950451]
[90]
Castro, H.J.; Mendez-Lnocencio, J.I.; Omidvar, B.; Omidvar, J.; Santilli, J.; Nielsen, H.S. Jr.; Pavot, A.P.; Richert, J.R.; Bellanti, J.A. A phase I study of the safety of honeybee venom extract as a possible treatment for patients with progressive forms of multiple sclerosis. Allergy Asthma Proc., 2005, 26(6), 470-476.
[PMID: 16541972]
[91]
Kim, J.I.; Yang, E.J.; Lee, M.S.; Kim, Y.S.; Huh, Y.; Cho, I.H.; Kang, S.; Koh, H.K. Bee venom reduces neuroinflammation in the MPTP-induced model of Parkinson’s disease. Int. J. Neurosci., 2011, 121(4), 209-217.
[http://dx.doi.org/10.3109/00207454.2010.548613] [PMID: 21265705]
[92]
Khalil, W.K.; Assaf, N.; ElShebiney, S.A.; Salem, N.A. Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis. Neurochem. Int., 2015, 80, 79-86.
[http://dx.doi.org/10.1016/j.neuint.2014.11.008] [PMID: 25481089]
[93]
Jung, S.Y.; Lee, K-W.; Choi, S-M.; Yang, E.J. Bee venom protects against rotenone-induced cell death in NSC34 motor neuron cells. Toxins (Basel), 2015, 7(9), 3715-3726.
[http://dx.doi.org/10.3390/toxins7093715] [PMID: 26402700]
[94]
Maurice, N.; Deltheil, T.; Melon, C.; Degos, B.; Mourre, C.; Amalric, M.; Kerkerian-Le Goff, L. Bee venom alleviates motor deficits and modulates the transfer of cortical information through the basal ganglia in rat models of parkinson’s disease. PLoS One, 2015, 10(11)e0142838
[http://dx.doi.org/10.1371/journal.pone.0142838] [PMID: 26571268]
[95]
Silva, J.; Monge-Fuentes, V.; Gomes, F.; Lopes, K.; dos Anjos, L.; Campos, G.; Arenas, C.; Biolchi, A.; Gonçalves, J.; Galante, P.; Campos, L.; Mortari, M. Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools. Toxins (Basel), 2015, 7(8), 3179-3209.
[http://dx.doi.org/10.3390/toxins7083179] [PMID: 26295258]
[96]
Lamy, C.; Goodchild, S.J.; Weatherall, K.L.; Jane, D.E.; Liégeois, J-F.; Seutin, V.; Marrion, N.V. Allosteric block of KCa2 channels by apamin. J. Biol. Chem., 2010, 285(35), 27067-27077.
[http://dx.doi.org/10.1074/jbc.M110.110072] [PMID: 20562108]
[97]
Zivkovic, A.R.; Sedlaczek, O.; von Haken, R.; Schmidt, K.; Brenner, T.; Weigand, M.A.; Bading, H.; Bengtson, C.P.; Hofer, S. Muscarinic M1 receptors modulate endotoxemia-induced loss of synaptic plasticity. Acta Neuropathol. Commun., 2015, 3, 67.
[http://dx.doi.org/10.1186/s40478-015-0245-8] [PMID: 26531194]
[98]
Ziaja, M. Septic encephalopathy. Curr. Neurol. Neurosci. Rep., 2013, 13(10), 383.
[http://dx.doi.org/10.1007/s11910-013-0383-y] [PMID: 23954971]
[99]
Donato, R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol., 2001, 33(7), 637-668.
[http://dx.doi.org/10.1016/S1357-2725(01)00046-2] [PMID: 11390274]
[100]
Baudier, J.; Mochly-Rosen, D.; Newton, A.; Lee, S.H.; Koshland, D.E., Jr; Cole, R.D. Comparison of S100b protein with calmodulin: interactions with melittin and microtubule-associated tau proteins and inhibition of phosphorylation of tau proteins by protein kinase C. Biochemistry, 1987, 26(10), 2886-2893.
[http://dx.doi.org/10.1021/bi00384a033] [PMID: 3111527]
[101]
Yang, E.J.; Kim, S.H.; Yang, S.C.; Lee, S.M.; Choi, S.M. Melittin restores proteasome function in an animal model of ALS. J. Neuroinflammation, 2011, 8, 69.
[http://dx.doi.org/10.1186/1742-2094-8-69] [PMID: 21682930]
[102]
Dantas, C.G.; Nunes, T.L.G.M.; Nunes, T.L.G.M.; da Paixoa, A.O.; Reis, F.P.; Junior, W.D.; Cardoso, J.C.; Gramacho, K.P.; Gomes, M.Z. Pharmacological evaluation of bee venom and melittin. Rev. Bras. Farmacogn., 2014, 24(1), 67-72.
[http://dx.doi.org/10.1590/0102-695X20142413365]
[103]
Ramírez, V.T.; Ramos-Fernández, E.; Inestrosa, N.C. The Gαo activator mastoparan-7 promotes dendritic spine formation in hippocampal neurons. Neural Plast., 2016, 2016 4258171
[http://dx.doi.org/10.1155/2016/4258171] [PMID: 26881110]
[104]
Waterhouse, A.M.; Procter, J.B.; Martin, D.M.; Clamp, M.; Barton, G.J. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics, 2009, 25(9), 1189-1191.
[http://dx.doi.org/10.1093/bioinformatics/btp033] [PMID: 19151095]
[105]
Avram, S.; Mernea, M.; Borcan, F.; Mihailescu, D. Evaluation of the therapeutic properties of mastoparan- and sifuvirtide- derivative antimicrobial peptides using chemical structure-function relationship - in vivo and in silico approaches. Curr. Drug Deliv., 2016, 13(2), 202-210.
[http://dx.doi.org/10.2174/1567201813666151113122139] [PMID: 26563942]