Biological Activity and Physicochemical Properties of Dipeptidyl Nitrile Derivatives Against Pancreatic Ductal Adenocarcinoma Cells

Page: [112 - 120] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Pancreatic cancer is one of the most aggressive types with high mortality in patients. Therefore, studies to discover new drugs based on cellular targets have been developed to treat this disease. Due to the importance of Cysteine Protease (CP) to several cellular processes in cancer cells, CP inhibitors have been studied as novel alternative approaches for pancreatic cancer therapy.

Objective: The cytostatic potential of new CP inhibitors derived from dipeptidyl nitriles is analyzed in vitro using pancreatic cancer (MIA PaCa-2) cells.

Methods: The cytotoxic and cytostatic activities were studied using MTT colorimetric assay in 2D and 3D cultures. Colony formation, migration in Boyden chamber and cell cycle analysis were applied to further study the cytostatic activity. The inhibition of cysteine proteases was evaluated with Z-FR-MCA selective substrate, and ROS evaluation was performed with DCFH-DA fluorophore. Permeability was investigated using HPLC-MS to obtain log kw. Combination therapy was also evaluated using the best compound with gemcitabine.

Results: The inhibition of intracellular CP activity by the compounds was confirmed, and the cytostatic effect was established with cell cycle retention in the G1 phase. CP inhibitors were able to reduce cell proliferation by 50% in the clonogenic assay, and the same result was achieved for the migration assay, without any cytotoxic effect. The Neq0554 inhibitor was also efficient to increase the gemcitabine potency in the combination therapy. Physicochemical properties using an artificial membrane model quantified 1.14 ≥ log Kw ≥ 0.75 for all inhibitors (also confirmed using HPLC-MS analysis) along with the identification of intra and extracellular metabolites. Finally, these dipeptidyl nitrile derivatives did not trigger the formation of reactive oxygen species, which is linked to genotoxicity.

Conclusion: Altogether, these results provide a clear and favorable picture to develop CP inhibitors in pre-clinical assays.

Keywords: Cytostatic activity, dipeptidyl nitrile derivatives, cell-based assays, pancreatic cancer cell, selectivity, combined therapy, inhibition of cell migration.

Graphical Abstract

[1]
Sing, N.; Das, P.; Gupta, S.; Sachdev, V.; Srivasatava, S.; Gupta, S.D.; Pandey, R.M.; Sahni, P.; Chauhan, S.S.; Saraya, A. Plasma cathepsin L: A prognostic marker for pancreatic cancer. World J. Gastroenterol., 2014, 46, 17532-1750.
[2]
Herman, J.M.; Regine, W.F. Adjuvant pancreatic cancer therapy: No one should go it alone or be left behind. Int. J. Radiat. Oncol. Biol. Phys., 2010, 3, 645-657.
[3]
Postlewait, L.M.; Ethun, C.G.; Kooby, D.A.; Sarmiento, J.M.; Chen, Z.; Staley, C.A.; Brutcher, E.; Adsay, V.; El-Rayes, B.; Maithel, S.K. Combination gemcitabin/cisplatin therapy and ERCC1 expression for resected pancreatic adenocarcinoma: Results of a phase II prospective trial. J. Surg. Oncol., 2016, 114, 336-341.
[4]
Fahrioglu, U.; Dodurga, Y.; Elmas, L.; Seçme, M. Ferulic acid decreases cell viability and colony formation while inhibiting migration of MIA Paca-2 human pancreatic cancer cells in vitro. Gene, 2016, 576, 476-482.
[5]
Mehrara, E.; Forssell-Aronsoon, E.; Bernhardt, P. Objective assessment of tumour response to therapy based on tumour growth kinetics. Br. J. Cancer, 2011, 105, 682-686.
[6]
Millar, A.W.; Lynch, K.P. Rethinking clinical trials for cytostatic drugs. Nat. Rev. Cancer, 2003, 7, 540-545.
[7]
Balzarini, J.; Ostrowski, T.; Goslinski, T.; Clercq, E.D.; Golankiewicz, B. Pronounced cytostatic activity and bystander effect of a novel series of fluorescent tricyclic acyclovir and ganciclovir derivatives in herpes simplex virus thymidine kinase gene-transduced tumor cell lines. Gene Ther., 2002, 9, 1173-1182.
[8]
Pisanu, M.E.; Ricci, A.; Paris, L.; Surrentino, E.; Liliac, L.; Bagnoli, M.; Canevari, S.; Mezzanzanica, D.; Podo, F.; Iorio, E.; Canese, R. Monitoring response to cytostatic cisplatin in a HER2(+) ovary cancer model by MRI and in vitro and in vivo MR spectroscopy. Br. J. Cancer, 2014, 110, 625-635.
[9]
Yamamoto, J.; Ohnuma, K.; Hatano, R.; Okamoto, T.; Komiya, E.; Yamazaki, H.; Iwata, S.; Dang, N.H.; Aoe, K.; Kishimito, T.; Yamada, T.; Morimoto, C. Regulation of somatostatin receptor 4-mediated cytostatic effects by CD26 in malignant pleural mesothelioma. Br. J. Cancer, 2014, 110, 2232-2245.
[10]
Schneider, N.F.Z.; Persich, L.; Rocha, S.C.; Ramos, A.C.P.; Cortes, V.F.; Silva, I.T.; Munkert, J.; Pádua, R.M.; Kreis, W.; Taranto, A.G.; Barbosa, L.A.; Braga, F.C.; Simões, C.M.O. Cytotoxic and cytostatic effects of digitoxigenin monodigitoxide (DGX) in human lung cancer cells and its link to Na,K-ATPase. Biomed. Pharmacother., 2018, 97, 684-696.
[11]
Olson, O.C.; Joyce, J.A. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat. Rev. Cancer, 2015, 12, 712-729.
[12]
Siklos, M.; BenAisssa, M.; Thatcher, G.R.J. Cysteine proteases as therapeutic target: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm. Sin. B, 2015, 6, 506-529.
[13]
Wilkinson, R.D.A.; Young, A.; Burden, R.E.; Williams, R.; Scott, C.J. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development. Mol. Cancer, 2016, 15, 29.
[14]
Foucquier, J.; Guedj, M. Analysis of drug combination: current methodological landscape. Pharmacol. Res. Perspect., 2015, 3, e00149.
[15]
Awasthi, N.; Zhang, C.; Schwarz, A.M.; Hinz, S.; Wang, C.; Williams, N.S.; Schwarz, A.S.; Schwarz, R.E. Comparative benefits of Nab-paclitaxel over gemcitabine or polysorbate-based docetaxel in experimental pancreatic cancer. Carcinogenesis, 2013, 10, 2361-2369.
[16]
Saidel, M.É.; dos Santos, K.C.; Nagano, L.F.P.; Montanari, C.A.; Leitão, A. Novel anti-prostate cancer scaffold identified by the combination of in silico and cell-based assays targeting the PI3K-AKT-mTOR pathway. Bioorg. Med. Chem. Lett., 2017, 27, 4001-4006.
[17]
Caroselli, E.E.; Assis, D.M.; Barbiéri, C.L.; Júdice, W.A.S.; Juliano, M.A.; Gazarini, M.L.; Juliano, L. Leishmania (L.) amazonensis peptidase activities inside the living cells and in their lysates. Mol. Biochem. Parasitol., 2012, 184, 82-89.
[18]
Avelar, L.A.A.; Camilo, C.D.; Albuquerque, S.; Fernandes, W.B.; Gonçalez, C.; Kenny, P.W.; Leitão, A.; McKerrow, J.H.; Montanari, C.A.; Orozco, E.V.M.; Ribeiro, J.F.R.; Rocha, J.R.; Rosini, F.; Saidel, M.E. Molecular design, synthesis and trypanocidal activity of dipeptidyl nitriles as cruzain inhibitors. PLoS Negl. Trop. Dis., 2015, 7, e0003916.
[19]
Burtoloso, A.C.B.; Albuquerque, S.; Fuber, M.; Gomes, J.C.; Gonçalez, C.; Kenny, P.W.; Leitão, A.; Montanari, C.A.; Quilles, J.C.J.; Ribeiro, J.F.R.; Rocha, J.R. Anti-trypanosomal activity of non-peptidic nitrile-based cysteine protease inhibitors. PLoS Negl. Trop. Dis., 2017, 2, e0005343.
[20]
Santoro, A.L.; Carrilho, E.; Lanças, F.M.; Montanari, C.A. Quantitative structure-retention relationships of flavonoids unraveled by immobilized artificial membrane chromatography. Eur. J. Pharm. Sci., 2016, 88, 147-157.
[21]
Murray, E.J.; Grisanti, M.S.; Bentley, G.V.; Murray, S.S. E64d, a membrane-permeable cysteine protease inhibitor, attenuates the effects of parathyroid hormone on osteoblasts in vitro. Metabolism, 1997, 46, 1090-1094.
[22]
Ng, K.W. Potential role of odanacatib in the treatment of osteoporosis. Clin. Interv. Aging, 2012, 7, 235-247.
[23]
Montanari, M.L.C.; Montanari, C.A.; Piló-Veloso, D.; Cass, Q.B. Estimation of the RP-HPLC lipophilicity parameters Log K′, and log KW, a comparison with the hydrophobicity index ϕ0. J. Liq. Chrom. Rel. Technol., 1997, 11, 1703-1715.
[24]
Rutkowska, E.; Pajak, K.; Józwiak, K. Lipophilicity and methods of determination and its role in medicinal chemistry. Acta Pol. Pharm., 2013, 1, 3-18.
[25]
Bone, H.G.; Dempster, D.W.; Eisman, J.A.; Greenspan, S.L.; McClung, M.R.; Nakumura, T.; Papapoulos, S.; Shih, W.J.; Rybak-Feiglin, A.; Santora, A.C.; Verbuggen, N.; Leung, A.T.; Lombardi, A. Odanacatib for the treatment of postmenopausal osteoporosis: development history and design and participant characteristics of LOFT, the Long-Term Odanacatib Fracture Trial. Osteoporos. Int., 2015, 26, 699-712.
[26]
Gagnon, A.; Amad, M.H.; Bonneau, P.R.; Coulombe, R.; DeRoy, P.L.; Doyon, L.; Duan, J.; Garneau, M.; Guse, I.; Jakalian, A.I.; Jolicoeur, E.; Landry, S.; Malenfant, E.; Simonneau, B.; Yoakim, C. Thiotetrazole alkynylacetanilides as potent and bioavailable non-nucleoside inhibitors of the HIV-1 wide type and K103N/Y181C double mutant reserve transcriptases. Bioorg. Med. Chem. Lett., 2007, 17, 4437-4441.
[27]
Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; Bree, C.V. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 5, 2315-2319.
[28]
Song, L.; Chang, J.; Li, Z. A serine protease extracted from Trichosanthes kirilowii induces apoptosis via the PI3K/AKT-mediated mitochondrial pathway in human colorectal adenocarcinoma cells. Food Funct., 2016, 2, 843-854.
[29]
Martin, A.C.B.M.; Cardoso, A.C.R.; Araujo, H.S.S.; Cominetti, M.R. Recombinant disintegrin domain of human ADAM9 inhibits migration and invasion of DU145 prostate tumor cells. Cell Adhes. Migr., 2015, 4, 1-7.
[30]
Katt, M.E.; Placone, A.L.; Wong, A.D.; Xu, Z.S.; Searson, P.C. In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Front. Bioeng. Biotechnol., 2016, 4, 12.
[31]
Mohamed, M.M.; Sloane, B.F. Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer, 2006, 10, 764-775.
[32]
Lankelma, J.M.; Voorend, D.M.; Barwari, T.; Koetsveld, J.; Van der Spek, A.H.; De Porto, A.P.N.A.; Rooijen, G.V.; Noorden, C.J.F. Cathepsin L, target in cancer treatment? Life Sci., 2010, 86, 225-233.
[33]
Colella, R.; Jackson, T.; Goodwyn, E. Matrigel invasion by the prostate cancer cell lines, PC3 and DU145, and cathepsin L+B activity. Biotech. Histochem., 2006, 79, 121-127.
[34]
Mehlen, P.; Puisieux, A. Metastasis: A question of life and death. Nat. Rev. Cancer, 2006, 6, 449-458.
[35]
Tumura, K. Development of cell-cycle checkpoint therapy for solid tumors. Jpn. J. Clin. Med., 2015, 12, 1097-1102.
[36]
Sudhan, D.R.; Siemann, D.W. Cathepsin L targeting in cancer treatment. Pharmacol. Ther., 2015, 155, 105-116.
[37]
Goulet, B.; Nepveu, A. Development of cell-cycle checkpoint therapy for solid tumors. Cell Cycle, 2004, 8, 986-989.
[38]
Sant, S.; Johnston, P.A. The production of 3D tumor spheroids for cancer drug discovery. Drug Discov. Today. Technol., 2017, 23, 27-36.
[39]
Shelper, T.B.; Lovitt, C.J.; Avery, V.M. Assessing drug efficacy in a miniaturized pancreatic cancer in vitro 3d cell culture model. Assay Drug Dev. Technol., 2016, 7, 367-380.
[40]
Demchik, L.L.; Sameni, M.; Nelson, K.; Mikkelsen, T.; Sloane, B.F. Cathepsin B and glioma invasion. Int. J. Dev. Neurosci., 1999, 17, 483-494.
[41]
Lakka, S.S.; Gondi, C.S.; Yanamandra, N.; Olivero, W.C.; Dinh, D.H.; Gujrati, M.; Rao, J.S. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene, 2004, 23, 4681-4689.
[42]
Cartledge, D.M.; Colella, R.; Glazewski, L.; Lu, G.; Mason, R.W. Inhibitors of cathepsins B and L induce autophagy and cell death in neuroblastoma cells. Invest. New Drugs, 2013, 31, 20-29.
[43]
Sabeh, F.; Shimizu-Hirota, R.; Weiss, S.J. Protease-dependent versus-independent cancer cell invasion programs: Three-dimensional amoeboid movement revisited. J. Cell Biol., 2009, 185, 11-19.
[44]
Li, F.; Gonzalez, F.J.; Ma, X. LC-MS-based metabolomics in profiling of drug metabolism and bioactivation. Acta Pharm. Sin. B, 2012, 2, 118-125.
[45]
Blair, I.A.; Tilve, A. Analysis of anticancer drugs and their metabolites by mass spectrometry. Curr. Drug Metab., 2002, 3, 463-480.
[46]
Borowa-Mazgaj, B.; Mróz, A.; Augustin, E.; Paluszkiewicz, E.; Mazerska, Z. The overexpression of CPR and P450 3A4 in pancreatic cancer cells changes the metabolic profile and increases the cytotoxicity and pro-apoptotic activity of acridine antitumor agent, C-1748. Biochem. Pharmacol., 2017, 142, 21-38.
[47]
Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J., 2003, 10, 1195-1214.