Mini-Reviews in Organic Chemistry

Author(s): Nader Ghaffari Khaligh*

DOI: 10.2174/1570193X15666181029141019

Recent Advances and Applications of tert-Butyl Nitrite (TBN) in Organic Synthesis

Page: [3 - 25] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

This mini-review will present the recent applications of Tert-Butyl Nitrite (TBN) in organic synthesis. Due to its unique structural feature and wide application, TBN holds a prominent and great potential in organic synthesis. The applications of TBN in three areas viz. aerobic oxidation, annulation, and diazotization were reviewed recently; now, the current mini-review will describe the studies carried out to date in areas such as nitration of alkane, alkene, alkyne, and aromatic compounds, nitrosylation and sequential nitrosylation reactions, using TBN as source of oxygen and nitrogen. The mechanisms of these transformations will be briefly described in this mini-review.

Keywords: Mechanism, nitration, nitrosylation, organic synthesis, source of nitrogen, source of oxygen, tert-butyl nitrite.

Graphical Abstract

[1]
Tucker, J.L. Green chemistry, a pharmaceutical perspective. Org. Process Res. Dev., 2006, 10(2), 315-319.
[http://dx.doi.org/10.1021/op050227k]
[2]
Khaligh, N.G. Recently applications of tert-butyl nitrite in organic synthesis-part I. Curr. Org. Chem., 2018, 22, 1-19.
[3]
Muller, W.E. The benzodiazepine receptor; Cambridge University Press: NewYork, 1988.
[4]
Belciug, M.P.; Ananthanarayanan, V.S. Interaction of calcium channel antagonists with calcium: Structural studies on nicardipine and its Ca2+ complex. J. Med. Chem., 1994, 37(25), 4392-4399.
[http://dx.doi.org/10.1021/jm00051a017] [PMID: 7996551]
[5]
Zollinger, H. Color Chemistry; Wiley-VCH: New York, 1987, p. 161.
[6]
Fan, F.R.F.; Yao, Y.; Cai, L.; Cheng, L.; Tour, J.M.; Bard, A.J. Structure-dependent charge transport and storage in self-assembled monolayers of compounds of interest in molecular electronics: Effects of tip material, headgroup, and surface concentration. J. Am. Chem. Soc., 2004, 126(12), 4035-4042.
[http://dx.doi.org/10.1021/ja0359815] [PMID: 15038757]
[7]
Ono, N. The nitro group in organic synthesis; Wiley-VCH: New York, 2001.
[http://dx.doi.org/10.1002/0471224480]
[8]
Feuer, H.; Nielsen, T. Nitro compounds: Recent advances in synthesis and chemistry; Wiley Online Library: New York, 1990.
[9]
Prakash, G.K.S.; Mathew, T. ipso-Nitration of arenes. Angew. Chem. Int. Ed. Engl., 2010, 49(10), 1726-1728.
[http://dx.doi.org/10.1002/anie.200906940] [PMID: 20146295]
[10]
Byun, E.; Hong, B.; De Castro, K.A.; Lim, M.; Rhee, H. One-pot reductive mono-N-alkylation of aniline and nitroarene derivatives using aldehydes. J. Org. Chem., 2007, 72(25), 9815-9817.
[http://dx.doi.org/10.1021/jo701503q] [PMID: 17997570]
[11]
Ragaini, F.; Rapetti, A.; Visentin, E.; Monzani, M.; Caselli, A.; Cenini, S. Synthesis of indoles by intermolecular cyclization of unfunctionalized nitroarenes and alkynes, catalyzed by palladium-phenanthroline complexes. J. Org. Chem., 2006, 71(10), 3748-3753.
[http://dx.doi.org/10.1021/jo060073m] [PMID: 16674045]
[12]
Zhu, H.; Ke, X.; Yang, X.; Sarina, S.; Liu, H. Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew. Chem. Int. Ed. Engl., 2010, 49(50), 9657-9661.
[http://dx.doi.org/10.1002/anie.201003908] [PMID: 21053223]
[13]
Wu, X.F.; Schranck, J.; Neumann, H.; Beller, M. Convenient and mild synthesis of nitroarenes by metal-free nitration of arylboronic acids. Chem. Commun. (Camb.), 2011, 47(46), 12462-12463.
[http://dx.doi.org/10.1039/c1cc15484b] [PMID: 22037612]
[14]
Wang, S.; Shu, C.C.; Wang, T.; Yu, J.; Yan, G.B. Green and controllable metal-free nitrification and nitration of arylboronic acids. Chin. Chem. Lett., 2012, 23, 643-646.
[http://dx.doi.org/10.1016/j.cclet.2012.03.028]
[15]
Kilpatrick, B.; Heller, M.; Arns, S. Chemoselective nitration of aromatic sulfonamides with tert-butyl nitrite. Chem. Commun. (Camb.), 2013, 49(5), 514-516.
[http://dx.doi.org/10.1039/C2CC37481A] [PMID: 23198284]
[16]
Taniguchi, T.; Yajima, A.; Ishibashia, H. Oxidative nitration of alkenes with tert-butyl nitrite and oxygen. Adv. Synth. Catal., 2011, 353, 2643-2647.
[http://dx.doi.org/10.1002/adsc.201100315]
[17]
Taniguchi, T.; Sugiura, Y.; Hatta, T.; Yajima, A.; Ishibashi, H. Multifunctionalization of alkenes via aerobic oxynitration and sp3 C-H oxidation. Chem. Commun. (Camb.), 2013, 49(22), 2198-2200.
[http://dx.doi.org/10.1039/c3cc00130j] [PMID: 23396373]
[18]
Galliker, B.; Kissner, R.; Nauser, T.; Koppenol, W.H. Intermediates in the autoxidation of nitrogen monoxide. Chemistry, 2009, 15(25), 6161-6168.
[http://dx.doi.org/10.1002/chem.200801819] [PMID: 19437472 ]
[19]
Hirose, D.; Taniguchi, T. Aerobic radical multifunctionalization of alkenes using tert-butyl nitrite and water. Beilstein J. Org. Chem., 2013, 9, 1713-1717.
[http://dx.doi.org/10.3762/bjoc.9.196] [PMID: 24062832]
[20]
Maity, S.; Naveen, T.; Sharma, U.; Maiti, D. Stereoselective nitration of olefins with (t)BuONO and TEMPO: Direct access to nitroolefins under metal-free conditions. Org. Lett., 2013, 15(13), 3384-3387.
[http://dx.doi.org/10.1021/ol401426p] [PMID: 23772945]
[21]
Rokade, B.V.; Prabhu, K.R. Synthesis of substituted nitroolefins: A copper catalyzed nitrodecarboxylation of unsaturated carboxylic acids. Org. Biomol. Chem., 2013, 11(39), 6713-6716.
[http://dx.doi.org/10.1039/c3ob41408f] [PMID: 24175324 ]
[22]
Manna, S.; Jana, S.; Saboo, T.; Maji, A.; Maiti, D. Synthesis of (E)-nitroolefins via decarboxylative nitration using t-butylnitrite (t-BuONO) and TEMPO. Chem. Commun. (Camb.), 2013, 49(46), 5286-5288.
[http://dx.doi.org/10.1039/c3cc41576g] [PMID: 23636417]
[23]
Dutta, U.; Maity, S.; Kancherla, R.; Maiti, D. Aerobic oxynitration of alkynes with (t)BuONO and TEMPO. Org. Lett., 2014, 16(24), 6302-6305.
[http://dx.doi.org/10.1021/ol503025n] [PMID: 25401303]
[24]
Yan, H.; Rong, G.; Liu, D.; Zheng, Y.; Chen, J.; Mao, J. Stereoselective intermolecular nitroaminoxylation of terminal aromatic alkynes: Trapping alkenyl radicals by TEMPO. Org. Lett., 2014, 16(24), 6306-6309.
[http://dx.doi.org/10.1021/ol5030585] [PMID: 25474497]
[25]
Shen, T.; Yuan, Y.; Jiao, N. Metal-free nitro-carbocyclization of activated alkenes: A direct approach to synthesize oxindoles by cascade C-N and C-C bond formation. Chem. Commun. (Camb.), 2014, 50(5), 554-556.
[http://dx.doi.org/10.1039/C3CC47336H] [PMID: 24266027]
[26]
Markofsky, S.B. Ullmann’s encyclopedia of industrial organic chemicals., In: Elvers, B.; Hawkins, S. Eds.; Wiley-VCH: Weinheim. 1999, 6, pp. 3487-3501.
[27]
Liu, Y.; Zhang, J.L.; Song, R.J.; Qian, P.C.; Li, J.H. Cascade nitration/cyclization of 1,7-enynes with tBuONO and H2O: One-pot self-assembly of pyrrolo[4,3,2-de]quinolinones. Angew. Chem. Int. Ed. Engl., 2014, 53(34), 9017-9020.
[http://dx.doi.org/10.1002/anie.201404192] [PMID: 24924592]
[28]
Zhang, W.; Ren, S.; Zhang, J.; Liu, Y. Palladium-catalyzed sp3 C-H nitration of 8-methylquinolines. J. Org. Chem., 2015, 80(11), 5973-5978.
[http://dx.doi.org/10.1021/acs.joc.5b00735] [PMID: 25989846]
[29]
Chen, F.; Huang, X.; Li, X.; Shen, T.; Zou, M.; Jiao, N. Dehydrogenative N-incorporation: A direct approach to quinoxaline N-oxides under mild conditions. Angew. Chem. Int. Ed. Engl., 2014, 53(39), 10495-10499.
[http://dx.doi.org/10.1002/anie.201406479] [PMID: 25098905]
[30]
Gao, X.; Zhang, F.; Deng, G.; Yang, L. Brønsted acid catalyzed benzylic C-H bond functionalization of azaarenes: Nucleophilic addition to nitroso compounds. Org. Lett., 2014, 16(14), 3664-3667.
[http://dx.doi.org/10.1021/ol501422k] [PMID: 24983413]
[31]
Monir, K.; Ghosh, M.; Jana, S.; Mondal, P.; Majee, A.; Hajra, A. Regioselective synthesis of nitrosoimidazoheterocycles using tert-butyl nitrite. Org. Biomol. Chem., 2015, 13(32), 8717-8722.
[http://dx.doi.org/10.1039/C5OB01345C] [PMID: 26178232]
[32]
Fisher, D.J.; Shaum, J.B.; Mills, C.L.; Read de Alaniz, J. Synthesis of hindered anilines: Three-component coupling of arylboronic acids, tert-butyl nitrite, and alkyl bromides. Org. Lett., 2016, 18(19), 5074-5077.
[http://dx.doi.org/10.1021/acs.orglett.6b02523] [PMID: 27670608]
[33]
Chaudhary, P.; Gupta, S.; Muniyappan, N.; Sabiah, S.; Kandasamy, J. An efficient synthesis of N-nitrosamines under solvent, metal and acid free conditions using tert-butyl nitrite. Green Chem., 2016, 18, 2323-2330.
[http://dx.doi.org/10.1039/C5GC02880A]
[34]
Sau, P.; Santra, S.K.; Rakshit, A.; Patel, B.K. Tert-Butyl nitrite-mediated domino synthesis of isoxazolines and isoxazoles from terminal aryl alkenes and alkynes. J. Org. Chem., 2017, 82(12), 6358-6365.
[http://dx.doi.org/10.1021/acs.joc.7b00946] [PMID: 28521105]
[35]
Yedage, S.L.; Bhanage, B.M. Tert-Butyl nitrite-mediated synthesis of N-nitrosoamides, carboxylic acids, benzocoumarins, and isocoumarins from amides. J. Org. Chem., 2017, 82(11), 5769-5781.
[http://dx.doi.org/10.1021/acs.joc.7b00570] [PMID: 28472882]
[36]
Okuzumi, T.; Nakanishi, E.; Tsuji, T.; Makino, S. Efficient solid-phase synthesis of diverse 1,2,3-benzotriazin-4-ones using tert-butyl nitrite. Tetrahedron Lett., 2003, 44, 5539-5542.
[http://dx.doi.org/10.1016/S0040-4039(03)01280-2]
[37]
Yan, Y.; Li, H.; Niu, B.; Zhu, C.; Chen, T.; Liu, Y. Mild and efficient TBAI-catalyzed synthesis of 1,2,3-benzotriazine-4-(3H)-ones from tert-butyl nitrite and 2-aminobenzamides under acid-free conditions. Tetrahedron Lett., 2016, 57, 4170-4173.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.102]
[38]
Khaligh, N.G.; Johan, M.R.; Ching, J.J. Saccharin and tert-butyl nitrite: Cheap and efficient reagents for the synthesis of 1,2,3-benzotriazine-4-(3H)-ones from 2-aminobenzamides under metal-free conditions. Aust. J. Chem., 2018, 71, 186-189.
[http://dx.doi.org/10.1071/CH17590]
[39]
Senadi, G.C.; Gore, B.S.; Hu, W.P.; Wang, J.J. BF3-Etherate-promoted cascade reaction of 2-alkynylanilines with nitriles: One-pot assembly of 4-amido-cinnolines. Org. Lett., 2016, 18(12), 2890-2893.
[http://dx.doi.org/10.1021/acs.orglett.6b01207] [PMID: 27266479 ]
[40]
Khaligh, N.G.; Mihankhah, T.; Johan, M.R.; Ching, J.J. Saccharin: An efficient organocatalyst for the one-pot synthesis of 4-amidocinnolines under metal and halogen-free conditions. Monatsh. Chem., 2018, 149, 1083-1087.
[http://dx.doi.org/10.1007/s00706-018-2174-2]
[41]
Barral, K.; Moorhouse, A.D.; Moses, J.E. Efficient conversion of aromatic amines into azides: A one-pot synthesis of triazole linkages. Org. Lett., 2007, 9(9), 1809-1811.
[http://dx.doi.org/10.1021/ol070527h] [PMID: 17391043]
[42]
Xu, H.; Fan, L.L. Antifungal agents. Part 4: Synthesis and antifungal activities of novel indole[1,2-c]-1,2,4-benzotriazine derivatives against phytopathogenic fungi in vitro. Eur. J. Med. Chem., 2011, 46(1), 364-369.
[http://dx.doi.org/10.1016/j.ejmech.2010.10.022] [PMID: 21093115]
[43]
Dutta, U.; Lupton, D.W.; Maiti, D. Aryl nitriles from alkynes using tert-butyl nitrite: Metal-free approach to C≡C bond cleavage. Org. Lett., 2016, 18(4), 860-863.
[http://dx.doi.org/10.1021/acs.orglett.6b00147] [PMID: 26849380]
[44]
Wang, F.; Zhang, T.; Tu, H.Y.; Zhang, X.G. Transition-metal-free conversion of trifluoropropanamides into cyanoformamides through C−CF3 bond cleavage and nitrogenation. J. Org. Chem., 2017, 82(10), 5475-5480.
[http://dx.doi.org/10.1021/acs.joc.7b00626] [PMID: 28467073]
[45]
Shu, Z.; Ye, Y.; Deng, Y.; Zhang, Y.; Wang, J. Palladium(II)-catalyzed direct conversion of methyl arenes into aromatic nitriles. Angew. Chem. Int. Ed. Engl., 2013, 52(40), 10573-10576.
[http://dx.doi.org/10.1002/anie.201305731] [PMID: 23963827]
[46]
Ohkubo, K.; Fujimoto, A.; Fukuzumi, S. Visible-light-induced oxygenation of benzene by the triplet excited state of 2,3-dichloro-5,6-dicyano-p-benzoquinone. J. Am. Chem. Soc., 2013, 135(14), 5368-5371.
[http://dx.doi.org/10.1021/ja402303k] [PMID: 23534829]
[47]
Ohkubo, K.; Kobayashi, T.; Fukuzumi, S. Direct oxygenation of benzene to phenol using quinolinium ions as homogeneous photocatalysts. Angew. Chem. Int. Ed. Engl., 2011, 50(37), 8652-8655.
[http://dx.doi.org/10.1002/anie.201102931] [PMID: 21805547]
[48]
Shen, Z.; Dai, J.; Xiong, J.; He, X.; Mo, W.; Hu, B.; Sun, N.; Hu, X. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)/tert-butyl nitrite/oxygen: A versatile catalytic oxidation system. Adv. Synth. Catal., 2011, 353, 3031-3038.
[http://dx.doi.org/10.1002/adsc.201100429]
[49]
Yi, S.L.; Li, M.C.; Hu, X.Q.; Mo, W.M.; Shen, Z.L. An efficient and convenient method for the preparation of disulfides from thiols using oxygen as oxidant catalyzed by tert-butyl nitrite. Chin. Chem. Lett., 2016, 27, 1505-1508.
[http://dx.doi.org/10.1016/j.cclet.2016.03.016]
[50]
Qiu, D.; Meng, H.; Jin, L.; Wang, S.; Tang, S.; Wang, X.; Mo, F.; Zhang, Y.; Wang, J. Synthesis of aryl trimethylstannanes from aryl amines: A Sandmeyer-type stannylation reaction. Angew. Chem. Int. Ed. Engl., 2013, 52(44), 11581-11584.
[http://dx.doi.org/10.1002/anie.201304579] [PMID: 24014092]
[51]
Yang, J.; Liu, Y.Y.; Song, R.J.; Peng, Z.H.; Li, J.H. Copper‐mediated 1,2‐difunctionalization of styrenes with sodium arylsulfinates and tert‐butyl nitrite: Facile access to α‐sulfonylethanone oximes. Adv. Synth. Catal., 2016, 358, 2286-2292.
[http://dx.doi.org/10.1002/adsc.201600109]
[52]
Chen, F.; Zhou, N.N.; Zhan, J.L.; Han, B.; Yu, W. Tert-butyl nitrite-mediated vicinal sulfoximation of alkenes with sulfinic acids: A highly efficient approach toward α-sulfonyl ketoximes. Org. Chem. Front., 2017, 4, 135-139.
[http://dx.doi.org/10.1039/C6QO00535G]
[53]
Chauhan, S.; Chaudhary, P.; Singh, A.K.; Verma, P.; Srivastava, V.; Kandasamy, J. Tert-butyl nitrite induced radical dimerization of primary thioamides and selenoamides at room temperature. Tetrahedron Lett., 2018, 59, 272-276.
[http://dx.doi.org/10.1016/j.tetlet.2017.12.033]
[54]
Khaligh, N.G.; Johan, M.R.; Ching, J.J. Saccharin: A cheap and mild acidic agent for the synthesis of azo dyes via telescoped dediazotization; Green Process Synth, 2018.
[http://dx.doi.org/10.1515/gps-2017- 0133]