Association between Vitamin D Levels and Nonalcoholic Fatty Liver Disease: Potential Confounding Variables

Page: [310 - 332] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Nonalcoholic fatty liver disease (NAFLD), historically considered to be the hepatic component of the metabolic syndrome, is a spectrum of fat-associated liver conditions, in the absence of secondary causes, that may progress to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Disease progression is closely associated with body weight or fatness, dyslipidemia, insulin resistance, oxidative stress, and inflammation. Recently, vitamin D deficiency has been linked to the pathogenesis and severity of NAFLD because of vitamin D “pleiotropic” functions, with roles in immune modulation, cell differentiation and proliferation, and regulation of inflammation. Indeed, several studies have reported an association between vitamin D and NAFLD/NASH. However, other studies have failed to find an association. Therefore, we sought to critically review the current evidence on the association between vitamin D deficiency and NAFLD/NASH, and to analyze and discuss some key variables that may interfere with this evaluation, such as host-, environment-, and heritability-related factors regulating vitamin D synthesis and metabolism; definitions of deficient or optimal vitamin D status with respect to skeletal and nonskeletal outcomes including NAFLD/NASH; methods of measuring 25(OH)D; and methods of diagnosing NAFLD as well as quantifying adiposity, the cardinal link between vitamin D deficiency and NAFLD.

Keywords: 25-hydroxyvitamin D, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, obesity, vitamin D deficiency, liquid chromatography tandem mass spectrometry, supplementation.

[1]
Cianferotti, L.; Marcocci, C. Subclinical vitamin D deficiency. Best Pract. Res. Clin. Endocrinol. Metab., 2012, 26, 523-537.
[2]
Iruzubieta, P.; Terán, Á.; Crespo, J.; Fábrega, E. Vitamin D deficiency in chronic liver disease. World J. Hepatol., 2014, 6, 901-915.
[3]
Reid, I.R. What diseases are causally linked to vitamin D deficiency? Arch. Dis. Child., 2016, 101, 185-189.
[4]
Alvarez, J.A.; Ashraf, A. Role of vitamin d in insulin secretion and insulin sensitivity for glucose homeostasis. Int. J. Endocrinol., 2010, 2010, 351385.
[5]
Pacifico, L.; Anania, C.; Osborn, J.F.; Ferraro, F.; Bonci, E.; Olivero, E.; Chiesa, C. Low 25(OH)D3 levels are associated with total adiposity, metabolic syndrome, and hypertension in Caucasian children and adolescents. Eur. J. Endocrinol., 2011, 165, 603-611.
[6]
Forman, J.P.; Curhan, G.C.; Taylor, E.N. Plasma 25-hydroxyvitamin D levels and risk of incident hypertension among young women. Hypertension, 2008, 52, 828-832.
[7]
Ju, S.Y.; Jeong, H.S.; Kim, D.H. Blood vitamin D status and metabolic syndrome in the general adult population: A dose-response meta-analysis. J. Clin. Endocrinol. Metab., 2014, 99, 1053-1063.
[8]
Al Mheid, I.; Patel, R.S.; Tangpricha, V.; Quyyumi, A.A. Vitamin D and cardiovascular disease: is the evidence solid? Eur. Heart J., 2013, 34, 3691-3698.
[9]
Angulo, P. Nonalcoholic fatty liver disease. N. Engl. J. Med., 2002, 346, 1221-1231.
[10]
Pacifico, L.; Poggiogalle, E.; Cantisani, V.; Menichini, G.; Ricci, P.; Ferraro, F.; Chiesa, C. Pediatric nonalcoholic fatty liver disease: A clinical and laboratory challenge. World J. Hepatol., 2010, 2, 275-288.
[11]
Rinella, M.E. Nonalcoholic fatty liver disease: a systematic review. JAMA, 2015, 313, 2263-2273.
[12]
Tilg, H.; Moschen, A.R. Insulin resistance, inflammation, and non-alcoholic fatty liver disease. Trends Endocrinol. Metab., 2008, 19, 371-379.
[13]
Stein, E.M.; Strain, G.; Sinha, N.; Ortiz, D.; Pomp, A.; Dakin, G.; McMahon, D.J.; Bockman, R.; Silverberg, S.J. Vitamin D insufficiency prior to bariatric surgery: risk factors and a pilot treatment study. Clin. Endocrinol. (Oxf.), 2009, 71, 176-183.
[14]
Hyppönen, E.; Boucher, B.J.; Berry, D.J.; Power, C. 25-hydroxy vitamin D, IGF-1, and metabolic syndrome at 45 years of age: a cross-sectional study in the 1958 British Birth Cohort. Diabetes, 2008, 57, 298-305.
[15]
Liu, E.; Meigs, J.B.; Pittas, A.G.; McKeown, N.M.; Economos, C.D.; Booth, S.L.; Jacques, P.F. Plasma 25-hydroxyvitamin D is associated with markers of the insulin resistant phenotype in nondiabetic adults. J. Nutr., 2009, 139, 329-334.
[16]
Forouhi, N.G.; Luan, J.; Cooper, A.; Boucher, B.J.; Wareham, N.J. Baseline serum 25-hydroxyvitamin D is predictive of future glycaemic status and insulin resistance, the Medical Research Council Ely Prospective Study 1990-2000. Diabetes, 2008, 57, 2619-2625.
[17]
Kwok, R.M.; Torres, D.M.; Harrison, S.A. Vitamin D and nonalcoholic fatty liver disease (NAFLD): It is more than just an association? Hepatology, 2013, 58, 1166-1174.
[18]
Targher, G.; Bertolini, L.; Scala, L.; Cigolini, M.; Zenari, L.; Falezza, G.; Arcaro, G. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease. Nutr. Metab. Cardiovasc. Dis., 2007, 17, 517-524.
[19]
Manco, M.; Ciampalini, P.; Nobili, V. Low levels of 25-hydroxyvitamin D(3) in children with biopsy-proven nonalcoholic fatty liver disease. Hepatology, 2010, 51, 2229.
[20]
Katz, K.; Brar, P.C.; Parekh, N.; Liu, Y.H.; Weitzman, M. Suspected nonalcoholic Fatty liver disease is not associated with vitamin d status in adolescents after adjustment for obesity. J. Obes., 2010, 2010, 496829.
[21]
Barchetta, I.; Angelico, F.; Del Ben, M.; Baroni, M.G.; Pozzilli, P.; Morini, S.; Cavallo, M.G. Strong association between non alcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes. BMC Med., 2011, 9, 85.
[22]
Liangpunsakul, S.; Chalasani, N. Serum vitamin D concentrations and unexplained elevation in ALT among US adults. Dig. Dis. Sci., 2011, 56, 2124-2129.
[23]
Nseir, W.; Taha, H.; Khateeb, J.; Grosovski, M.; Assy, N. Fatty liver is associated with recurrent bacterial infections independent of metabolic syndrome. Dig. Dis. Sci., 2011, 56, 3328-3334.
[24]
Kayaniyil, S.; Vieth, R.; Harris, S.B.; Retnakaran, R.; Knight, J.A.; Gerstein, H.C.; Perkins, B.A.; Zinman, B.; Hanley, A.J. Association of 25(OH)D and PTH with metabolic syndrome and its traditional and nontraditional components. J. Clin. Endocrinol. Metab., 2011, 96, 168-175.
[25]
Purnak, T.; Beyazit, Y.; Ozaslan, E.; Efe, C.; Hayretci, M. The evaluation of bone mineral density in patients with nonalcoholic fatty liver disease. Wien. Klin. Wochenschr., 2012, 124, 526-531.
[26]
Barchetta, I.; Carotti, S.; Labbadia, G.; Gentilucci, U.V.; Muda, A.O.; Angelico, F.; Silecchia, G.; Leonetti, F.; Fraioli, A.; Picardi, A.; Morini, S.; Cavallo, M.G. Liver vitamin D receptor, CYP2R1, and CYP27A1 expression: relationship with liver histology and vitamin D3 levels in patients with nonalcoholic steatohepatitis or hepatitis C virus. Hepatology, 2012, 56, 2180-2187.
[27]
Bhatt, S.P.; Nigam, P.; Misra, A.; Guleria, R.; Qadar Pasha, M.A. Independent associations of low 25 hydroxy vitamin D and high parathyroid hormonal levels with nonalcoholic fatty liver disease in Asian Indians residing in north India. Atherosclerosis, 2013, 230, 157-163.
[28]
Pirgon, O.; Cekmez, F.; Bilgin, H.; Eren, E.; Dundar, B. Low 25-hydroxyvitamin D level is associated with insulin sensitivity in obese adolescents with non-alcoholic fatty liver disease. Obes. Res. Clin. Pract., 2013, 7, e275-e283.
[29]
Jablonski, K.L.; Jovanovich, A.; Holmen, J.; Targher, G.; McFann, K.; Kendrick, J.; Chonchol, M. Low 25-hydroxyvitamin D level is independently associated with non-alcoholic fatty liver disease. Nutr. Metab. Cardiovasc. Dis., 2013, 23, 792-798.
[30]
Eraslan, S.; Kizilgul, M.; Uzunlulu, M.; Colak, Y.; Ozturk, O.; Tuncer, I. Frequency of metabolic syndrome and 25-hydroxyvitamin D3 levels in patients with non-alcoholic fatty liver disease. Minerva Med., 2013, 104, 447-453.
[31]
Li, L.; Zhang, L.; Pan, S.; Wu, X.; Yin, X. No significant association between vitamin D and nonalcoholic fatty liver disease in a Chinese population. Dig. Dis. Sci., 2013, 58, 2376-2382.
[32]
Kasapoglu, B.; Turkay, C.; Yalcin, K.S.; Carlioglu, A.; Sozen, M.; Koktener, A. Low vitamin D levels are associated with increased risk for fatty liver disease among non-obese adults. Clin. Med. (Lond.), 2013, 13, 576-579.
[33]
Rhee, E.J.; Kim, M.K.; Park, S.E.; Park, C.Y.; Baek, K.H.; Lee, W.Y.; Kang, M.I.; Park, S.W.; Kim, S.W.; Oh, K.W. High serum vitamin D levels reduce the risk for nonalcoholic fatty liver disease in healthy men independent of metabolic syndrome. Endocr. J., 2013, 60, 743-752.
[34]
Seo, J.A.; Eun, C.R.; Cho, H.; Lee, S.K.; Yoo, H.J.; Kim, S.G.; Choi, K.M.; Baik, S.H.; Choi, D.S.; Yim, H.J.; Shin, C.; Kim, N.H. Low vitamin D status is associated with nonalcoholic Fatty liver disease independent of visceral obesity in Korean adults. PLoS One, 2013, 8, e75197.
[35]
Catena, C.; Cosma, C.; Camozzi, V.; Plebani, M.; Ermani, M.; Sechi, L.A.; Fallo, F. Non-alcoholic fatty liver disease is not associated with vitamin D deficiency in essential hypertension. High Blood Press. Cardiovasc. Prev., 2013, 20, 33-37.
[36]
Cui, R.; Sheng, H.; Rui, X.F.; Cheng, X.Y.; Sheng, C.J.; Wang, J.Y.; Qu, S. Low bone mineral density in chinese adults with nonalcoholic Fatty liver disease. Int. J. Endocrinol., 2013, 2013, 396545.
[37]
Nobili, V.; Giorgio, V.; Liccardo, D.; Bedogni, G.; Morino, G.; Alisi, A.; Cianfarani, S. Vitamin D levels and liver histological alterations in children with nonalcoholic fatty liver disease. Eur. J. Endocrinol., 2014, 170, 547-553.
[38]
Black, L.J.; Jacoby, P.; She Ping-Delfos, W.C.; Mori, T.A.; Beilin, L.J.; Olynyk, J.K.; Ayonrinde, O.T.; Huang, R.C.; Holt, P.G.; Hart, P.H.; Oddy, W.H.; Adams, L.A. Low serum 25-hydroxyvitamin D concentrations associate with non-alcoholic fatty liver disease in adolescents independent of adiposity. J. Gastroenterol. Hepatol., 2014, 29, 1215-1222.
[39]
Dasarathy, J.; Periyalwar, P.; Allampati, S.; Bhinder, V.; Hawkins, C.; Brandt, P.; Khiyami, A.; McCullough, A.J.; Dasarathy, S. Hypovitaminosis D is associated with increased whole body fat mass and greater severity of non-alcoholic fatty liver disease. Liver Int., 2014, 34, e118-e127.
[40]
Hao, Y.P.; Ma, X.J.; Luo, Y.Q.; Ni, J.; Dou, J.X.; Hu, Y.Q.; Zhu, J.A.; Bao, Y.Q.; Jia, W.P. Serum vitamin D is associated with non-alcoholic fatty liver disease in Chinese males with normal weight and liver enzymes. Acta Pharmacol. Sin., 2014, 35, 1150-1156.
[41]
Küçükazman, M.; Ata, N.; Dal, K.; Yeniova, A.Ö.; Kefeli, A.; Basyigit, S.; Aktas, B.; Akin, K.O.; Ağladıoğlu, K.; Üre, Ö.S.; Topal, F.; Nazligül, Y.; Beyan, E.; Ertugrul, D.T. The association of vitamin D deficiency with non-alcoholic fatty liver disease. Clinics (São Paulo), 2014, 69, 542-546.
[42]
Díez Rodríguez, R.; Ballesteros Pomar, M.D.; Calleja Fernández, A.; Calleja Antolin, S.; Cano Rodríguez, I.; Linares Torres, P.; Jorquera Plaza, F.; Olcoz Goñi, J.L. Vitamin D levels and bone turnover markers are not related to non-alcoholic fatty liver disease in severely obese patients. Nutr. Hosp., 2014, 30, 1256-1262.
[43]
Jeong, D.W.; Lee, H.W.; Cho, Y.H.; Yi, D.W.; Lee, S.Y.; Son, S.M.; Kang, Y.H. Comparison of serum ferritin and vitamin D in association with the severity of nonalcoholic Fatty liver disease in korean adults. Endocrinol. Metab. (Seoul), 2014, 29, 479-488.
[44]
Yildiz, I.; Erol, O.B.; Toprak, S.; Cantez, M.S.; Omer, B.; Kilic, A.; Oguz, F.; Uysalol, M.; Yekeler, E.; Unuvar, E. Role of vitamin D in children with hepatosteatosis. J. Pediatr. Gastroenterol. Nutr., 2014, 59, 106-111.
[45]
Hourigan, S.K.; Abrams, S.; Yates, K.; Pfeifer, K.; Torbenson, M.; Murray, K.; Roth, C.L.; Kowdley, K.; Scheimann, A.O. NASH CRN. Relation between vitamin D status and nonalcoholic fatty liver disease in children. J. Pediatr. Gastroenterol. Nutr., 2015, 60, 396-404.
[46]
Chang, E.J.; Yi, D.Y.; Yang, H.R.; Vitamin, D. Status and Bone Mineral Density in Obese Children with Nonalcoholic Fatty Liver Disease. J. Korean Med. Sci., 2015, 30, 1821-1827.
[47]
Bril, F.; Maximos, M.; Portillo-Sanchez, P.; Biernacki, D.; Lomonaco, R.; Subbarayan, S.; Correa, M.; Lo, M.; Suman, A.; Cusi, K. Relationship of vitamin D with insulin resistance and disease severity in non-alcoholic steatohepatitis. J. Hepatol., 2015, 62, 405-411.
[48]
Lu, Z.; Pan, X.; Hu, Y.; Hao, Y.; Luo, Y.; Hu, X.; Ma, X.; Bao, Y.; Jia, W. Serum vitamin D levels are inversely related with non-alcoholic fatty liver disease independent of visceral obesity in Chinese postmenopausal women. Clin. Exp. Pharmacol. Physiol., 2015, 42, 139-145.
[49]
Malespin, M.; Sleesman, B.; Lau, A.; Wong, S.S.; Cotler, S.J. Prevalence and correlates of suspected nonalcoholic fatty liver disease in Chinese American children. J. Clin. Gastroenterol., 2015, 49, 345-349.
[50]
Anty, R.; Hastier, A.; Canivet, C.M.; Patouraux, S.; Schneck, A.S.; Ferrari-Panaia, P.; Ben-Amor, I.; Saint-Paul, M.C.; Gugenheim, J.; Gual, P.; Iannelli, A.; Tran, A. Severe Vitamin D deficiency is not associated with liver damage in morbidly obese patients. Obes. Surg., 2016, 26, 2138-2143.
[51]
Wang, N.; Zhai, H.; Zhu, C.; Li, Q.; Han, B.; Chen, Y.; Zhu, C.; Chen, Y.; Xia, F.; Lin, D.; Lu, Y. Combined association of vitamin d and sex hormone binding globulin with nonalcoholic fatty liver disease in men and postmenopausal women: A cross-sectional study. Medicine (Baltimore), 2016, 95, e2621.
[52]
Zhai, H.L.; Wang, N.J.; Han, B.; Li, Q.; Chen, Y.; Zhu, C.F.; Chen, Y.C.; Xia, F.Z.; Cang, Z.; Zhu, C.X.; Lu, M. Low vitamin D levels and non-alcoholic fatty liver disease, evidence for their independent association in men in East China: A cross-sectional study (Survey on Prevalence in East China for Metabolic Diseases and Risk Factors (SPECT-China). Br. J. Nutr., 2016, 115, 1352-1359.
[53]
Nelson, J.E.; Roth, C.L.; Wilson, L.A.; Yates, K.P.; Aouizerat, B.; Morgan-Stevenson, V.; Whalen, E.; Hoofnagle, A.; Mason, M.; Gersuk, V.; Yeh, M.M.; Kowdley, K.V. Vitamin D deficiency is associated with increased risk of non-alcoholic steatohepatitis in adults with non-alcoholic fatty liver disease: Possible role for MAPK and NF-κB? Am. J. Gastroenterol., 2016, 111, 852-863.
[54]
Luger, M.; Kruschitz, R.; Kienbacher, C.; Traussnigg, S.; Langer, F.B.; Schindler, K.; Würger, T.; Wrba, F.; Trauner, M.; Prager, G.; Ludvik, B. Prevalence of liver fibrosis and its association with non-invasive fibrosis and metabolic markers in morbidly obese Patients with Vitamin D deficiency. Obes. Surg., 2016, 26, 2425-2432.
[55]
Chung, G.E.; Kim, D.; Kwak, M.S.; Yang, J.I.; Yim, J.Y.; Lim, S.H.; Itani, M. The serum vitamin D level is inversely correlated with nonalcoholic fatty liver disease. Clin. Mol. Hepatol., 2016, 22, 146-151.
[56]
Sezer, O.B.; Buluş, D.; Hızlı, Ş.; Andıran, N.; Yılmaz, D.; Ramadan, S.U. Low 25-hydroxyvitamin D level is not an independent risk factor for hepatosteatosis in obese children. J. Pediatr. Endocrinol. Metab., 2016, 29, 783-788.
[57]
Wang, D.; Lin, H.; Xia, M.; Aleteng, Q.; Li, X.; Ma, H.; Pan, B.; Gao, J.; Gao, X. Vitamin D levels are inversely associated with liver fat content and risk of non-alcoholic fatty liver disease in a chinese middle-aged and elderly population: The shanghai changfeng study. PLoS One, 2016, 11, e0157515.
[58]
Polyzos, S.A.; Anastasilakis, A.D.; Kountouras, J.; Makras, P.; Papatheodorou, A.; Kokkoris, P.; Sakellariou, G.T.; Terpos, E. Circulating sclerostin and Dickkopf-1 levels in patients with nonalcoholic fatty liver disease. J. Bone Miner. Metab., 2016, 34, 447-456.
[59]
Patel, Y.A.; Henao, R.; Moylan, C.A.; Guy, C.D.; Piercy, D.L.; Diehl, A.M.; Abdelmalek, M.F. Vitamin D is not associated with severity in nafld: Results of a paired clinical and gene expression profile analysis. Am. J. Gastroenterol., 2016, 111, 1591-1598.
[60]
Mohamed, A. A.; Ghany, M.A.; Hakeem, G.L.; Mostafa, A.; Khattab, R.A.; Abdalla, A.M.; El Fotoh, L.E.; El Mazary, A.A.; Sayed, M.A.; Fadil, A.M. Assessment of Vitamin D status in a group of Egyptian children with non alcoholic fatty liver disease (multicenter study). Nutr. Metab. (Lond.), 2016, 13, 83.
[61]
Park, D.; Kwon, H.; Oh, S.W.; Joh, H.K.; Hwang, S.S.; Park, J.H.; Yun, J.M.; Lee, H.; Chung, G.E.; Ze, S.; Park, J.H.; Bae, Y.; Lee, A. Is Vitamin D an Independent Risk Factor of Nonalcoholic Fatty Liver Disease?: A Cross-Sectional study of the healthy population. J. Korean Med. Sci., 2017, 32, 95-101.
[62]
Yang, B.B.; Chen, Y.H.; Zhang, C.; Shi, C.E.; Hu, K.F.; Zhou, J.; Xu, D.X.; Chen, X. Low vitamin D status is associated with advanced liver fibrosis in patients with nonalcoholic fatty liver disease. Endocrine, 2017, 55, 582-590.
[63]
Eliades, M.; Spyrou, E.; Agrawal, N.; Lazo, M.; Brancati, F.L.; Potter, J.J.; Koteish, A.A.; Clark, J.M.; Guallar, E.; Hernaez, R. Meta-analysis: Vitamin D and non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther., 2013, 38, 246-254.
[64]
Holick, M.F.; Vitamin, D. Extraskeletal health. Endocrinol. Metab. Clin. North Am., 2010, 39, 381-400.
[65]
Holick, M.F.; Vitamin, D. A d-lightful solution for health. J. Investig. Med., 2011, 59, 872-880.
[66]
Holick, M.F. Vitamin D deficiency. N. Engl. J. Med., 2007, 357, 266-281.
[67]
Kitson, M.T.; Roberts, S.K. D-livering the message: The importance of vitamin D status in chronic liver disease. J. Hepatol., 2012, 57, 897-909.
[68]
Borel, P.; Caillaud, D.; Cano, N.J. Vitamin D bioavailability: State of the art. Crit. Rev. Food Sci. Nutr., 2015, 55, 1193-1205.
[69]
Armas, L.A.; Hollis, B.W.; Heaney, R.P. Vitamin D2 is much less effective than vitamin D3 in humans. J. Clin. Endocrinol. Metab., 2004, 89, 5387-5391.
[70]
Jassil, N.K.; Sharma, A.; Bikle, D.; Wang, X. Vitamin D binding protein and 25-hy droxyvitamin D levels: Emerging clinical applications. Endocr. Pract., 2017, 23, 605-613.
[71]
Kamboh, M.I.; Ferrell, R.E. Ethnic variation in vitamin D-binding protein (GC): A review of isoelectric focusing studies in human populations. Hum. Genet., 1986, 72, 281-293.
[72]
Bhan, I. Vitamin d binding protein and bone health. Int. J. Endocrinol., 2014, 2014, 561214.
[73]
Johnsen, M.S.; Grimnes, G.; Figenschau, Y.; Torjesen, P.A.; Almås, B.; Jorde, R. Serum free and bio-available 25-hydroxyvitamin D correlate better with bone density than serum total 25-hydroxyvitamin D. Scand. J. Clin. Lab. Invest., 2014, 74, 177-183.
[74]
Yamamoto, N.; Homma, S. Vitamin D3 binding protein (group-specific component) is a precursor for the macrophage-activating signal factor from lysophosphatidylcholine-treated lymphocytes. Proc. Natl. Acad. Sci. USA, 1991, 88, 8539-8543.
[75]
Metcalf, J.P.; Thompson, A.B.; Gossman, G.L.; Nelson, K.J.; Koyama, S.; Rennard, S.I.; Robbins, R.A. Gcglobulin functions as a cochemotaxin in the lower respiratory tract. A potential mechanism for lung neutrophil recruitment in cigarette smokers. Am. Rev. Respir. Dis., 1991, 143(4 Pt 1), 844-849.
[76]
White, P.; Cooke, N. The multifunctional properties and characteristics of vitamin D-binding protein. Trends Endocrinol. Metab., 2000, 11, 320-327.
[77]
Van Belle, T.L.; Gysemans, C.; Mathieu, C. Vitamin D in autoimmune, infectious and allergic diseases: A vital player? Best Pract. Res. Clin. Endocrinol. Metab., 2011, 25, 617-632.
[78]
Mora, J.R.; Iwata, M.; von Andrian, U.H. Vitamin effects on the immune system: Vitamins A and D take centre stage. Nat. Rev. Immunol., 2008, 8, 685-698.
[79]
Bookout, A.L.; Jeong, Y.; Downes, M.; Yu, R.T.; Evans, R.M.; Mangelsdorf, D.J. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell, 2006, 126, 789-799.
[80]
Messa, P.; Alfieri, C.; Rastaldi, M.P. Recent insights into vitamin D and its receptor. J. Nephrol., 2011, 24(Suppl. 18), S30-S37.
[81]
Webb, A.R.; DeCosta, B.R.; Holick, M.F. Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation. J. Clin. Endocrinol. Metab., 1989, 68, 882-887.
[82]
Cranney, A.; Weiler, H.A.; O’Donnell, S.; Puil, L. Summary of evidence-based review on vitamin D efficacy and safety in relation to bone health. Am. J. Clin. Nutr., 2008, 88(Suppl.), S513-S519.
[83]
Rapuri, P.B.; Kinyamu, H.K.; Gallagher, J.C.; Haynatzka, V. Seasonal changes in calciotropic hormones, bone markers, and bone mineral density in elderly women. J. Clin. Endocrinol. Metab., 2002, 87, 2024-2032.
[84]
van der Mei, I.A.; Ponsonby, A.L.; Engelsen, O.; Pasco, J.A.; McGrath, J.J.; Eyles, D.W.; Blizzard, L.; Dwyer, T.; Lucas, R.; Jones, G. The high prevalence of vitamin D insufficiency across Australian populations is only partly explained by season and latitude. Environ. Health Perspect., 2007, 115, 1132-1139.
[85]
Kull, M., Jr; Kallikorm, R.; Tamm, A.; Lember, M. Seasonal variance of 25-(OH) vitamin D in the general population of Estonia, a Northern European country. BMC Public Health, 2009, 9, 22.
[86]
Harris, S.S.; Dawson-Hughes, B. Seasonal changes in plasma 25-hydroxyvitamin D concentrations of young American black and white women. Am. J. Clin. Nutr., 1998, 67, 1232-1236.
[87]
Dawson-Hughes, B.; Harris, S.S.; Dallal, G.E. Plasma calcidiol, season, and serum parathyroid hormone concentrations in healthy elderly men and women. Am. J. Clin. Nutr., 1997, 65, 67-71.
[88]
Tangpricha, V.; Pearce, E.N.; Chen, T.C.; Holick, M.F. Vitamin D insufficiency among free-living healthy young adults. Am. J. Med., 2002, 112, 659-662.
[89]
Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Overview of Vitamin D. In: Dietary Reference Intakes for Vitamin D and Calcium; A.C.; Ross.; C.L. Taylor.; A.L. Yaktine.; H.B. Del Valle., Eds. National Academies Press (US): Washington (DC), 2011; pp. 75-124.
[90]
Nesby-O’Dell, S.; Scanlon, K.S.; Cogswell, M.E.; Gillespie, C.; Hollis, B.W.; Looker, A.C.; Allen, C.; Doughertly, C.; Gunter, E.W.; Bowman, B.A. Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: Third national health and nutrition examination survey, 1988-1994. Am. J. Clin. Nutr., 2002, 76, 187-192.
[91]
Brazerol, W.F.; McPhee, A.J.; Mimouni, F.; Specker, B.L.; Tsang, R.C. Serial ultraviolet B exposure and serum 25 hydroxyvitamin D response in young adult American blacks and whites: No racial differences. J. Am. Coll. Nutr., 1988, 7, 111-118.
[92]
Rockell, J.E.; Skeaff, C.M.; Williams, S.M.; Green, T.J. Association between quantitative measures of skin color and plasma 25-hydroxyvitamin D. Osteoporos. Int., 2008, 19, 1639-1642.
[93]
Marks, R.; Foley, P.A.; Jolley, D.; Knight, K.R.; Harrison, J.; Thompson, S.C. The effect of regular sunscreen use on vitamin D levels in an australian population. Results of a randomized controlled trial. Arch. Dermatol., 1995, 131, 415-421.
[94]
Bogh, M.K.; Schmedes, A.V.; Philipsen, P.A.; Thieden, E.; Wulf, H.C. Vitamin D production after UVB exposure depends on baseline vitamin D and total cholesterol but not on skin pigmentation. J. Invest. Dermatol., 2010, 130, 546-553.
[95]
Snellman, G.; Melhus, H.; Gedeborg, R.; Olofsson, S.; Wolk, A.; Pedersen, N.L.; Michaëlsson, K. Seasonal genetic influence on serum 25-hydroxyvitamin D levels: A twin study. PLoS One, 2009, 4, e7747.
[96]
Kimlin, M.G.; Olds, W.J.; Moore, M.R. Location and vitamin D synthesis: is the hypothesis validated by geophysical data? J. Photochem. Photobiol. B, 2007, 86, 234-239.
[97]
Lubin, D.; Jensen, E.H.; Gies, H.P. Global surface ultraviolet radiation climatology from TOMS and ERBE data. JGR-Atmospheres, 1998, 103, 26061-26091.
[98]
Lund, B.; Sørensen, O.H. Measurement of 25-hydroxyvitamin D in serum and its relation to sunshine, age and vitamin D intake in the Danish population. Scand. J. Clin. Lab. Invest., 1979, 39, 23-30.
[99]
Baker, M.R.; Peacock, M.; Nordin, B.E. The decline in vitamin D status with age. Age Ageing, 1980, 9, 249-252.
[100]
Maclaughlin, J.; Holick, M.F. Aging decreases the capacity of human skin to produce vitamin D3. J. Clin. Invest., 1985, 76, 1536-1538.
[101]
Cardinez, C.J.; Cokkinides, V.E.; Weinstock, M.A.; O’Connell, M.C. Sun protective behaviors and sunburn experiences in parents of youth ages 11 to 18. Prev. Med., 2005, 41, 108-111.
[102]
DiSipio, T.; Rogers, C.; Newman, B.; Whiteman, D.; Eakin, E.; Fritschi, L.; Aitken, J. The Queensland Cancer Risk Study: Behavioural risk factor results. Aust. N. Z. J. Public Health, 2006, 30, 375-382.
[103]
Brock, K.; Huang, W.Y.; Fraser, D.R.; Ke, L.; Tseng, M.; Stolzenberg-Solomon, R.; Peters, U.; Ahn, J.; Purdue, M.; Mason, R.S.; McCarty, C.; Ziegler, R.G.; Graubard, B. Low vitamin D status is associated with physical inactivity, obesity and low vitamin D intake in a large US sample of healthy middle-aged men and women. J. Steroid Biochem. Mol. Biol., 2010, 121, 462-466.
[104]
Touvier, M.; Deschasaux, M.; Montourcy, M.; Sutton, A.; Charnaux, N.; Kesse-Guyot, E.; Assmann, K.E.; Fezeu, L.; Latino-Martel, P.; Druesne-Pecollo, N.; Guinot, C.; Latreille, J.; Malvy, D.; Galan, P.; Hercberg, S.; Le Clerc, S.; Souberbielle, J.C.; Ezzedine, K. Determinants of vitamin D status in caucasian adults: Influence of sun exposure, dietary intake, sociodemographic, lifestyle, anthropometric, and genetic factors. J. Invest. Dermatol., 2015, 135, 378-388.
[105]
Freedman, D.M.; Cahoon, E.K.; Rajaraman, P.; Major, J.M.; Doody, M.M.; Alexander, B.H.; Hoffbeck, R.W.; Kimlin, M.G.; Graubard, B.I.; Linet, M.S. Sunlight and other determinants of circulating 25-hydroxyvitamin D levels in black and white participants in a nationwide U.S. study. Am. J. Epidemiol., 2013, 177, 180-192.
[106]
Mithal, A.; Wahl, D.A.; Bonjour, J.P.; Burckhardt, P.; Dawson-Hughes, B.; Eisman, J.A.; El-Hajj Fuleihan, G.; Josse, R.G.; Lips, P.; Morales-Torres, J. IOF committee of scientific advisors (CSA) nutrition working group. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos. Int., 2009, 20, 1807-1820.
[107]
McCullough, M.L.; Weinstein, S.J.; Freedman, D.M.; Helzlsouer, K.; Flanders, W.D.; Koenig, K.; Kolonel, L.; Laden, F.; Le Marchand, L.; Purdue, M.; Snyder, K.; Stevens, V.L.; Stolzenberg-Solomon, R.; Virtamo, J.; Yang, G.; Yu, K.; Zheng, W.; Albanes, D.; Ashby, J.; Bertrand, K.; Cai, H.; Chen, Y.; Gallicchio, L.; Giovannucci, E.; Jacobs, E.J.; Hankinson, S.E.; Hartge, P.; Hartmuller, V.; Harvey, C.; Hayes, R.B.; Horst, R.L.; Shu, X.O. Correlates of circulating 25-hydroxyvitamin D: Cohort consortium vitamin d pooling project of rarer cancers. Am. J. Epidemiol., 2010, 172, 21-35.
[108]
Hyppönen, E.; Power, C. Hypovitaminosis D in British adults at age 45 y: Nationwide cohort study of dietary and lifestyle predictors. Am. J. Clin. Nutr., 2007, 85, 860-868.
[109]
van Dam, R.M.; Snijder, M.B.; Dekker, J.M.; Stehouwer, C.D.; Bouter, L.M.; Heine, R.J.; Lips, P. Potentially modifiable determinants of vitamin D status in an older population in the Netherlands: The Hoorn Study. Am. J. Clin. Nutr., 2007, 85, 755-761.
[110]
Chan, J.; Jaceldo-Siegl, K.; Fraser, G.E. Determinants of serum 25 hydroxyvitamin D levels in a nationwide cohort of blacks and non-Hispanic whites. Cancer Causes Control, 2010, 21, 501-511.
[111]
Harris, S.S.; Soteriades, E.; Coolidge, J.A.; Mudgal, S.; Dawson-Hughes, B. Vitamin D insufficiency and hyperparathyroidism in a low income, multiracial, elderly population. J. Clin. Endocrinol. Metab., 2000, 85, 4125-4130.
[112]
Hilger, J.; Friedel, A.; Herr, R.; Rausch, T.; Roos, F.; Wahl, D.A.; Pierroz, D.D.; Weber, P.; Hoffmann, K. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr., 2014, 111, 23-45.
[113]
Batieha, A.; Khader, Y.; Jaddou, H.; Hyassat, D.; Batieha, Z.; Khateeb, M.; Belbisi, A.; Ajlouni, K. Vitamin D status in Jordan: Dress style and gender discrepancies. Ann. Nutr. Metab., 2011, 58, 10-18.
[114]
Gannagé-Yared, M.H.; Chemali, R.; Yaacoub, N.; Halaby, G. Hypovitaminosis D in a sunny country: Relation to lifestyle and bone markers. J. Bone Miner. Res., 2000, 15, 1856-1862.
[115]
El-Hajj Fuleihan, G.; Nabulsi, M.; Choucair, M.; Salamoun, M.; Hajj Shahine, C.; Kizirian, A.; Tannous, R. Hypovitaminosis D in healthy schoolchildren. Pediatrics, 2001, 107, E53.
[116]
Meddeb, N.; Sahli, H.; Chahed, M.; Abdelmoula, J.; Feki, M.; Salah, H.; Frini, S.; Kaabachi, N.; Belkahia, Ch.; Mbazaa, R.; Zouari, B.; Sellami, S. Vitamin D deficiency in Tunisia. Osteoporos. Int., 2005, 16, 180-183.
[117]
el-Sonbaty, M.R.; Abdul-Ghaffar, N.U. Vitamin D deficiency in veiled Kuwaiti women. Eur. J. Clin. Nutr., 1996, 50, 315-318.
[118]
Green, T.J.; Skeaff, C.M.; Rockell, J.E.; Venn, B.J.; Lambert, A.; Todd, J.; Khor, G.L.; Loh, S.P.; Muslimatun, S.; Agustina, R.; Whiting, S.J. Vitamin D status and its association with parathyroid hormone concentrations in women of child-bearing age living in Jakarta and Kuala Lumpur. Eur. J. Clin. Nutr., 2008, 62, 373-378.
[119]
Islam, M.Z.; Lamberg-Allardt, C.; Kärkkäinen, M.; Outila, T.; Salamatullah, Q.; Shamim, A.A. Vitamin D deficiency: A concern in premenopausal Bangladeshi women of two socio-economic groups in rural and urban region. Eur. J. Clin. Nutr., 2002, 56, 51-56.
[120]
Allali, F.; El Aichaoui, S.; Khazani, H.; Benyahia, B.; Saoud, B.; El Kabbaj, S.; Bahiri, R.; Abouqal, R.; Hajjaj-Hassouni, N. High prevalence of hypovitaminosis D in Morocco: Relationship to lifestyle, physical performance, bone markers, and bone mineral density. Semin. Arthritis Rheum., 2009, 38, 444-451.
[121]
Hunter, D.; De Lange, M.; Snieder, H.; MacGregor, A.J.; Swaminathan, R.; Thakker, R.V.; Spector, T.D. Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation. J. Bone Miner. Res., 2001, 16, 371-378.
[122]
Shea, M.K.; Benjamin, E.J.; Dupuis, J.; Massaro, J.M.; Jacques, P.F.; D’Agostino, R.B., Sr; Ordovas, J.M.; O’Donnell, C.J.; Dawson-Hughes, B.; Vasan, R.S.; Booth, S.L. Genetic and non-genetic correlates of vitamins K and D. Eur. J. Clin. Nutr., 2009, 63, 458-464.
[123]
Wang, T.J.; Zhang, F.; Richards, J.B.; Kestenbaum, B.; van Meurs, J.B.; Berry, D.; Kiel, D.P.; Streeten, E.A.; Ohlsson, C.; Koller, D.L.; Peltonen, L.; Cooper, J.D.; O’Reilly, P.F.; Houston, D.K.; Glazer, N.L.; Vandenput, L.; Peacock, M.; Shi, J.; Rivadeneira, F.; McCarthy, M.I.; Anneli, P.; de Boer, I.H.; Mangino, M.; Kato, B.; Smyth, D.J.; Booth, S.L.; Jacques, P.F.; Burke, G.L.; Goodarzi, M.; Cheung, C.L.; Wolf, M.; Rice, K.; Goltzman, D.; Hidiroglou, N.; Ladouceur, M.; Wareham, N.J.; Hocking, L.J.; Hart, D.; Arden, N.K.; Cooper, C.; Malik, S.; Fraser, W.D.; Hartikainen, A.L.; Zhai, G.; Macdonald, H.M.; Forouhi, N.G.; Loos, R.J.; Reid, D.M.; Hakim, A.; Dennison, E.; Liu, Y.; Power, C.; Stevens, H.E.; Jaana, L.; Vasan, R.S.; Soranzo, N.; Bojunga, J.; Psaty, B.M.; Lorentzon, M.; Foroud, T.; Harris, T.B.; Hofman, A.; Jansson, J.O.; Cauley, J.A.; Uitterlinden, A.G.; Gibson, Q.; Järvelin, M.R.; Karasik, D.; Siscovick, D.S.; Econs, M.J.; Kritchevsky, S.B.; Florez, J.C.; Todd, J.A.; Dupuis, J.; Hyppönen, E.; Spector, T.D. Common genetic determinants of vitamin D insufficiency: A genome-wide association study. Lancet, 2010, 376, 180-188.
[124]
Ahn, J.; Yu, K.; Stolzenberg-Solomon, R.; Simon, K.C.; McCullough, M.L.; Gallicchio, L.; Jacobs, E.J.; Ascherio, A.; Helzlsouer, K.; Jacobs, K.B.; Li, Q.; Weinstein, S.J.; Purdue, M.; Virtamo, J.; Horst, R.; Wheeler, W.; Chanock, S.; Hunter, D.J.; Hayes, R.B.; Kraft, P.; Albanes, D. Genome-wide association study of circulating vitamin D levels. Hum. Mol. Genet., 2010, 19, 2739-2745.
[125]
Powe, C.E.; Evans, M.K.; Wenger, J.; Zonderman, A.B.; Berg, A.H.; Nalls, M.; Tamez, H.; Zhang, D.; Bhan, I.; Karumanchi, S.A.; Powe, N.R.; Thadhani, R. Vitamin D-binding protein and vitamin D status of black Americans and white Americans. N. Engl. J. Med., 2013, 369, 1991-2000.
[126]
Carter, G.D. Accuracy of 25-hydroxyvitamin D assays: Confronting the issues. Curr. Drug Targets, 2011, 12, 19-28.
[127]
Binkley, N.; Wiebe, D. Clinical controversies in vitamin D: 25(OH)D measurement, target concentration, and supplementation. J. Clin. Densitom., 2013, 16, 402-408.
[128]
Bikle, D.; Bouillon, R.; Thadhani, R.; Schoenmakers, I. Vitamin D metabolites in captivity? Should we measure free or total 25(OH)D to assess vitamin D status? J. Steroid Biochem. Mol. Biol., 2017, 173, 105-116.
[129]
Thacher, T.D.; Clarke, B.L. Vitamin D insufficiency. Mayo Clin. Proc., 2011, 86, 50-60.
[130]
Su, Z.; Narla, S.N.; Zhu, Y. Hydroxyvitamin D: analysis and clinical application. Clin. Chim. Acta, 2014, 433, 200-205.
[131]
Cannell, J.J.; Hollis, B.W. Use of vitamin D in clinical practice. Altern. Med. Rev., 2008, 13, 6-20.
[132]
Dawson-Hughes, B.; Heaney, R.P.; Holick, M.F.; Lips, P.; Meunier, P.J.; Vieth, R. Estimates of optimal vitamin D status. Osteoporos. Int., 2005, 16, 713-716.
[133]
Bouillon, R. Why modest but widespread improvement of the vitamin D status is the best strategy? Best Pract. Res. Clin. Endocrinol. Metab., 2011, 25, 693-702.
[134]
Chapuy, M.C.; Preziosi, P.; Maamer, M.; Arnaud, S.; Galan, P.; Hercberg, S.; Meunier, P.J. Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos. Int., 1997, 7, 439-443.
[135]
Rosen, C.J. Vitamin D insufficiency. N. Engl. J. Med., 2011, 364, 248-254.
[136]
Heaney, R.P.; Dowell, M.S.; Hale, C.A.; Bendich, A. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J. Am. Coll. Nutr., 2003, 22, 142-146.
[137]
Ooms, M.E.; Lips, P.; Roos, J.C.; van der Vijgh, W.J.; Popp-Snijders, C.; Bezemer, P.D.; Bouter, L.M. Vitamin D status and sex hormone binding globulin: Determinants of bone turnover and bone mineral density in elderly women. J. Bone Miner. Res., 1995, 10, 1177-1184.
[138]
Lips, P.; Duong, T.; Oleksik, A.; Black, D.; Cummings, S.; Cox, D.; Nickelsen, T. A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: Baseline data from the multiple outcomes of raloxifene evaluation clinical trial. J. Clin. Endocrinol. Metab., 2001, 86, 1212-1221.
[139]
Bischoff-Ferrari, H.A.; Dietrich, T.; Orav, E.J.; Dawson-Hughes, B. Positive association between 25-hydroxy vitamin D levels and bone mineral density: A population-based study of younger and older adults. Am. J. Med., 2004, 116, 634-639.
[140]
Vieth, R. Why the minimum desirable serum 25-hydroxyvitamin D level should be 75 nmol/L (30 ng/ml). Best Pract. Res. Clin. Endocrinol. Metab., 2011, 25, 681-691.
[141]
Priemel, M.; von Domarus, C.; Klatte, T.O.; Kessler, S.; Schlie, J.; Meier, S.; Proksch, N.; Pasto, F.; Netter, C.; Streichert, T.; Püschel, K.; Amling, M. Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J. Bone Miner. Res., 2010, 25, 305-312.
[142]
Holick, M.F. Vitamin D status: Measurement, interpretation, and clinical application. Ann. Epidemiol., 2009, 19, 73-78.
[143]
Cianferotti, L.; Bertoldo, F.; Bischoff-Ferrari, H.A.; Bruyere, O.; Cooper, C.; Cutolo, M.; Kanis, J.A.; Kaufman, J.M.; Reginster, J.Y.; Rizzoli, R.; Brandi, M.L. Vitamin D supplementation in the prevention and management of major chronic diseases not related to mineral homeostasis in adults: research for evidence and a scientific statement from the european society for clinical and economic aspects of osteoporosis and osteoarthritis (ESCEO). Endocrine, 2017, 56, 245-261.
[144]
Bischoff-Ferrari, H.A.; Giovannucci, E.; Willett, W.C.; Dietrich, T.; Dawson-Hughes, B. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am. J. Clin. Nutr., 2006, 84, 18-28.
[145]
Hollis, B.W.; Napoli, J.L. Improved radioimmunoassay for vitamin D and its use in assessing vitamin D status. Clin. Chem., 1985, 31, 1815-1819.
[146]
Farrell, C.J.; Martin, S.; McWhinney, B.; Straub, I.; Williams, P.; Herrmann, M. State-of-the-art vitamin D assays: A comparison of automated immunoassays with liquid chromatography-tandem mass spectrometry methods. Clin. Chem., 2012, 58, 531-542.
[147]
Lai, J.K.; Lucas, R.M.; Clements, M.S.; Harrison, S.L.; Banks, E. Assessing vitamin D status: Pitfalls for the unwary. Mol. Nutr. Food Res., 2010, 54, 1062-1071.
[148]
Carter, G.D.; Jones, J.C.; Berry, J.L. The anomalous behaviour of exogenous 25-hydroxyvitamin D in competitive binding assays. J. Steroid Biochem. Mol. Biol., 2007, 103, 480-482.
[149]
Herrmann, M.; Harwood, T.; Gaston-Parry, O.; Kouzios, D.; Wong, T.; Lih, A.; Jimenez, M.; Janu, M.; Seibel, M.J. A new quantitative LC tandem mass spectrometry assay for serum 25-hydroxy vitamin D. Steroids, 2010, 75, 1106-1112.
[150]
Carter, G.D. 25-Hydroxyvitamin D assays: the quest for accuracy. Clin. Chem., 2009, 55, 1300-1302.
[151]
Hollis, B.W. Comparison of commercially available (125)I-based RIA methods for the determination of circulating 25-hydroxyvitamin D. Clin. Chem., 2000, 46, 1657-1661.
[152]
Singh, R.J. Are clinical laboratories prepared for accurate testing of 25-hydroxy vitamin D? Clin. Chem., 2008, 54, 221-223.
[153]
Fraser, W.D.; Milan, A.M. Vitamin D assays: past and present debates, difficulties, and developments. Calcif. Tissue Int., 2013, 92, 118-127.
[154]
Vogeser, M. Quantification of circulating 25-hydroxyvitamin D by liquid chromatography tandem mass spectrometry. J. Steroid Biochem. Mol. Biol., 2010, 121, 565-573.
[155]
Wallace, A.M.; Gibson, S.; de la Hunty, A.; Lamberg-Allardt, C.; Ashwell, M. Measurement of 25-hydroxyvitamin D in the clinical laboratory: current procedures, performance characteristics and limitations. Steroids, 2010, 75, 477-488.
[156]
Beastall, G.; Rainbow, S. Vitamin D reinvented: implications for clinical chemistry. Clin. Chem., 2008, 54, 630-632.
[157]
Heijboer, A.C.; Blankenstein, M.A.; Kema, I.P.; Buijs, M.M. Accuracy of 6 routine 25-hydroxyvitamin D assays: Influence of vitamin D binding protein concentration. Clin. Chem., 2012, 58, 543-548.
[158]
de Koning, L.; Al-Turkmani, M.R.; Berg, A.H.; Shkreta, A.; Law, T.; Kellogg, M.D. Variation in clinical vitamin D status by DiaSorin Liaison and LC-MS/MS in the presence of elevated 25-OH vitamin D2. Clin. Chim. Acta, 2013, 415, 54-58.
[159]
Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; Kovacs, C.S.; Mayne, S.T.; Rosen, C.J.; Shapses, S.A. The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: What clinicians need to know. J. Clin. Endocrinol. Metab., 2011, 96, 53-58.
[160]
Terry, A.H.; Sandrock, T.; Meikle, A.W. Measurement of 25-hydroxyvitamin D by the Nichols ADVANTAGE, DiaSorin LIAISON, DiaSorin RIA, and liquid chromatography-tandem mass spectrometry. Clin. Chem., 2005, 51, 1565-1566.
[161]
Glendenning, P.; Taranto, M.; Noble, J.M.; Musk, A.A.; Hammond, C.; Goldswain, P.R.; Fraser, W.D.; Vasikaran, S.D. Current assays overestimate 25-hydroxyvitamin D3 and underestimate 25-hydroxyvitamin D2 compared with HPLC: need for assay-specific decision limits and metabolite-specific assays. Ann. Clin. Biochem., 2006, 43(Pt 1), 23-30.
[162]
Binkley, N.; Krueger, D.; Lensmeyer, G. 25-hydroxyvitamin D measurement, 2009: a review for clinicians. J. Clin. Densitom., 2009, 12, 417-427.
[163]
Carter, G.D.; Carter, R.; Jones, J.; Berry, J. How accurate are assays for 25-hydroxyvitamin D? Data from the international vitamin D external quality assessment scheme. Clin. Chem., 2004, 50, 2195-2197.
[164]
Bailey, D.; Veljkovic, K.; Yazdanpanah, M.; Adeli, K. Analytical measurement and clinical relevance of vitamin D(3) C3-epimer. Clin. Biochem., 2013, 46, 190-196.
[165]
Singh, R.J.; Taylor, R.L.; Reddy, G.S.; Grebe, S.K. C-3 epimers can account for a significant proportion of total circulating 25-hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status. J. Clin. Endocrinol. Metab., 2006, 91, 3055-3061.
[166]
Kamao, M.; Tatematsu, S.; Sawada, N.; Sakaki, T.; Hatakeyama, S.; Kubodera, N.; Okano, T. Cell specificity and properties of the C-3 epimerization of Vitamin D3 metabolites. J. Steroid Biochem. Mol. Biol., 2004, 89-90, 39-42.
[167]
Kamao, M.; Tatematsu, S.; Hatakeyama, S.; Sakaki, T.; Sawada, N.; Inouye, K.; Ozono, K.; Kubodera, N.; Reddy, G.S.; Okano, T. C-3 epimerization of Vitamin D3 metabolites and further metabolism of C-3 epimers: 25-hydroxyvitamin D3 is metabolized to 3-epi-25-hydroxyvitamin D3 and subsequently metabolized through C-1 or C-24 hydroxylation. J. Biol. Chem., 2004, 279, 15897-15907.
[168]
Stepman, H.C.; Vanderroost, A.; Stöckl, D.; Thienpont, L.M. Full-scan mass spectral evidence for 3-epi-25-hydroxyvitamin D3 in serum of infants and adults. Clin. Chem. Lab. Med., 2011, 49, 253-256.
[169]
Shah, I.; James, R.; Barker, J.; Petroczi, A.; Naughton, D.P. Misleading measures in Vitamin D analysis: A novel LC-MS/MS assay to account for epimers and isobars. Nutr. J., 2011, 10, 46.
[170]
Lensmeyer, G.; Poquette, M.; Wiebe, D.; Binkley, N. The C-3 epimer of 25-hydroxyvitamin D(3) is present in adult serum. J. Clin. Endocrinol. Metab., 2012, 97, 163-168.
[171]
Volmer, D.A.; Mendes, L.R.; Stokes, C.S. Analysis of vitamin D metabolic markers by mass spectrometry: current techniques, limitations of the “gold standard” method, and anticipated future directions. Mass Spectrom. Rev., 2015, 34, 2-23.
[172]
Hollis, B.W. Measuring 25-hydroxyvitamin D in a clinical environment: challenges and needs. Am. J. Clin. Nutr., 2008, 88(Suppl.), S507-S510.
[173]
Binkley, N.; Drezner, M.K.; Hollis, B.W. Laboratory reporting of 25-hydroxyvitamin D results: Potential for clinical misinterpretation. Clin. Chem., 2006, 52, 2124-2125.
[174]
Zerwekh, J.E. Blood biomarkers of vitamin D status. Am. J. Clin. Nutr., 2008, 87(Suppl), S 1087-S1091..
[175]
Lensmeyer, G.L.; Wiebe, D.A.; Binkley, N.; Drezner, M.K. HPLC method for 25-hydroxyvitamin D measurement: Comparison with contemporary assays. Clin. Chem., 2006, 52, 1120-1126.
[176]
Hollis, B.W.; Horst, R.L. The assessment of circulating 25(OH)D and 1, 25(OH)2D: Where we are and where we are going. J. Steroid Biochem. Mol. Biol., 2007, 103, 473-476.
[177]
Carter, G.D.; Jones, J.C. Use of a common standard improves the performance of liquid chromatography-tandem mass spectrometry methods for serum 25-hydroxyvitamin-D. Ann. Clin. Biochem., 2009, 46, 79-81.
[178]
Enko, D.; Kriegshäuser, G.; Stolba, R.; Worf, E.; Halwachs-Baumann, G. Method evaluation study of a new generation of vitamin D assays. Biochem. Med. (Zagreb), 2015, 25, 203-212.
[179]
Eliades, M.; Spyrou, E. Vitamin D: a new player in non-alcoholic fatty liver disease? World J. Gastroenterol., 2015, 21, 1718-1727.
[180]
Stokes, C.S.; Volmer, D.A.; Grünhage, F.; Lammert, F. Vitamin D in chronic liver disease. Liver Int., 2013, 33, 338-352.
[181]
Agmon-Levin, N.; Kopilov, R.; Selmi, C.; Nussinovitch, U.; Sánchez-Castañón, M.; López-Hoyos, M.; Amital, H.; Kivity, S.; Gershwin, E.M.; Shoenfeld, Y. Vitamin D in primary biliary cirrhosis, a plausible marker of advanced disease. Immunol. Res., 2015, 61, 141-146.
[182]
Petta, S.; Cammà, C.; Scazzone, C.; Tripodo, C.; Di Marco, V.; Bono, A.; Cabibi, D.; Licata, G.; Porcasi, R.; Marchesini, G.; Craxí, A. Low vitamin D serum level is related to severe fibrosis and low responsiveness to interferon-based therapy in genotype 1 chronic hepatitis C. Hepatology, 2010, 51, 1158-1167.
[183]
Grünhage, F.; Hochrath, K.; Krawczyk, M.; Höblinger, A.; Obermayer-Pietsch, B.; Geisel, J.; Trauner, M.; Sauerbruch, T.; Lammert, F. Common genetic variation in vitamin D metabolism is associated with liver stiffness. Hepatology, 2012, 5, 1883-1891.
[184]
Pilz, S.; Putz-Bankuti, C.; Gaksch, M.; Spindelboeck, W.; Haselberger, M.; Rainer, F.; Posch, A.; Kreuzer, P.; Stojakovic, T.; Stadlbauer, V.; Obermayer-Pietsch, B.; Stauber, R.E. Effects of Vitamin D supplementation on serum 25-Hydroxyvitamin D concentrations in cirrhotic patients: A randomized controlled trial. Nutrients, 2016, 8, E278.
[185]
Arteh, J.; Narra, S.; Nair, S. Prevalence of vitamin D deficiency in chronic liver disease. Dig. Dis. Sci., 2010, 55, 2624-2628.
[186]
Fisher, L.; Fisher, A. Vitamin D and parathyroid hormone in outpatients with noncholestatic chronic liver disease. Clin. Gastroenterol. Hepatol., 2007, 5, 513-520.
[187]
Monegal, A.; Navasa, M.; Guanabens, N.; Peris, P.; Pons, F.; Martinez de Osaba, M.J.; Rimola, A.; Rodés, J.; Muñoz-Gómez, J. Osteoporosis and bone mineral metabolism disorders in cirrhotic patients referred for orthotopic liver transplantation. Calcif. Tissue Int., 1997, 60, 148-154.
[188]
Miroliaee, A.; Nasiri-Toosi, M.; Khalilzadeh, O.; Esteghamati, A.; Abdollahi, A.; Mazloumi, M. Disturbances of parathyroid hormone-vitamin D axis in non-cholestatic chronic liver disease: A cross-sectional study. Hepatol. Int., 2010, 4, 634-640.
[189]
Rode, A.; Fourlanos, S.; Nicoll, A. Oral vitamin D replacement is effective in chronic liver disease. Gastroenterol. Clin. Biol., 2010, 34, 618-620.
[190]
Putz-Bankuti, C.; Pilz, S.; Stojakovic, T.; Pilz, S.; Stojakovic, T.; Scharnagl, H.; Pieber, T.R.; Trauner, M.; Obermayer-Pietsch, B. Association of 25-hydroxyvitamin D levels with liver dysfunction and mortality in chronic liver disease. Liver Int., 2012, 32, 845-851.
[191]
Crawford, B.A.L.; Kam, C.; Donaghy, A.J.; Mccaughan, G.W. The heterogeneity of bone disease in cirrhosis: A multi-variate analysis. Osteoporos. Int., 2003, 14, 987-994.
[192]
Bitetto, D.; Fattovich, G.; Fabris, C.; Ceriani, E.; Falleti, E.; Fornasiere, E.E.; Pasino, M.; Ieluzzi, D.; Cussigh, A.; Cmet, S.; Pirisi, M.; Toniutto, P. Complementary role of vitamin D deficiency and the interleukin-28B rs12979860 C/T polymorphism in predicting antiviral response in chronic hepatitis C. Hepatology, 2011, 53, 1118-1126.
[193]
Malham, M.; Jørgensen, S.P.; Ott, P.; Agnholt, J.; Vilstrup, H.; Borre, M.; Dahlerup, J.F. Vitamin D deficiency in cirrhosis relates to liver dysfunction rather than aetiology. World J. Gastroenterol., 2011, 17, 922-925.
[194]
Lange, C.M.; Bojunga, J.; Ramos-Lopez, E.; von Wagner, M.; Hassler, A.; Vermehren, J.; Herrmann, E.; Badenhoop, K.; Zeuzem, S.; Sarrazin, C. Vitamin D deficiency and a CYP27B1-1260 promoter polymorphism are associated with chronic hepatitis C and poor response to interferon-alfa based therapy. J. Hepatol., 2011, 54, 887-893.
[195]
Fisher, L.; Byrnes, E.; Fisher, A.A. Prevalence of vitamin K and vitamin D deficiency in patients with hepatobiliary and pancreatic disorders. Nutr. Res., 2009, 29, 676-683.
[196]
Ratziu, V.; Bugianesi, E.; Dixon, J.; Fassio, E.; Ekstedt, M.; Charlotte, F.; Kechagias, S.; Poynard, T.; Olsson, R. Histological progression of non-alcoholic fatty liver disease: A critical reassessment based on liver sampling variability. Aliment. Pharmacol. Ther., 2007, 26, 821-830.
[197]
Musso, G.; Gambino, R.; Cassader, M. Non-alcoholic fatty liver disease from pathogenesis to management: An update. Obes. Rev., 2010, 11, 430-445.
[198]
Saadeh, S.; Younossi, Z.M.; Remer, E.M.; Gramlich, T.; Ong, J.P.; Hurley, M.; Mullen, K.D.; Cooper, J.N.; Sheridan, M.J. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology, 2002, 123, 745-750.
[199]
Strauss, S.; Gavish, E.; Gottlieb, P.; Katsnelson, L. Interobserver¶ and intraobserver variability in the sonographic assessment of fatty liver. Am. J. Roentgenol., 2007, 189, W320-323.
[200]
Reeder, S.B.; Cruite, I.; Hamilton, G.; Sirlin, C.B. Quantitative¶ assessment of liver fat with magnetic resonance imaging and spectroscopy J. Magn. Reson. Imaging., 2011, 34, 729-749.
[201]
Limanond, P.; Raman, S.S.; Lassman, C.; Sayre, J.; Ghobrial, R.M.; Busuttil, R.W.; Saab, S.; Lu, D.S. Macrovesicular hepatic steatosis in living related liver donors: correlation between CT and histologic findings. Radiology, 2004, 230, 276-280.
[202]
Bedogni, G.; Miglioli, L.; Masutti, F.; Tiribelli, C.; Marchesini, G.; Bellentani, S. Prevalence of and risk factors for nonalcoholic fatty liver disease: The Dionysos nutrition and liver study. Hepatology, 2005, 42, 44-52.
[203]
Strauss, R.S.; Barlow, S.E.; Dietz, W.H. Prevalence of abnormal serum aminotransferase values in overweight and obese adolescents. J. Pediatr., 2000, 136, 727-733.
[204]
Pacifico, L.; Ferraro, F.; Bonci, E.; Anania, C.; Romaggioli, S.; Chiesa, C. Upper limit of normal for alanine aminotransferase: quo vadis? Clin. Chim. Acta, 2013, 422, 29-39.
[205]
Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr., 2000, 72, 690-693.
[206]
Amato, M.C.; Guarnotta, V.; Giordano, C. Body composition assessment for the definition of cardiometabolic risk. J. Endocrinol. Invest., 2013, 36, 537-543.
[207]
Shen, W.; Wang, Z.; Punyanita, M.; Lei, J.; Sinav, A.; Kral, J.G.; Imielinska, C.; Ross, R.; Heymsfield, S.B. Adipose tissue quantification by imaging methods: A proposed classification. Obes. Res., 2003, 11, 5-16.
[208]
Shuster, A.; Patlas, M.; Pinthus, J.H.; Mourtzakis, M. The clinical importance of visceral adiposity: A critical review of methods for visceral adipose tissue analysis. Br. J. Radiol., 2012, 85, 1-10.
[209]
Kaul, S.; Rothney, M.P.; Peters, D.M.; Wacker, W.K.; Davis, C.E.; Shapiro, M.D.; Ergun, D.L. Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity , 2012, 20, 1313-1318.
[210]
Bredella, M.A.; Ghomi, R.H.; Thomas, B.J.; Torriani, M.; Brick, D.J.; Gerweck, A.V.; Misra, M.; Klibanski, A.; Miller, K.K. Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa. Obesity , 2010, 18, 2227-2233.
[211]
Bredella, M.A.; Gill, C.M.; Keating, L.K.; Torriani, M.; Anderson, E.J.; Punyanitya, M.; Wilson, K.E.; Kelly, T.L.; Miller, K.K. Assessment of abdominal fat compartments using DXA in premenopausal women from anorexia nervosa to morbid obesity. Obesity , 2013, 21, 2458-2464.
[212]
Fosbøl, M.Ø.; Zerahn, B. Contemporary methods of body composition measurement. Clin. Physiol. Funct. Imaging, 2015, 35, 81-97.
[213]
Greenfield, J.R.; Samaras, K.; Chisholm, D.J.; Campbell, L.V. Regional intra-subject variability in abdominal adiposity limits usefulness of computed tomography. Obes. Res., 2002, 10, 260-265.
[214]
Wang, X.; Li, W.; Zhang, Y.; Yang, Y.; Quin, G. Association between vitamin D and non-alcoholic fatty liver disease/ non-alcoholic steatohepatitis: results from a meta-analysis. Int. J. Clin. Exp. Med., 2015, 8, 17221-17234.
[215]
Jaruvongvanich, V.; Ahuja, W.; Sanguankeo, A.; Wijarnpreecha, K.; Upala, S. Vitamin D and histologic severity of nonalcoholic fatty liver disease: A systematic review and meta-analysis. Dig. Liver Dis., 2017, 49, 618-622.
[216]
Papapostoli, I.; Lammert, F.; Stokes, C.S. Effect of Short-Term Vitamin D Correction on Hepatic Steatosis as Quantified by Controlled Attenuation Parameter (CAP). J. Gastrointestin. Liver Dis., 2016, 25, 175-181.
[217]
Barchetta, I.; Del Ben, M.; Angelico, F.; Di Martino, M.; Fraioli, A.; La Torre, G.; Saulle, R.; Perri, L.; Morini, S.; Tiberti, C.; Bertoccini, L.; Cimini, F.A.; Panimolle, F.; Catalano, C.; Baroni, M.G.; Cavallo, M.G. No effects of oral vitamin D supplementation on non-alcoholic fatty liver disease in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. BMC Med., 2016, 14, 92.
[218]
Foroughi, M.; Maghsoudi, Z.; Ghiasvand, R.; Iraj, B.; Askari, G. Effect of Vitamin D supplementation on C-reactive protein in patients with nonalcoholic fatty liver. Int. J. Prev. Med., 2014, 5, 969-975.
[219]
Sharifi, N. Amani., R; Hajiani, E.; Cheraghian, B. Does vitamin D improve liver enzymes, oxidative stress, and inflammatory biomarkers in adults with non-alcoholic fatty liver disease? A randomized clinical trial. Endocrine, 2014, 47, 70-80.
[220]
Kitson, M.T.; Pham, A.; Gordon, A.; Kemp, W.; Roberts, S.K. High-dose vitamin D supplementation and liver histology in NASH. Gut, 2016, 65, 717-718.
[221]
Luger, M.; Kruschitz, R.; Kienbacher, C.; Traussnigg, S.; Langer, F.B.; Prager, G.; Schindler, K.; Kallay, E.; Hoppichler, F.; Trauner, M.; Krebs, M.; Marculescu, R.; Ludvik, B. Vitamin D3 loading is superior to conventional supplementation after weight loss surgery in vitamin d-deficient morbidly obese patients: A double-blind randomized placebo-controlled trial. Obes. Surg., 2017, 27, 1196-1207.
[222]
Bergman, P.; Lindh, A.U.; Björkhem-Bergman, L.; Lindh, J.D. Vitamin D and respiratory tract infections: A systematic review and meta-analysis of randomized controlled trials. PLoS One, 2013, 8, e65835.
[223]
Romagnoli, E.; Carnevale, V.; Biondi, P.; Minisola, S. Vitamin D supplementation: When and how? J. Endocrinol. Invest., 2014, 37, 603-607.