Rapid Electrochemical Ultra-Sensitive Evaluation and Determination of Daptomycin Based on Continuous Cyclic Voltammetry

Page: [181 - 185] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Background: In this work, a novel and extra sensitive blood sample determination method for on-line monitoring of Daptomycin is represented.

Materials and Methods: This technique is in accordance with the electro-membrane extraction (EME) and stripping fast Fourier transform continuous cyclic voltammetry (SFFTCCV) coupling. Briefly, the potential waveform had become constantly utilized over a Gold Electrode and the electrode impulse was acquired by taking away the base current and developing the current in the particular potential area of oxidation of sample.

Results: This method was performed by utilizing a DC potential and migration of Daptomycin from the analyte fluid to the layer of 4-methyl-2-pentanol as well as following migration to the acceptor fluid.

Conclusion: A low and valuable detection limit of 3.5 ng ml-1 and quantification limit of 10.2 ng ml-1 are considered as a part of the sensible results of this experiment. Furthermore, efficient linearity in the range of 10.0-600 ng ml-1 was observed.

Keywords: Daptomycin, electrochemical, rapid determination, continuous cyclic voltammetry, ultra-sensitive, resistance mechanisms.

Graphical Abstract

[1]
Schneider, T.; Muller, A.; Mies, H.; Gross, H. Cyclic lipopeptides as antibacterial agents–potent antibiotic activity mediated by intriguing mode of actions. Int. J. Med. Microbiol., 2014, 304(1), 37-43.
[2]
Martens-Lobenhoffer, J.; Kielstein, J.T.; Oye, C.; Bode-Böger, S.M. Validated high performance liquid chromatography–UV detection method for the determination of daptomycin in human plasma. J. Chromat. B, 2008, 875(2), 546-550.
[3]
Farjadian, F.; Moghoofei, M.; Mirkiani, S.; Ghasemi, A.; Rabiee, N.; Hadifar, S.; Beyzavi, A.; Karimi, M.; Hamblin, M.R. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol. Adv., 2018, 36(4), 968-985.
[4]
Nasseri, B.; Soleimani, N.; Rabiee, N.; Kalbasi, A.; Karimi, M.; Hamblin, M.R. Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron., 2018, 117, 112-128.
[5]
Ghasemi, A.; Rabiee, N.; Ahmadi, S.; Hashemzadeh, S.; Lolasi, F.; Bozorgomid, M.; Kalbasi, A.; Nasseri, B.; Dezfuli, A.S.; Aref, A.R.; Karimi, M.; Hamblin, M.R. Optical assays based on colloidal inorganic nanoparticles. Analyst , 2018, 14.
[6]
Kharati, M.; Foroutanparsa, S.; Rabiee, M.; Salarian, R.; Rabiee, N.; Rabiee, G. Early diagnosis of multiple sclerosis based on optical and electrochemical biosensors: comprehensive perspective. Curr. Anal. Chem., 2018, 14, 1-11.
[7]
Rabiee, N. Metallodrugs: Medicinal chemistry investigation. Front. Med., 2018.
[http://dx.doi.org/10.15761/FDCCR.1000104]
[8]
Ahmadi, S.; Rabiee, N.; Rabiee, M. Application of aptamer-based hybrid molecules in early diagnosis and treatment of diabetes mellitus: from the concepts toward the future. Curr. Diabetes Rev., 2019, 15(4), 309-313.
[9]
Parsa, S.F.; Vafajoo, A.; Rostami, A.; Salarian, R.; Rabiee, M.; Rabiee, N.; Rabiee, G.; Tahriri, M.; Yadegari, A.; Vashaeee, D.; Tayebi, L.; Hamblin, M.R. Early diagnosis of disease using microbead array technology: a review. Anal. Chim. Acta, 2018, 1032, 1-7.
[10]
Pedersen-Bjergaard, S.; Rasmussen, K.E. Electrokinetic migration across artificial liquid membranes: new concept for rapid sample preparation of biological fluids. J. Chromatogr. A, 2006, 1109(2), 183-190.
[11]
Lee, J.; Lee, H.K.; Rasmussen, K.E.; Pedersen-Bjergaard, S. Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: A review. Anal. Chim. Acta, 2008, 624(2), 253-268.
[12]
Rabiee, N.; Safarkhani, M.; Rabiee, M. Ultra-sensitive electrochemical on-line determination of Clarithromycin based on Poly (L-Aspartic Acid)/Graphite Oxide/Pristine Graphene/Glassy Carbon Electrode. Asian J. Nanosci. Mat., 2018, 1, 61-70.
[13]
Balchen, M.; Gjelstad, A.; Rasmussen, K.E.; Pedersen-Bjergaard, S. Electrokinetic migration of acidic drugs across a supported liquid membrane. J. Chromatogr. A, 2007, 1152(1-2), 220-225.
[14]
Pokorny, A.; Khatib, T.O. An exact model of daptomycin binding to lipid bilayers. Biophys. J., 2017, 112(3), 24a.
[15]
Seidi, S.; Yamini, Y.; Heydari, A.; Moradi, M.; Esrafili, A.; Rezazadeh, M. Determination of thebaine in water samples, biological fluids, poppy capsule, and narcotic drugs, using electromembrane extraction followed by high-performance liquid chromatography analysis. Anal. Chim. Acta, 2011, 701(2), 181-188.
[16]
Goel, T.; Haftka, R.T.; Shyy, W.; Watson, L.T. Pitfalls of using a single criterion for selecting experimental designs. Int. J. Numer. Methods Eng., 2008, 75(2), 127-155.
[17]
Yu, G.; Wang, G. Optimization of the biosynthesis conditions of daptomycin by the biostatistical methodology. Interdiscip.Sci.: Comput. Life Sci., 2017, 9(1), 80-87.
[18]
Gjelstad, A.; Rasmussen, K.E.; Pedersen-Bjergaard, S. Electromembrane extraction of basic drugs from untreated human plasma and whole blood under physiological pH conditions. Anal. Bioanal. Chem., 2009, 393(3), 921-928.
[19]
Gjelstad, A.; Pedersen-Bjergaard, S. Electromembrane extraction: a new technique for accelerating bioanalytical sample preparation. Bioanalysis, 2011, 3(7), 787-797.
[20]
Restan, M.S.; Jensen, H.; Shen, X.; Huang, C.; Martinsen, Ø.G.; Kubáň, P.; Gjelstad, A.; Pedersen-Bjergaard, S. Comprehensive study of buffer systems and local pH effects in electromembrane extraction. Anal. Chim. Acta, 2017, 984, 116-123.
[21]
Román-Hidalgo, C.; Fernández-Torres, R.; Callejón-Mochón, M.; Bello-López, M.A. New nanostructured support for carrier-mediated electromembrane extraction of high polar compounds. Talanta, 2017, 162, 32-37.