A Study on the Effects of Multiwall Carbon Nanotubes on Dynamic Stiffness of Hydrophilic-base Magnetorheological Gel

Page: [319 - 323] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Background: Recently, addition of multi-walled-carbon-nanotubes (MWCNTs) has been researched to enhance the rheological properties of magnetorheological (MR) materials of fluid, elastomer and gel. However, there is a lack of study on the effects of MWCNTs on hydrophilic based MR gels (MRG), which have shown a high potential to be applied in smart vibration control systems.

Objective: This study is aimed to analyze the effect of MWCNTs on the dynamic stiffness of hydrophilic based MRG.

Method: Dynamic stiffness of hydrophilic based MRG was experimentally computed under different magnetic fields and strain amplitudes.

Results: Experimental results indicate that the addition of MWCNTs in hydrophilic MRG showed overall degradation of stiffness variation in contradictory to similar research performed on silicon oil based MR gel.

Conclusion: These contradictory results reveal that MRGs of hydrophilic base have a different interaction with MWCNTs than hydrophobic oil base.

Keywords: Magnetorheological gel, hybrid composites, multi-walled carbon nanotubes, magnetorheological composites, dynamic stiffness, hydrophilic-base.

Graphical Abstract

[1]
Kim, Y-K.; Koo, J.H.; Kim, K-S.; Kim, S. Suppressing harmonic vibrations of a miniature cryogenic cooler using an adaptive tunable vibration absorber based on magneto-rheological elastomers. Rev. Sci. Instrum., 2011, 82(3), 035103.
[2]
Kim, Y-K.; Bae, H-I.; Koo, J-H.; Kim, K-S.; Kim, S. Note: Real time control of a tunable vibration absorber based on magnetorheological elastomer for suppressing tonal vibrations. Rev. Sci. Instrum., 2012, 83(4), 046108.
[3]
Shin, B-C.; Yoon, J-H.; Kim, Y-K.; Kim, K-S. Note: Vibration suppression using tunable vibration absorber based on stiffness variable magneto-rheological gel. Rev. Sci. Instrum., 2015, 86(10), 106106.
[4]
Kim, H.K.; Kim, H.S.; Kim, Y-K. Stiffness control of magnetorheological gels for adaptive tunable vibration absorber. Smart Mater. Struct., 2016, 26(1), 015016.
[5]
Wei, B.; Gong, X.; Jiang, W.; Qin, L.; Fan, Y. Study on the properties of magnetorheological gel based on polyurethane. J. Appl. Polym. Sci., 2010, 118(5), 2765-2771.
[6]
Mitsumata, T.; Abe, N. Magnetic-field sensitive gels with wide modulation of dynamic modulus. Chem. Lett., 2009, 38(9), 922-923.
[7]
Sarkar, C.; Hirani, H. Effect of particle size on shear stress of magnetorheological fluids. Smart Sci, 2015, 3(2), 65-73.
[8]
Bell, R.C.; Miller, E.D.; Karli, J.O.; Vavreck, A.N.; Zimmerman, D.T. Influence of particle shape on the properties of magnetorheological fluids. Int. J. Mod. Phys. B, 2007, 21(28n29), 5018-5025.
[9]
Yang, P.; Yu, M.; Fu, J.; Luo, H. Rheological properties of dimorphic magnetorheological gels mixed dendritic carbonyl iron powder. J. Intell. Mater. Syst. Struct., 2018, 29(1), 12-23.
[10]
Yu, Y.; Qu, S.; Zang, D.; Wang, L.; Wu, H. Fast synthesis of Pt nanocrystals and Pt/Microporous La2O3 materials using acoustic levitation. Nanoscale Res. Lett., 2018, 13, 50.
[11]
Qu, S.; Yu, Y.; Lin, K.; Liu, P.; Zheng, C.; Wang, L.; Xu, T.; Wang, Z.; Wu, H. Easy hydrothermal synthesis of multi-shelled La2O3 hollow spheres for lithium-ion batteries. J. Mater. Sci. Mater. Electron., 2018, 29, 1232-1237.
[12]
Lan, D.; Qin, M.; Yang, R.; Chen, S.; Wu, H.; Fan, Y.; Fu, Q.; Zhang, F. Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci., 2019, 533, 481-491.
[13]
Wu, H.; Qu, S.; Lin, K.; Qing, Y.; Wang, L.; Fan, Y.; Fu, Q.; Zhang, F. Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol., 2018, 333, 153-159.
[14]
Wu, H.; Wu, G.; Ren, Y.; Li, X.; Wang, L. Multishelled metal oxide hollow spheres: easy synthesis and formation mechanism. Chem. Eur. J., 2016, 22, 8864-8871.
[15]
Wu, H.; Wu, G.; Wang, L. Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technol., 2015, 269, 443-451.
[16]
Wu, H.; Wu, G.; Ren, Y.; Yang, L.; Wang, L.; Li, X. Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J. Mater. Chem. C., 2015, 3, 7677-7690.
[17]
Fang, F.F.; Choi, H.J.; Jhon, M.S. Magnetorheology of soft magnetic carbonyl iron suspension with single-walled carbon nanotube additive and its yield stress scaling function. Colloids Surf. A , 2009, 351(1-3), 46-51.
[18]
Aziz, S.A.A.; Mazlan, S.A.; Ismail, N.I.N.; Ubaidillah, U.; Choi, S-B.; Khairi, M.H.A.; Yunus, N.A. Effects of multiwall carbon nanotubes on viscoelastic properties of magnetorheological elastomers. Smart Mater. Struct., 2016, 25(7), 077001.
[19]
Li, R.; Sun, L.Z. Dynamic mechanical behavior of magnetorheological nanocomposites filled with carbon nanotubes. Appl. Phys. Lett., 2011, 99(13), 131912.
[20]
Schadler, L.S.; Brinson, L.C.; Sawyer, W.G. Polymer nanocomposites: A small part of the story. JOM, 2007, 59(3), 53-60.
[21]
Chen, L.; Gong, X.L.; Li, W.H. Effect of carbon black on the mechanical performances of magnetorheological elastomers. Polym. Test., 2008, 27(3), 340-345.
[22]
Felicia, L.J.; Philip, J. Magnetorheological properties of a magnetic nanofluid with dispersed carbon nanotubes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2014, 89(2), 022310.
[23]
Yang, P.; Yu, M.; Fu, J. Ni-coated multi-walled carbon nanotubes enhanced the magnetorheological performance of magnetorheological gel. J. Nanopart. Res., 2016, 18(3), 61.
[24]
Li, R.; Sun, L.Z. Dynamic viscoelastic behavior of multiwalled carbon nanotube–reinforced magnetorheological (mr) nanocomposites. J. Nanomech. Microeng., 2013, 4(4), A4013014.