Pharmacokinetic and Pharmacodynamic Aspects of Peyote and Mescaline: Clinical and Forensic Repercussions

Page: [184 - 194] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Mescaline (3,4,5-trimethoxyphenethylamine), mainly found in the Peyote cactus (Lophophora williamsii), is one of the oldest known hallucinogenic agents that influence human and animal behavior, but its psychoactive mechanisms remain poorly understood.

Objectives: This article aims to fully review pharmacokinetics and pharmacodynamics of mescaline, focusing on the in vivo and in vitro metabolic profile of the drug and its implications for the variability of response.

Methods: Mescaline pharmacokinetic and pharmacodynamic aspects were searched in books and in PubMed (U.S. National Library of Medicine) without a limiting period. Biological effects of other compounds found in peyote were also reviewed.

Results: Although its illicit administration is less common, in comparison with cocaine and Cannabis, it has been extensively described in adolescents and young adults, and licit consumption often occurs in religious and therapeutic rituals practiced by the Native American Church. Its pharmacodynamic mechanisms of action are primarily attributed to the interaction with the serotonergic 5-HT2A-C receptors, and therefore clinical effects are similar to those elicited by other psychoactive substances, such as lysergic acid diethylamide (LSD) and psilocybin, which include euphoria, hallucinations, depersonalization and psychoses. Moreover, as a phenethylamine derivative, signs and symptoms are consistent with a sympathomimetic effect. Mescaline is mainly metabolized into trimethoxyphenylacetic acid by oxidative deamination but several minor metabolites with possible clinical and forensic repercussions have also been reported.

Conclusion: Most reports concerning mescaline were presented in a complete absence of exposure confirmation, since toxicological analysis is not widely available. Addiction and dependence are practically absent and it is clear that most intoxications appear to be mild and are unlikely to produce lifethreatening symptoms, which favors the contemporary interest in the therapeutic potential of the drugs of the class.

Keywords: Mescaline, peyote, metabolism, toxicity, pharmacokinetics, pharmacodynamics.

Graphical Abstract

[1]
Bogenschutz, M.P.; Johnson, M.W. Classic hallucinogens in the treatment of addictions. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 250-258.
[2]
Nichols, D.E. Hallucinogens. Pharmacol. Ther., 2004, 101, 131-181.
[3]
Olive, M.F.; Triggle, D.J. Drugs the straight facts: Peyote and mescaline; Chelsea House: New York, 2007.
[4]
Lopez-Gimenez, J.F.; Gonzalez-Maeso, J. Hallucinogens and Serotonin 5-HT2A Receptor-Mediated Signaling Pathways. Curr. Top. Behav. Neurosci., 2018, 36, 45-73.
[5]
Dinis-Oliveira, R.J. Metabolism of psilocybin and psilocin: Clinical and forensic toxicological relevance. Drug Metab. Rev., 2017, 49, 84-91.
[6]
El-Seedi, H.R.; De Smet, P.A.; Beck, O.; Possnert, G.; Bruhn, J.G. Prehistoric peyote use: Alkaloid analysis and radiocarbon dating of archaeological specimens of Lophophora from Texas. J. Ethnopharmacol., 2005, 101, 238-242.
[7]
Halpern, J.H.; Sherwood, A.R.; Hudson, J.I.; Yurgelun-Todd, D.; Pope, H.G., Jr Psychological and cognitive effects of long-term peyote use among Native Americans. Biol. Psychiatry, 2005, 58, 624-631.
[8]
Bullis, R.K. Swallowing the scroll: Legal implications of the recent Supreme Court peyote cases. J. Psychoactive Drugs, 1990, 22, 325-332.
[9]
Csordas, T.J.; Storck, M.J.; Strauss, M. Diagnosis and distress in Navajo healing. J. Nerv. Ment. Dis., 2008, 196, 585-596.
[10]
Carstairs, S.D.; Cantrell, F.L. Peyote and mescaline exposures: a 12-year review of a statewide poison center database. Clin. Toxicol. (Phila.), 2010, 48, 350-353.
[11]
Heffter, A. Ueber Cacteenalkaloide. (II. Mittheilung). Ber. Dtsch. Chem. Ges., 1896, 29, 216-227.
[12]
Späth, E. Über die anhalonium-alkaloide I. Anhalin und mezcalin. Monatsh. Chem., 1919, 40, 129-154.
[13]
Kyzar, E.J.; Nichols, C.D.; Gainetdinov, R.R.; Nichols, D.E.; Kalueff, A.V. Psychedelic Drugs in Biomedicine. Trends Pharmacol. Sci., 2017, 38, 992-1005.
[14]
Dyck, E.; Farrell, P. Psychedelics and psychotherapy in Canada: Humphry Osmond and Aldous Huxley. Hist. Psychol., 2018, 21, 240-253.
[15]
de Rios, M.D.; Grob, C.S.; Baker, J.R. Hallucinogens and redemption. J. Psychoactive Drugs, 2002, 34, 239-248.
[16]
Winkelman, M. Psychedelics as medicines for substance abuse rehabilitation: Evaluating treatments with LSD, Peyote, Ibogaine and Ayahuasca. Curr. Drug Abuse Rev., 2014, 7, 101-116.
[17]
Denber, H.C. Mescaline and lysergic acid diethylamide: Therapeutic implications of the drug-induced state. Dis. Nerv. Syst., 1969, 30(Suppl.), 23-27.
[18]
Barbosa, J.; Faria, J.; Queiros, O.; Moreira, R.; Carvalho, F.
Dinis-Oliveira, R.J. Comparative metabolism of tramadol and tapentadol: A toxicological perspective. Drug Metab. Rev., 2016, 48, 577-592.
[19]
Dinis-Oliveira, R.J. Metabolic Profile of Flunitrazepam: Clinical and Forensic Toxicological Aspects. Drug Metab. Lett., 2017, 11, 14-20.
[20]
Dinis-Oliveira, R.J. Metabolic profile of oxazepam and related benzodiazepines: clinical and forensic aspects. Drug Metab. Rev., 2017, 49, 451-463.
[21]
Dinis-Oliveira, R.J. Metabolic Profiles of Propofol and Fospropofol: Clinical and Forensic Interpretative Aspects. BioMed Res. Int., 2018, 20186852857
[22]
Dinis-Oliveira, R.J. Metabolomics of cocaine: Implications in toxicity. Toxicol. Mech. Methods, 2015, 25, 494-500.
[23]
Dinis-Oliveira, R.J. Metabolomics of Delta9-tetrahydrocannabinol: Implications in toxicity. Drug Metab. Rev., 2016, 48, 80-87.
[24]
Dinis-Oliveira, R.J. Metabolomics of methadone: Clinical and forensic toxicological implications and variability of dose response. Drug Metab. Rev., 2016, 48, 568-576.
[25]
Dinis-Oliveira, R.J. Metabolomics of Methylphenidate and Ethylphenidate: Implications in Pharmacological and Toxicological Effects. Eur. J. Drug Metab. Pharmacokinet., 2017, 42, 11-16.
[26]
Nobrega, L.; Dinis-Oliveira, R.J. The synthetic cathinone alpha-pyrrolidinovalerophenone (alpha-PVP): Pharmacokinetic and pharmacodynamic clinical and forensic aspects. Drug Metab. Rev., 2018, 50, 125-139.
[27]
Dinis-Oliveira, R.J. Metabolism and metabolomics of ketamine: A toxicological approach. J. Forensic Sci., 2017, 2(1), 2-10.
[28]
Ogunbodede, O.; McCombs, D.; Trout, K.; Daley, P.; Terry, M. New mescaline concentrations from 14 taxa/cultivars of Echinopsis spp. (Cactaceae) (“San Pedro”) and their relevance to shamanic practice. J. Ethnopharmacol., 2010, 131, 356-362.
[29]
Aragane, M.; Sasaki, Y.; Nakajima, J.; Fukumori, N.; Yoshizawa, M.; Suzuki, Y.; Kitagawa, S.; Mori, K.; Ogino, S.; Yasuda, I.; Nagumo, S. Peyote identification on the basis of differences in morphology, mescaline content, and trnL/trnF sequence between Lophophora williamsii and L. diffusa. J. Nat. Med., 2011, 65, 103-110.
[30]
Carod-Artal, F.J.; Vazquez-Cabrera, C.B. Mescaline and the San Pedro cactus ritual: Archaeological and ethnographic evidence in northern Peru. Rev. Neurol., 2006, 42, 489-498.
[31]
Dasgupta, A. Challenges in Laboratory Detection of Unusual Substance Abuse: Issues with Magic Mushroom, Peyote Cactus, Khat, and Solvent Abuse. Adv. Clin. Chem., 2017, 78, 163-186.
[32]
Crosby, D.M.; McLaughlin, J.L. Cactus alkaloids. XIX. Crystallization of mescaline HCl and 3-methoxytyramine HCl from Trichocereus pachanoi. Lloydia, 1973, 36, 416-418.
[33]
Anderson, E.F. The cactus family; Timber Press: Oregon, 2001.
[34]
Pinto Nde, C.; Duque, A.P.; Pacheco, N.R.; Mendes Rde, F.; Motta, E.V.; Bellozi, P.M.; Ribeiro, A.; Salvador, M.J.; Scio, E. Pereskia aculeata: A plant food with antinociceptive activity. Pharm. Biol., 2015, 53, 1780-1785.
[35]
Schlumpberger, B.O.; Renner, S.S. Molecular phylogenetics of Echinopsis (Cactaceae): Polyphyly at all levels and convergent evolution of pollination modes and growth forms. Am. J. Bot., 2012, 99, 1335-1349.
[36]
Clement, B.A.; Goff, C.M.; Forbes, T.D.A. Toxic amines and alkaloids from Acacia berlandieri. Phytochemistry, 1997, 46, 249-254.
[37]
Neal, J.M.; Sato, P.T.; Howald, W.N.; McLaughlin, J.L. yote Alkaloids: Identification in the Mexican ictus Pelecyphora aselliformis Ehrenberg. Science, 1972, 176, 1131-1133.
[38]
Gomez-Coronado, N.; Walker, A.J.; Berk, M.; Dodd, S. Current and Emerging Pharmacotherapies for Cessation of Tobacco Smoking. Pharmacotherapy, 2018, 38, 235-258.
[39]
Tutka, P.; Zatonski, W. Cytisine for the treatment of nicotine addiction: from a molecule to therapeutic efficacy. Pharmacol. Rep., 2006, 58(6), 777-798.
[40]
Walker, N.; Howe, C.; Glover, M.; McRobbie, H.; Barnes, J.; Nosa, V.; Parag, V.; Bassett, B.; Bullen, C. Cytisine versus nicotine for smoking cessation. N. Engl. J. Med., 2014, 371, 2353-2362.
[41]
Terry, M.; Mauseth, J.D. Root-shoot anatomy and post-harvest vegetative clonal development in Lophophora williamsii (Cactaceae: Cacteae): Implications for conservation. 2006, 22, 565-592.
[42]
Spinella, M. The psychopharmacology of herbal medicine: Plant drugs that alter mind, brain, and behavior; MIT Press: Massachusetts, 2001.
[43]
Kapadia, G.J.; Fayez, M.B. Peyote constituents: chemistry, biogenesis, and biological effects. J. Pharm. Sci., 1970, 59, 1699-1727.
[44]
Štarha, R.; Kuchiňa, J. Analysis of Mexican Populations of Lophophora (Cactaceae). Universitas Ostraviensis Acta Facultatis Rerum Naturalium. Physica-Chemia, 1996, 156, 67-70.
[45]
Heffter, A. Ueber Pellote. Ein Betrag zur pharmakologischen Kenntnis der Cacteen. Naunyn Schmiedebergs Arch. Pharmacol., 1894, 34, 65-86.
[46]
Lundstrom, J.; Agurell, S. Biosynthesis of mescaline and anhalamine in peyote. IIa. Tetrahedron Lett., 1968, 9, 4437-4440.
[47]
Klein, M.T.; Kalam, M.; Trout, K.; Fowler, N.; Terry, M. Mescaline concentrations in three principal tissues of Lophophora Williamsii (Cactaceae): Implications for sustainable harvesting practices. Haseltonia, 2015, 2015(20), 34-42.
[48]
Steiner, I.; Brauers, G.; Temme, O.; Daldrup, T. A sensitive method for the determination of hordenine in human serum by ESI(+) UPLC-MS/MS for forensic toxicological applications. Anal. Bioanal. Chem., 2016, 408, 2285-2292.
[49]
Frank, M.; Weckman, T.J.; Wood, T.; Woods, W.E.; Tai, C.L.; Chang, S.L.; Ewing, A.; Blake, J.W.; Tobin, T. Hordenine: Pharmacology, pharmacokinetics and behavioural effects in the horse. Equine Vet. J., 1990, 22, 437-441.
[50]
Ghansah, E.; Kopsombut, P.; Maleque, M.A.; Brossi, A. Effects of mescaline and some of its analogs on cholinergic neuromuscular transmission. Neuropsychopharmacol., 1993, 32, 169-174.
[51]
Bruhn, J.G.; El-Seedi, H.R.; Stephanson, N.; Beck, O.; Shulgin, A.T. Ecstasy analogues found in cacti. J. Psychoactive Drugs, 2008, 40, 219-222.
[52]
da Silva, D.D.; Silva, E.; Carvalho, F.; Carmo, H. Mixtures of 3,4-methylenedioxymethamphetamine (ecstasy) and its major human metabolites act additively to induce significant toxicity to liver cells when combined at low, non-cytotoxic concentrations. J. Appl. Toxicol., 2014, 34, 618-627.
[53]
Millan, M.J.; Marin, P.; Bockaert, J.; Mannoury la Cour, C. Signaling at G-protein-coupled serotonin receptors: Recent advances and future research directions. Trends Pharmacol. Sci., 2008, 29, 454-464.
[54]
Landolt, H.P.; Wehrle, R. Antagonism of serotonergic 5-HT2A/2C receptors: Mutual improvement of sleep, cognition and mood? Eur. J. Neurol., 2009, 29, 1795-1809.
[55]
Urbán, L.; Patel, V.F.; Vaz, R.J. Antitargets and drug safety; Wiley-VCH: Weinheim, 2015.
[56]
Aghajanian, G.K.; Marek, G.J. Serotonin and hallucinogens. Neuropsychopharmacology, 1999, 21, 16s-23s.
[57]
Monte, A.P.; Waldman, S.R.; Marona-Lewicka, D.; Wainscott, D.B.; Nelson, D.L.; Sanders-Bush, E.; Nichols, D.E. Dihydrobenzofuran analogues of hallucinogens. 4. Mescaline derivatives. J. Med. Chem., 1997, 40, 2997-3008.
[58]
Freedman, D.X.; Gottlieb, R.; Lovell, R.A. Psychotomimetic drugs and brain 5-hydroxytryptamine metabolism. Biochem. Pharmacol., 1970, 19, 1181-1188.
[59]
Tilson, H.A.; Sparber, S.B. Studies on the concurrent behavioral and neurochemical effects of psychoactive drugs using the push-pull cannula. J. Pharmacol. Exp. Ther., 1972, 181, 387-398.
[60]
Trulson, M.E.; Crisp, T.; Henderson, L.J. Mescaline elicits behavioral effects in cats by an action at both serotonin and dopamine receptors. Eur. J. Pharmacol., 1983, 96, 151-154.
[61]
Freedman, D.X. The psychopharmacology of hallucinogenic agents. Annu. Rev. Med., 1969, 20, 409-418.
[62]
van Amsterdam, J.; Opperhuizen, A.; van den Brink, W. Harm potential of magic mush2room use: A review. Regul. Toxicol. Pharmacol., 2011, 59, 423-429.
[63]
Dasgupta, A. Chapter Five - Challenges in Laboratory Detection of Unusual Substance Abuse: Issues with Magic Mushroom, Peyote Cactus, Khat, and Solvent Abuse. In: Advances in clinical chemistry, Makowski,; G.S., Ed. Elsevier:, 2017; 78, pp. 63-186.
[64]
Mokrasch, L.C.; Stevenson, I. The metabolism of mescaline with a note on correlations between metabolism and psychological effects. J. Nerv. Ment. Dis., 1959, 129, 177-183.
[65]
Cochin, J.; Woods, L.A.; Seevers, M.H. The absorption, distribution and urinary excretion of mescaline in the dog. J. Pharmacol. Exp. Ther., 1951, 101, 205-209.
[66]
Palenicek, T.; Balikova, M.; Bubenikova-Valesova, V.; Horacek, J. Mescaline effects on rat behavior and its time profile in serum and brain tissue after a single subcutaneous dose. Psychopharmacology, 2008, 196, 51-62.
[67]
Halpern, J.H. Hallucinogens and dissociative agents naturally growing in the United States. Pharmacol. Ther., 2004, 102, 131-138.
[68]
Charalampous, K.D.; Walker, K.E.; Kinross-Wright, J. Metabolic fate of mescaline in man. Psychopharmacology, 1966, 9, 48-63.
[69]
Harley-Mason, J.; Laird, A.H.; Smythies, J.R. The metabolism of mescalin in the human; Delayed clinical reactions to mescalin. Confin. Neurol., 1958, 18, 152-155.
[70]
Shah, N.S.; Green, C. Tissue levels of mescaline in mice: Influence of chlorpromazine on repeated administration of mescaline. Eur. J. Pharmacol., 1973, 24, 334-340.
[71]
Seiler, N.; Demisch, L. Oxidative metabolism of mescaline in the central nervous system-III: Side chain degradation of mescaline and formation of 3,4,5-trimethoxy-benzoic acid In vivo. Biochem. Pharmacol., 1974, 23, 259-271.
[72]
Daly, J.; Axelrod, J.; Witkop, B. Methylation and demethylation in relation to the in vitro metabolism of mescaline. Ann. N. Y. Acad. Sci., 1962, 96, 37-43.
[73]
Kovacic, P.; Somanathan, R. Novel, unifying mechanism for mescaline in the central nervous system: Electrochemistry, catechol redox metabolite, receptor, cell signaling and structure activity relationships. Oxid. Med. Cell. Longev., 2009, 2, 181-190.
[74]
Shah, N.S.; Himwich, H.E. Study with mescaline-8-C14 in mice: Effect of amine oxidase inhibitors on metabolism. Neuropsychopharmacol., 1971, 10, 547-556.
[75]
Hilliker, K.S.; Roth, R.A. Prediction of mescaline clearance by rabbit lung and liver from enzyme kinetic data. Biochem. Pharmacol., 1980, 29, 253-255.
[76]
Scheline, R.R. Handbook of mammalian metabolism of plant compounds (1991); CRC Press: Boca Raton, 2017.
[77]
Friedhoff, A.J.; Goldstein, M. New developments in metabolism of mescaline and related amines. Ann. N. Y. Acad. Sci., 1962, 96, 5-13.
[78]
Seiler, N.; Demisch, L. Oxidative metabolism of mescaline in the central nervous system. II. Oxidative deamination of mescaline and 2,3,4-trimethoxy-beta-phenylethylamine by different mouse brain area in vitro. Biochem. Pharmacol., 1971, 20, 2485-2493.
[79]
Steensholt, G. On an amine oxidase in rabbit’s liver. Acta Physiol. Scand., 1947, 14, 356-362.
[80]
Demisch, L.; Seiler, N. Oxidative metabolism of mescaline in the central nervous system-V: In vitro deamination of mescaline to 3,4,5-trimethoxy-benzoic acid. Biochem. Pharmacol., 1975, 24, 575-580.
[81]
Carvalho, M.; Carmo, H.; Costa, V.M.; Capela, J.P.; Pontes, H.; Remiao, F.; Carvalho, F.; Bastos Mde, L. Toxicity of amphetamines: An update. Arch. Toxicol., 2012, 86, 1167-1231.
[82]
Demisch, L.; Seiler, N. Oxidative metabolism of mescaline in the central nervous system-V. In vitro deamination of mescaline to 3,4,5-trimethoxy-benzoic acid. Biochem. Pharmacol., 1975, 24, 575-580.
[83]
Musacchio, J.; Goldstein, M. The metabolism of mescaline-14C in rats. Biochem. Pharmacol., 1967, 16, 963-970.
[84]
Axelrod, J. The enzymic cleavage of aromatic ethers. Biochem. J., 1956, 63, 634-639.
[85]
Friedhoff, A.J.; Hollister, L.E. Comparison of the metabolism of 3,4-dimethoxyphenylethylamine and mescaline in humans. Biochem. Pharmacol., 1966, 15, 269-273.
[86]
Wu, D.; Otton, S.V.; Inaba, T.; Kalow, W.; Sellers, E.M. Interactions of amphetamine analogs with human liver CYP2D6. Biochem. Pharmacol., 1997, 53, 1605-1612.
[87]
Demisch, L.; Kaczmarczyk, P.; Seiler, N. 3,4,5-Trimethoxybenzoic acid, a new mescaline metabolite in humans. Drug Metab. Dispos., 1978, 6, 507-509.
[88]
Goldstein, M.; Contrera, J.F. The substrate specificity of phenylamine-beta-hydroxylase. J. Biol. Chem., 1962, 237, 1898-1902.
[89]
Hermle, L.; Funfgeld, M.; Oepen, G.; Botsch, H.; Borchardt, D.; Gouzoulis, E.; Fehrenbach, R.A.; Spitzer, M. Mescaline-induced psychopathological, neuropsychological, and neurometabolic effects in normal subjects: Experimental psychosis as a tool for psychiatric research. Biol. Psychiatry, 1992, 32, 976-991.
[90]
Hardman, H.F.; Haavik, C.O.; Seevers, M.H. Relationship of the structure of mescaline and seven analogs to toxicity and behavior in five species of laboratory animals. Toxicol. Appl. Pharmacol., 1973, 25, 299-309.
[91]
Schultes, R.E. Hallucinogens of plant origin. Science, 1969, 163, 245-254.
[92]
Bressloff, P.C.; Cowan, J.D.; Golubitsky, M.; Thomas, P.J.; Wiener, M.C. What geometric visual hallucinations tell us about the visual cortex. Neural Comput., 2002, 14, 473-491.
[93]
Golembiowska, K.; Jurczak, A.; Kaminska, K.; Noworyta-Sokolowska, K.; Gorska, A. Effect of Some Psychoactive Drugs Used as ‘Legal Highs’ on Brain Neurotransmitters. Neurotox. Res., 2016, 29, 394-407.
[94]
Shulgin, A.T. Mescaline: The chemistry and pharmacology of its analogs. Lloydia, 1973, 36, 46-58.
[95]
Schultes, R.E. The Appeal of Peyote (Lophophora Williamsii) as a Medicine. Am. Anthropol., 1938, 40, 698-715.
[96]
McLaughlin, J.L. Peyote: An introduction. Lloydia, 1973, 36, 1-8.
[97]
Halpern, J.H. The Use of Hallucinogens in the Treatment of Addiction. Addict. Res., 1996, 4, 177-189.
[98]
Gilmore, H.T. Peyote use during pregnancy. S. D. J. Med., 2001, 54, 27-29.
[99]
Hardaway, R.; Schweitzer, J.; Suzuki, J. Hallucinogen Use Disorders. Child Adolesc. Psychiatr. Clin. N. Am., 2016, 25, 489-496.
[100]
Brown, R.T.; Braden, N.J. Hallucinogens. Pediatr. Clin. North Am., 1987, 34, 341-347.
[101]
Stevenson, I.; Mokrasch, L.C. A further note on the mechanism of the antidotal action of sodium succinate in the mescaline psychosis. Am. J. Psychiatry, 1958, 114, 1038-1039.
[102]
Stevenson, I.; Sanchez, A.J., Jr The antidotal action of sodium succinate in the mescaline psychosis. Am. J. Psychiatry, 1957, 114, 328-332.
[103]
Nolte, K.B.; Zumwalt, R.E. Fatal peyote ingestion associated with Mallory-Weiss lacerations. West. J. Med., 1999, 170, 328.
[104]
Hashimoto, H.; Clyde, V.J.; Parko, K.L. Botulism from peyote. N. Engl. J. Med., 1998, 339, 203-204.
[105]
McCleary, J.A.; Sypherd, P.S.; Walkington, D.L. Antibiotic activity of an extract of peyote (Lophophora Williamii (Lemaire) coulter). Econ. Bot., 1960, 14, 247-249.
[106]
Lumholtz, C. Unknown Mexico; MacMillan and Co., Limited: London, 1903.
[107]
Cassels, B.K.; Saez-Briones, P. Dark classics in chemical neuroscience: mescaline. ACS Chem. Neurosci., 2018, 9(10), 2448-2458.
[108]
Rucker, J.J.H.; Iliff, J.; Nutt, D. J. Psychiatry & the psychedelic drugs. Past, present & future. Neuropsychopharmacol, 2017, 142, 200-218.
[109]
Rickli, A.; Moning, O.D.; Hoener, M.C.; Liechti, M.E. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur. Neuropsychopharmacol., 2016, 26, 1327-1337.
[110]
Shulgin, A.T.; Shulgin, A. PIHKAL: A chemical love story; Transform Press: Berkeley, 1991.