Abstract
This review covers the chemistry and biological aspects of goniothalamin-related styryl
lactones isolated from natural sources. This family of secondary metabolites has been reported to display
diverse uses in folk medicine, but only a limited number of these compounds have been throughly
investigated regarding their biological profile. Herein, we cover the goniothalamin-related styryl
lactones having a C6-C3-C4 framework which appeared in the literature for the first time in the period
2000-2017, and the reports on the synthesis, biological activity and mechanism of action which
were published from 2007-2017.
Keywords:
Goniothalamin, styryl lactones, isolation, synthesis, biological activity, mode of action.
[16]
Mukhtar, M.R.; Awang, K.; Mustafa, M.R. Chemical constituents and bioactive compounds of Goniothalamus tortilipetalus Hend (Annonaceae). Malaysian J. Sci., 2000, 19(1), 7-12.
[31]
Jayakumar, G.; Ajthabai, M.D.; Harikumar, B. Pypyrones from Goniothalamus wightii, Hook, f. and Thoms., Annonaceae. Indian J. Chem. - Sect. B Org. Med. Chem., 2010, 49(1), 112-114.
[44]
Wattanapiromsakul, C.; Wangsintaweekul, B.; Sangprapan, P. Goniothalamin, a cytotoxic compound, isolated from Goniothalamus macrophyllus (Blume) Hook. f. & Thomson var. macrophyllus. Songklanakarin J. Sci. Technol., 2005, 27(2), 479-487.
[47]
Ahmad, F.B.; Din, L.B. Isolation and characterization of dehydrogoniothalamin from Goniothalamus umbrosus. Indian J. Chem., 2002, 41(7), 1540-1541.
[53]
Li, C-M.; Mu, Q.; Sun, H-D. A new anti-cancer constituent of Goniothalamus cheliensis. Yunnan Zhi Wu Yan Jiu, 1998, 20(1), 102-104.
[57]
Macabeo, A.P.G.; Lopez, A.D.A.; Schmidt, S. Antitubercular and cytotoxic constituents from Goniothalamus gitingensis. Rec. Nat. Prod., 2013, 8(1), 41-45.
[84]
Sabitha, G.; Bhikshapathi, M.; Ranjith, N. An efficient total
synthesis of (+)-goniodiol. Synthesis (Stuttg)., 2011, (5), 821–825.
[152]
Campos, V.A.C.; Machado, A.R.T.; Silva, W.J.R. Styryllactones from Cryptocarya aschersoniana Mez. (Lauraceae Juss.) with activity against Meloidogyne spp. and in silico interaction with a putative fumarase from Meloidogyne hapla. Quim. Nova, 2016, 39(2), 130-136.