Abstract
Background: The sterile alpha motif (Sam) domain is a small helical protein module,
able to undergo homo- and hetero-oligomerization, as well as polymerization, thus forming
different types of protein architectures. A few Sam domains are involved in pathological
processes and consequently, they represent valuable targets for the development of new potential
therapeutic routes. This study intends to collect state-of-the-art knowledge on the different
modes by which Sam domains can favor disease onset and progression.
Methods: This review was build up by searching throughout the literature, for: a) the structural
properties of Sam domains, b) interactions mediated by a Sam module, c) presence of a
Sam domain in proteins relevant for a specific disease.
Results: Sam domains appear crucial in many diseases including cancer, renal disorders, cataracts.
Often pathologies are linked to mutations directly positioned in the Sam domains that
alter their stability and/or affect interactions that are crucial for proper protein functions. In
only a few diseases, the Sam motif plays a kind of "side role" and cooperates to the pathological
event by enhancing the action of a different protein domain.
Conclusion: Considering the many roles of the Sam domain into a significant variety of diseases,
more efforts and novel drug discovery campaigns need to be engaged to find out small
molecules and/or peptides targeting Sam domains. Such compounds may represent the pillars
on which to build novel therapeutic strategies to cure different pathologies.
Keywords:
Sam domains, drug discovery, structural biology, protein-protein interactions, diseases, therapeutic
routes
[128]
Pansky, B. Review of medical embryology; Macmillan: New York, 1982.
[158]
Crow, Y.J.; Leitch, A.; Hayward, B.E.; Garner, A.; Parmar, R.; Griffith, E.; Ali, M.; Semple, C.; Aicardi, J.; Babul-Hirji, R.; Baumann, C.; Baxter, P.; Bertini, E.; Chandler, K.E.; Chitayat, D.; Cau, D.; Déry, C.; Fazzi, E.; Goizet, C.; King, M.D.; Klepper, J.; Lacombe, D.; Lanzi, G.; Lyall, H.; Martínez-Frías, M.L.; Mathieu, M.; McKeown, C.; Monier, A.; Oade, Y.; Quarrell, O.W.; Rittey, C.D.; Rogers, R.C.; Sanchis, A.; Stephenson, J.B.P.; Tacke, U.; Till, M.; Tolmie, J.L.; Tomlin, P.; Voit, T.; Weschke, B.; Woods, C.G.; Lebon, P.; Bonthron, D.T.; Ponting, C.P.; Jackson, A.P. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection.
Nat. Genet., 2006,
38(8), 910-916.
[
http://dx.doi.org/10.1038/ng1842] [PMID:
16845400]
[159]
Rice, G.I.; Bond, J.; Asipu, A.; Brunette, R.L.; Manfield, I.W.; Carr, I.M.; Fuller, J.C.; Jackson, R.M.; Lamb, T.; Briggs, T.A.; Ali, M.; Gornall, H.; Couthard, L.R.; Aeby, A.; Attard-Montalto, S.P.; Bertini, E.; Bodemer, C.; Brockmann, K.; Brueton, L.A.; Corry, P.C.; Desguerre, I.; Fazzi, E.; Cazorla, A.G.; Gener, B.; Hamel, B.C.J.; Heiberg, A.; Hunter, M.; van der Knaap, M.S.; Kumar, R.; Lagae, L.; Landrieu, P.G.; Lourenco, C.M.; Marom, D.; McDermott, M.F.; van der Merwe, W.; Orcesi, S.; Prendiville, J.S.; Rasmussen, M.; Shalev, S.A.; Soler, D.M.; Shinawi, M.; Spiegel, R.; Tan, T.Y.; Vanderver, A.; Wakeling, E.L.; Wassmer, E.; Whittaker, E.; Lebon, P.; Stetson, D.B.; Bonthron, D.T.; Crow, Y.J. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response.
Nat. Genet., 2009,
41(7), 829-832.
[
http://dx.doi.org/10.1038/ng.373] [PMID:
19525956]