Fabrication of Chitosan/Pectin/PVA Nanofibers Using Electrospinning Technique

Page: [134 - 141] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Electrospinning is a novel cost effective technique for generating nanofibers from a broad range of materials likely to be used as a coating film.

Methods: In this project, pectin and chitosan solutions containing PVA were prepared and electrospun with separate syringes for the first time. The antimicrobial and physical properties of the novel chitosan/PVApectin/ PVA nanofibrous film were evaluated using some analysis techniques such as disc diffusion assay, scanning electron microscopy (SEM), transmission electron microscopy (TEM), viscosity and conductivity tests, and fourier-transform infrared spectroscopy (FTIR).

Results: The results showed that simultaneously electrospinning the dispersion of chitosan/PVA (50:50) with pectin/PVA (50:50) led to the formation of thin nanofibers with the minimum number of beads. The results of FTIR analysis proved the dispersion of chitosan and PVA in nanofiber mats and the interaction of chitosan with pectin as well as PVA with pectin. Disc diffusion assay showed that nano-film could possess significant antibacterial activity against S. aureus at 37°C but had no effects against E. coli.

Conclusion: Based on the results of this study, the novel chitosan/PVA-pectin/PVA nanofibrous film can be considered as a novel coating film for promising application in food packaging industry.

Keywords: Electrospinning, pectin, chitosan, PVA, nanofiber, food packaging.

Graphical Abstract

[1]
Leceta, I.; Guerrero, P.; de la Caba, K. Functional properties of chitosanbased films. Carbohydr. Polym., 2013, 93, 339-346.
[2]
van den Broek, L.A.M.; Knoop, R.J.I.; Kappen, F.H.J.; Boeriu, C.G. Chitosan films and blends for packaging material. Carbohydr. Polym., 2015, 116, 237-242.
[3]
Madureira, A.R.; Pereira, A.; Pintado, M. Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Carbohydr. Polym., 2015, 130, 429-439.
[4]
Keramat, M.; Esteghlal, S.; Safari, J.; Golmakani, M-T.; Khalesi, M. Fabrication of electrospun persian Gum/Poly (Vinyl Alcohol) and whey protein Isolate/Poly (vinyl alcohol) nanofibers incorporated with Oliveria decumbens Vent. essential oil. Nanosci. Nanotechnol. Asia, 2018. [Epub ahead of print].
[5]
Fernandez-Saiz, P.; Lagaron, J.M.; Ocio, M.J. Optimization of the biocide properties of chitosan for its application in the design of active films of interest in the food area. Food Hydrocoll., 2009, 23, 913-921.
[6]
Guo, M.; Ma, Y.; Wang, C.; Liu, H.; Li, Q.; Fei, M. Synthesis, anti-oxidant activity, and biodegradability of a novel recombinant polysaccharide derived from chitosan and lactose. Carbohydr. Polym., 2015, 118, 218-223.
[7]
Kaushik, A.; Khan, R.; Solanki, P.R.; Pandey, P.; Alam, J.; Ahmad, S.; Malhotra, B.D. Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens. Bioelectron., 2008, 24, 676-683.
[8]
Munteanu, B.S.; Paslaru, E.; Zemljic, L.F.; Sdrobis, A.; Pricope, G.M.; Vasile, C. Chitosan coating applied to polyethylene surface to obtain food packaging materials. Cellul. Chem. Technol., 2014, 48(5-6), 565-575.
[9]
Kumar, M.N.V. A review of chitin and chitosan applications. React. Funct. Polym., 2000, 46(1), 1-27.
[10]
Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem., 2009, 114, 1173-1182.
[11]
Shahidi, F.; Arachchi, J.K.V.; Jeon, Y.J. Food applications of chitin and chitosans. Trends Food Sci. Technol., 1999, 10(2), 37-51.
[12]
Chi, S. Development and characterization of antimicrobial food coatings based on chitosan and essential oils., Master thesis Knoxville: University of Tennessee. 2004.
[13]
Caner, C.; Vergano, P.J.; Wiles, J.L. Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. J. Food Sci., 1998, 63, 1049-1053.
[14]
Bourtoom, T. Review article: Edible films and coatings: Characteristics and properties. Int. Food Res. J., 2008, 15(3), 237-248.
[15]
Sagoo, S.; Board, R.; Roller, S. Chitosan inhibits growth of spoilage microorganisms in chilled pork products. Food Microbiol., 2002, 19, 175-182.
[16]
Friedman, M.; Juneja, V.K. Review of antimicrobial and antioxidative activities of chitosans in food. J. Food Prot., 2010, 73, 1737-1761.
[17]
Hernández-Muñoz, P.; Almenar, E.; Ocio, M.; Gavara, R. Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria x ananassa). Postharvest Biol. Technol., 2006, 39(3), 247-253.
[18]
Aranaz, I.; Mengíbar, M.; Harris, R.; Paños, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, A. Functional characterization of chitin and chitosan. Curr. Chem. Biol., 2009, 3(2), 203-230.
[19]
Coimbra, P.; Ferreira, P.; de Sousa, H.C.; Batista, P.; Rodrigues, M.A.; Correia, I.J.; Gil, M.H. Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. Int. J. Biol. Macromol., 2011, 48, 112-118.
[20]
Luppi, B.; Bigucci, F.; Abruzzo, A.; Corace, G.; Cerchiara, T.; Zecchi, V. Freeze-dried chitosan/pectin nasal inserts for antipsychotic drug delivery. Eur. J. Pharm. Biopharm., 2010, 75, 381-387.
[21]
Meshali, M.M.; Gabr, K.E. Effect of interpolymer complex formation of chitosan with pectin or acacia on the release behaviour of chlorpromazine HCl. Int. J. Pharm., 1993, 89, 177-181.
[22]
Macleod, G.S.; Collett, J.H.; Fell, J.T. The potential use of mixed films of pectin, chitosan and HPMC for bimodal drug release. J. Control. Release, 1999, 58, 303-310.
[23]
Nordby, M.H.; Kjøniksen, A.L.; Nystrøm, B.; Roots, J. Thermoreversible gelation of aqueous mixtures of pectin and chitosan. J. Rheol. Biomacromol, 2003, 4(2), 337-343.
[24]
Ghaffari, A.; Navaee, K.; Oskoui, M.; Bayati, K.; Rafiee-Tehrani, M. Preparation and characterization of free mixed-film of pectin/chitosan/Eudragit RS intended for sigmoidal drug delivery. Eur. J. Pharm. Biopharm., 2007, 67, 175-186.
[25]
de Abreu, D.A.P.; Losada, P.P.; Angulo, I.; Cruz, J.M. Development of new polyolefin films with nanoclays for application in food packaging. Eur. Polym. J., 2007, 43, 2229-2243.
[26]
Deitzel, J.M.; Kleinmeyer, J.; Harris, D.; Tan, N.C.B. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001, 42, 261-272.
[27]
Huang, Z.M.; Zhang, Y-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. J. Composit. Sci. Technol, 2003, 63, 2223-2253.
[28]
Li, L.; Hsieh, Y.L. Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydr. Res., 2006, 341, 374-381.
[29]
Zhou, Y.S.; Yang, D.Z.; Chen, X.M.; Xu, Q.; Lu, F.M.; Nie, J. Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules, 2008, 9, 349-354.
[30]
Ferreira, P.J.; Mitsuishi, K.; Stach, E.A. In situ transmission electron microscopy. MRS Bull., 2008, 33, 2.
[31]
Zeng, J.; Haoqing, H.; Schaper, A.; Wendorff, J.H.; Greiner, A. Poly-L-lactide nanofibers by electrospinning–influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. ePolymers, 2003, 3, 102-110.
[32]
Chung, L.Y.; Schmidt, R.J.; Hamlyn, P.F.; Sagar, B.F.; Andrews, A.M.; Turner, T.D. Biocompatibility of potential wound management products: fungal mycelia as a source of chitin/chitosan and their effect on the proliferation of human F1000 fibroblasts in culture. J. Biomed. Mater. Res., 1994, 28, 463-469.
[33]
Chung, L.Y.; Schmidt, R.J.; Hamlyn, P.F.; Sagar, B.F.; Andrews, A.M.; Turner, T.D. Biocompatibility of potential wound management products: hydrogen peroxide generation by fungal chitin/chitosans and their effects on the proliferation of murine L929 fibroblasts in culture. J. Biomed. Mater. Res., 1998, 39, 300-307.
[34]
Adame, D.; Beall, G.W. Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Appl. Clay Sci., 2009, 42, 545-552.
[35]
Jia, Y-T.; Gong, J.; Gu, X-H.; Kim, H-Y.; Dong, J.; Shen, X-Y. Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr. Polym., 2007, 67, 403-409.
[36]
Wen, P.; Zhu, D-H.; Wu, H.; Zong, M-H.; Jing, Y-R.; Han, S-Y. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control, 2016, 59, 366-376.
[37]
Doner, L.W. ACS Symposium Series 310, American Chemical Society. Washington, 1986, pp. 13-21.
[38]
Kacurakova, M.; Capek, P.; Sasinkov, V.; Wellner, N.; Ebringerov, A. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr. Polym., 2000, 43, 195-203.
[39]
Gnanasambandam, R.; Proctor, A. Preparation of soy hull pectin. Food Chem., 1999, 65, 461-467.
[40]
Yang, G.; Qiu, J.; Cuilian, X.; Sufang, F.; Wang, C.; Xie, P. Synthesis, characterization and antifungal activity of coumarin-functionalized chitosan derivatives. J. Biol. Macromol, 2018, 106, 179-184.
[41]
Nunthanid, J.; Puttipipatkhachorn, S.; Yamamoto, K.; Peck, G.E. Physical properties and molecular behavior of chitosan films. Drug Dev. Pharm, 2001, 27, 143-157.
[42]
Ignatova, M.; Starbova, K.; Markova, N.; Manolova, N.; Rashkov, I. Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl alcohol). Carbohydr. Res., 2006, 341, 2098-2107.
[43]
Goy, R.C.; Britto, D.D.; Assis, O.B. A review of the antimicrobial activity of chitosan. Polímeros, 2009, 19(3), 241-247.
[44]
Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan. J. Biol. Macromol, 2016, 85, 467-475.
[45]
Tachaboonyakiat, W. Antimicrobial applications of chitosan. Chitosan Based Biomater, 2017, 9(2), 245-274.