[1]
De Smet K, Campbell P, Van Der Straeten C. The hip resurfacing handbook A practical guide to the use and management of modern hip resurfacings Sawston. Woodhead Publishing 2013.
[10]
Alexei Bogdanov Jr and Mary L. Mazzanti.Molecular magnetic resonance contrast agents for the detection of cancer: past and present. Semin Oncol 2011; 38(1): 42-54.
[30]
Keshtkar M, Shahbazi-Gahrouei D, Mehrgardi M, Aghaei M. Synthesis and cytotoxicity assessment of gold-coated magnetic iron oxide nanoparticles. J Biomed Phys Eng 2016eISSN: 2251
[47]
Dipali B, Birnale B, Patil SN. Brain tumor MRI image segmentation using FCM and SVM. IJESC 2016; 6(12): 3939-42.
[48]
Singh G, Ansari M. Efficient detection of brain tumor from MRIs using K-means segmentation and normalized histogram. In: 1st India International Conference on Information Processing (IICIP). Delhi, India. 2016; pp. 1-6.
[49]
Rani N, Vashisth S. Brain tumor detection and classification with feed forward back-prop neural network. Int J Comput Appl 2016; 146(12): 1-6.
[50]
Alfonse M, Salem AB. An automatic classification of brain tumors through MRI using support vector machine. Egypt Comp Sci J 2016; 40(3): 11-21.
[53]
Madheswaran M, Dhas DAS. Classification of brain MRI images using support vector machine with various Kernels. Biomed Res 2015; 26(3): 505-13.
[55]
Nandpuru HB, Salankar SS, Bora VR. MRI brain cancer classification using support vector machine. In: IEEE Students'Conference on Electrical, Electronics and Computer Science. Bhopal, India. 2014; pp. 1-6.
[56]
Marrone S, Piantadosi G, Fuscoy R, Petrilloy A, Sansone M, Sansone C. Breast segmentation using Fuzzy C-Means and anatomical priors in DCE-MRI. In: 23rd International Conference on Pattern Recognition (ICPR). Cancun, Mexico: Cancun Center 2016.
[57]
BenAmeur ST, Wendling L. Dorra Sellami. Detection and analysis of breast masses from MRIs and dual energy contrast enhanced mammography. In: International Image Processing Applications and Systems Conference IPAS’16. Hammamet, Tunisia. 2016; pp. 1-5.
[58]
Chaiyakhan K, Kerdprasop N, Kerdprasop K. Feature selection techniques forbreast cancer image classification with support vector machine. In: Proceedings of the International Multi Conference of Engineers and Computer Scientists. Hong Kong. 2016; pp. 1-6.
[59]
Gnonnou C, Smaoui N. Segmentation and 3D reconstruction of MRI images for breast cancer detection. In: International Image Processing, Applications and Systems Conference Sfax, Tunisia. 2014; 1-6.
[62]
Arbach L, Stolpenb A, Reinhardta JM. Classification of breast MRI lesions using a backpropagation neural network (BNN). In: 2nd IEEE International Symposium on Biomedical Imaging: Nano toMacro (IEEE Cat No. 04EX821). Arlington, VA, USA 2004; 253-6.
[63]
Dimililer K, Ugur B, Ever YK. Tumor detection on ct lung images using image enhancement. Online J Sci Technol 2017; 7(1): 133-8.
[64]
Asuntha A, Brindha A, Indirani S, Srinivasan A. Lung cancer detection using SVM algorithm and optimization techniques. JCHPS 2016; 9(4): 3198-203.
[65]
Madhubala G, Aroquiaraj IL. Lung cancer image segmentation and classification using soft computing techniques. Int J Comput Int Sys 2016; 6(2): 120-6.
[66]
Sakthineela PK, Muhammadusathikraja MS. Early stage diagnosis of lung cancer using ct-scan images based on cellular learning automate. IJIRAE 2016; 3(4): 41-5.
[68]
Shriwas RS, Dikondawar AD. Lung cancer detection and prediction by using neural network. IIJEC 2015; 3(1): 17-21.
[69]
Suseendran G, Manivannan M. Lung cancer image segmentation using rough set theory. Indian J Med Healthcare 2015; 4(6): 1-8.
[70]
Tun KMM, Khaing AS. Feature extraction and classification of lung cancer nodule using image processing techniques. Int J Eng Res Technol 2014; 3(3): 2204-10.
[71]
Gajdhane VA, Deshpande LM. Detection of lung cancer stages on ct scan images by using various image processing techniquesIOSR-JCE 2014; 16(5 Ver. III): 28-35.
[72]
Ada. Minimal Feature Set Extraction for Classification of Lung Cancer CT-Scan Images. Indian J Res 2013; 3(4): 147-9.
[73]
Sobecki P, Życka-Malesa D, Mykhalevych I, Sklinda K, Przelaskowski A. MRI imaging texture features in prostate lesions classification.EMBEC & NBC 2017.In: Eskola H, Väisänen O, Viik J, Hyttinen J, Eds. EMBEC & NBC 2017. IFMBE Proceedings. Singapore:
Springer;. 827-30.
[74]
Triguia R, Mitéran BJ, Walker PM, Sellami L, Hamid AB. Automatic classification and localization of prostate cancer usingmulti-parametric MRI/MRS. Biomed Signal Process Control 2017; 31: 189-98.
[75]
Wang X, Yang W, Weinreb J, et al. Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Sci Rep 2017; 7(1): 15415.
[79]
Artan Y, Oto A, Yetik IS. Cross-device automated prostate cancer localization with multiparametric MRI. IEEE Trans Image Process 2013; 22(12): 5385-94.
[82]
Asuntha A, Srinivasan A. Bone cancer detection using artificial neural network. Indian J Soc Res 2018; 17(2): 56-63.
[83]
Durgadevi G, Ramprabu G, Shobana S. Detection of enchodroma tumor in MRI imges using SVM clasifier. Int J Pharm Technol 2017; 9(2): 29861-6.
[84]
Mistry KD, Talati BJ. An approach to detect bone tumor using comparative analysis of segmentation technique. IJIRCCE 2016; 4(5): 8176-84.
[85]
Binhssan A. Enchondroma tumor Detection. Int J Adv Res Comput Commun Eng 2015; 4(6): 1-4.
[86]
Avula M, Lakkakula NP, Raja MP. Bone cancer detection from MRI scan imagery using mean pixel intensity. In: 2014 8th Asia Modelling Symposium. Taipei, Taiwan. 2014; 141-6.