An Overview of Synthetic Methods for the Preparation of Halolactones

Page: [98 - 111] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Halolactones are used both in chemical synthesis as intermediates as well as in various industries. These compounds may be secondary metabolites of living organisms, although they are mainly obtained by chemical synthesis. The substrates for the synthesis of chloro-, bromo- and iodolactones are often unsaturated carboxylic acids, and sometimes they are unsaturated esters. The article presents a number of different methods for the production of halolactones, both racemic mixtures and enantiomerically enriched compounds.

Keywords: Analogues compound, halolactones, halolactonization, carboxylic acid, synthesis, asymmetric lactonization.

Graphical Abstract

[1]
van Pee, K.H.; Unversucht, S. Biological dehalogenation and halogenation reactions. Chemosphere, 2003, 52(2), 299-312.
[2]
Nam, S.J.; Gaudncio, S.P.; Kauffman, C.A.; Jensen, P.R.; Kondratyuk, T.P.; Marler, L.E.; Pezzuto, J.M. Fenical. W. Fijiolides A and B, inhibitors of TNF-α-induced NFκB activation, from a marine-derived sediment bacterium of the genus Nocardiopsis. J. Nat. Prod., 2010, 73(6), 1080-1086.
[3]
Gutirrez-Cepeda, A.; Fernndez, J.J.; Gil, L.V.; Lopez-Rodriguez, M. Norte. M.; Souto, M.L. Nonterpenoid C15 acetogenins from Laurencia marilzae. J. Nat. Prod., 2011, 74(3), 441-448.
[4]
Lhullier, C.; Falkenberg, M.; Ioannou, E.; Quesada, A.; Papazafiri, P.; Horta, P.A.; Schenkel, E.P.; Vagias, C.; Roussis, V. Cytotoxic halogenated metabolites from the Brazilian red alga Laurencia catarinensis. J. Nat. Prod., 2010, 73(1), 27-32.
[5]
Han, B.; McPhail, K.L.; Gross, H.; Goeger, D.E.; Mooberry, S.L.; Gerwick, W.H. Isolation and structure of five lyngbyabellin derivatives from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. Tetrahedron, 2005, 61(49), 11723-11729.
[6]
Zidorn, C.; Ellmerer, E.P.; Konwalinka, G.; Schwaiger, N.; Stuppne, H. 13-Chloro-3-O-β-D-glucopyranosylsolstitialin from Leontodon palisae: the first genuine chlorinated sesquiterpene lactone glucoside. Tetrahedron Lett., 2004, 45(17), 3433-3436.
[7]
Yin, S.; Boyle, G.M.; Carroll, A.R.; Kotiw, M.; Dearnaley, J.; Quinn, R.J.; Davis, R.A. Caelestines A−D, Brominated quinolinecarboxylic acids from the Australian ascidian Aplidium caelestis. J. Nat. Prod., 2010, 73(9), 1586-1589.
[8]
Zhang, L.; An, R.; Wang, J.; Sun, N.; Zhang, S.; Hu, J.; Kuai, J. Exploring novel bioactive compounds from marine microbes. Curr. Opin. Microbiol., 2005, 8(3), 276-281.
[9]
Fehr, D.; Barlow, R.; McAtee, J.; Hemscheidt, T.K. Highly brominated antimicrobial metabolites from a marine Pseudoalteromonas sp. J. Nat. Prod., 2010, 73(11), 1963-1966.
[10]
Yang, X.; Davis, R.A.; Buchanan, M.S.; Duffy, S.; Avery, V.M.; Camp, D.; Quinn, R.J. Antimalarial bromotyrosine derivatives from the Australian marine sponge Hyattella sp. J. Nat. Prod., 2010, 73(5), 985-987.
[11]
Vairappan, C.S.; Suzuki, M.; Ishii, T.; Okino, T.; Abe, T.; Masuda, M. Antibacterial activity of halogenated sesquiterpenes from Malaysian Laurencia spp. Phytochem, 2008, 69(13), 2490-2494.
[12]
Ji, N.Y.; Li, X.M.; Wang, B.G. Sesquiterpenes and other metabolites from the marine red alga Laurencia composita (Rhodomelaceae). Helv. Chim. Acta, 2010, 93, 2281-2286.
[13]
Kladi, M.; Vagias, C.; Papazafiri, P.; Furnari, G.; Serio, D.; Roussis, V. New sesquiterpenes from the red alga Laurencia microcladia. Tetrahedron, 2007, 63(32), 7606-7611.
[14]
Su, H.; Shi, D.Y.; Li, J.; Guo, S.J.; Li, L.L.; Yuan, Z.H.; Zhu, X.B. Sesquiterpenes from Laurencia similes. Molecules, 2009, 14, 1889-1897.
[15]
Levenfors, J.J.; Hedman, R.; Thaning, C.; Gerhardson, B.; Welch, C.J. Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153. Soil Biol. Biochem., 2004, 36(4), 677-685.
[16]
Thaning, C.; Welch, C.J.; Borowicz, J.J.; Hedman, R.; Gerhardson, B. Suppression of Sclerotinia sclerotiorum apothecial formation by the soil bacterium Serratia plymuthica: identification of a chlorinated macrolide as one of the causal agents. Soil Biol. Biochem., 2001, 33(12-13), 1817-1826.
[17]
Rudi, A.; Benayahu, Y.; Kashman, Y. Negombins A-I, new chlorinated polyfunctional diterpenoids from the marine sponge Negombata species. Org. Lett., 2007, 9(12), 2337-2340.
[18]
Sung, P.J.; Chiang, M.Y.; Tsai, W.T.; Su, J.H.; Su, Y.M.; Wu, Y.C. Chlorinated briarane-type diterpenoids from the gorgonian coral Ellisella robusta (Ellisellidae). Tetrahedron, 2007, 63(52), 12860-12865.
[19]
Gan, L.S.; Zheng, Y.L.; Mo, J.X.; Liu, X.; Li, X.H.; Zhou, C.X. Sesquiterpene lactones from the root tubers of Lindera aggregata. J. Nat. Prod., 2009, 72(8), 1497-1501.
[20]
Chen, J.J.; Li, W.X.; Gao, K.; Jin, X.J.; Yao, X.J. Absolute structures of monoterpenoids with a δ-lactone-containing skeleton from Ligularia hodgsonii. J. Nat. Prod., 2012, 75(6), 1184-1188.
[21]
Mahmoud, A.A.; Ahmed, A.A.; El , Bassuony. A.A. A new chlorosesquiterpene lactone from Ambrosia maritima. Fitoterapia, 1999, 70(6), 575-578.
[22]
Abe, H.; Fukazawa, N.; Kobayashi, T.; Ito, H. Indium chloride mediated chlorolactonization: construction of chlorinated lactone fragments. Tetrahedron, 2013, 69, 2519-2523.
[23]
Campbell, M.L.; Rackley, S.A.; Giambalvo, L.N.; Whitehead, D.C. Bromolactonization of alkenoic acids mediated by V2O5via bromide to bromenium in situ oxidation. Tetrahedron Lett., 2014, 55(41), 5680-5682.
[24]
Campbell, M.L.; Rackley, S.A.; Giambalvo, L.N.; Whitehead, D.C. Vanadium (V) oxide mediated bromolactonization of alkenoic acids. Tetrahedron, 2015, 71, 3895-3902.
[25]
Chen, F.; Jiang, X.; Er, J.C.; Yeung, Y.Y. Molecular sieves as an efficient and recyclable catalyst for bromolactonization and bromoacetoxylation reactions. Tetrahedron Lett., 2010, 51(26), 3433-3435.
[26]
Shelli, R. Mellegaard, Jon A. Tunge, Selenium-Catalyzed Halolactonization: Nucleophilic Activation of Electrophilic Halogenating Reagents. J. Org. Chem., 2004, 69(25), 8979-8981.
[27]
Whitehead, D.C.; Yousefi, R.; Jaganathan, A.; Borhan, B. An Organocatalytic asymmetric chlorolactonization. J. Am. Chem. Soc., 2010, 132(10), 3298-3300.
[28]
Yousefi, R.; Whitehead, D.C.; Mueller, J.M.; Staples, R.J.; Borhan, B. On the chlorenium source in the asymmetric chlorolactonization reaction. Org. Lett., 2011, 13(4), 608-611.
[29]
Han, X.; Dong, C.; Zhou, H.B. C3-Symmetric cinchonine-squaramide-catalyzed asymmetric chlorolactonization of styrene-type carboxylic acids with 1,3-dichloro-5,5-dimethylhydantoin: An efficient method to chiral isochroman-1-ones. Adv. Synth. Catal., 2014, 356(6), 1275-1280.
[30]
Lee, H.J.; Kim, D.Y. Catalytic enantioselective bromolactonization of alkenoic acids in the presence of palladium complexes. Tetrahedron Lett., 2012, 53(51), 6984-6986.
[31]
Alvarado-Beltran, I.; Maerten, E.; Toscano, R.A.; Lopez-Cortes, J.G.; Baceiredo, A.; Alvarez-Toledano, C. Enantioselective synthesis of 4-alkenoic acids via Pd-catalyzed allylic alkylation: stereocontrolled construction of c and d-lactones. Tetrahedron Asymm, 2015, 26(15-16), 802-809.
[32]
Filippova, L.; Stenstrom, Y.; Hansen, T.V. An asymmetric iodolactonization reaction catalyzed by a zinc bis-proline-phenol complex. Tetrahedron Lett., 2014, 55(2), 419-422.
[33]
Banoth, S.; Kanikarapu, S.; Yadav, J.S.; Mohapatra, D.K. Stereoselective synthesis of (+)-decarestrictine L using tandem isomerization followed by C–O and C–C bond formation reaction. Tetrahedron Lett., 2016, 57(39), 4368-4370.
[34]
Cordova, R.; Snider, B.S. A synthetic approach to actinobolin. Total synthesis of (±)-ramulosin. Tetrahedron Lett., 1984, 25(28), 2945-2948.
[35]
Still, C.; Schneider, M.J. A convergent route to. alpha-substituted acrylic esters and application to the total synthesis of (±)-frullanolide. J. Am. Chem. Soc., 1977, 99(3), 948-950.
[36]
Kuroda, C.; Tang, C.Y.; Tanabe, M.; Funakoshi, M. Proto- and iodo-lactonization reaction of substituted α,β: γ,δ-unsaturated carboxylic acid. Bull. Chem. Soc. Jpn., 1999, 72(2), 1583-1587.
[37]
Kato, T.; Ishimatu, T.; Aikawa, A.; Taniguchi, K.; Kurakashi, T.; Nakai, T. Preparation of the enantiomers of 19-epoxy docosahexaenoic acids and their 4-hydroxy derivatives. Tetrahedron. Assym, 2000, 11, 851-860.
[38]
Mohapatra, D.K.; Banoth, S.; Yadav, J.S. Stereoselective synthesis of the C21–C29 fragment of (+)-Sorangicin A employing iodocyclization reactions. Tetrahedron Lett., 2015, 56(43), 5930-5932.
[39]
Han, X.; Wu, H.; Dong, C.; Tien, P.; Xie, W.; Wu, S.; Zhou, H.B. Halolactones are potent HIV-1 non-nucleoside reverse transcriptase inhibitors. RSC Advances, 2015, 5, 10005-10013.
[40]
Majik, M.S.; Parvatkar, P.T. Next generation biofilm inhibitors for Pseudomonas aeruginosa: Synthesis and rational design approaches. Curr. Top. Med. Chem., 2014, 14(1), 81-109.
[41]
Zlokazov, M.V.; Veselovsky, V.V. New synthesis of serricornin, the sex pheromone of the cigarette beetle (Lasioderma serricorne). Russ. Chem. Bull. Int. Ed, 2002, 51(8), 1600-1603.
[42]
Hauske, J.R.; Julin, S.M. Synthesis of non-peptide scaffolding domains via a totally stereoselective iodolactonization protocol. Tetrahedron Lett., 1993, 34(31), 4909-4912.
[43]
Qureshi, Z.; Weinstabl, H.; Suhartono, M.; Liu, H.; Thesmar, P.; Lautens, M. Application of the palladium-catalysed norbornene-assisted Catellani reaction towards the total synthesis of (+)-linoxepin and isolinoxepin. Eur. J. Org. Chem., 2014, 2014(19), 4053-4069.
[44]
Mostinski, Y.; Valerio, V.; Lankri, D.; Tsvelikhovsky, D. Synthesis of tricyclic spiranoid lactones via I2/Sm(II)- and I2/Pd(0)-mediated cyclizations of a common cycloalkylmethylene precursor. J. Org. Chem., 2015, 80(21), 10464-10473.
[45]
Davies, S.G.; Fletcher, A.M.; Lee, J.A.; Roberts, P.M.; Russell, A.J.; Taylor, R.J.; Thomson, A.D.; Thomson, J.E. Polysubstituted piperidines via iodolactonization: application to the asymmetric synthesis of (+)-pseudodistomin D. Org. Lett., 2012, 14(7), 1672-1675.
[46]
Dembitsky, V.M.; Tolstikov, A.G.; Tolstikov, G.A. Natural halogenated diterpenoids. Chem. Sustainable Dev, 2002, 10, 253-264.
[47]
Hamza, F.; Kumar, A.R.; Zinjarde, S. Biotechnological applications of quorum-sensing inhibitors in aquacultures. In: Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight; Kalia, V., Ed.; Springer: New Delhi, 2015.
[48]
Díaz-Marrero, A.R.; Brito, I.; de la Rosa, J.M.; D’Croz, L.; Fabelo, O.; Ruiz-Pérez, C.; Darias, J.; Cueto, M. Novel lactone chamigrene-derived metabolites from Laurencia majuscula. Eur. J. Org. Chem., 2009, 1407-1411.
[49]
Zhang, L.; An, R.; Wang, J.; Sun, N.; Zhang, S.; Hu, J.; Kuai, J. Exploring novel bioactive compounds from marine microbes. Curr. Opin. Microb., 2005, 8(3), 276-281.
[50]
Gan, L.S.; Zheng, Y.L.; Mo, J.X.; Liu, X.; Li, X.H.; Zhou, C.X. Sesquiterpene lactones from the root tubers of Lindera agregata. J. Nat. Prod., 2009, 72(8), 1497-1501.
[51]
Chen, J.J.; Li, W.X.; Gao, K.; Jin, X.J.; Yao, X.J. Absolute structures of monoterpenoids with a δ-lactone-containing skeleton from Ligularia hodgsonii. J. Nat. Prod., 2012, 75(6), 1184-1188.
[52]
Zidorn, C.; Ellmerer, E.P.; Konwalinka, G.; Schwaiger, N.; Stuppner, H. 13-Chloro-3-O-β-d-glucopyranosylsolstitialin from Leontodon palisae: the first genuine chlorinated sesquiterpene lactone glucoside. Tetrahedron Lett., 2004, 45(17), 3433-3436.
[53]
Faber, K. Biotransformations in Organic Chemistry: A Textbook, 7th ed; Springer, 2017, pp. 251-253.
[54]
Neumann, C.S.; Fujimori, D.G.; Walsh, C.T. Halogenation strategies in natural product biosynthesis. Chem. Biol., 2008, 15(2), 99-109.
[55]
Timmins, A.; de Visser, S.P. Enzymatic halogenases and haloperoxidases: Computational studies on mechanism and function. Adv. Protein Chem. Struct. Biol., 2015, 100, 113-151.
[56]
Zhu, M.; Li, L.; Tong, J.Y.; Zhang, H. An effective method for the preparation of chlorolactones. Chin. Chem. Lett., 2011, 22(4), 431-434.
[57]
Lopez-Lopez, J.A.; Guerra, F.M.; Moreno-Dorado, F.J.; Jorge, Z.D.; Massanet, G.M. Synthesis of chlorinated β- and γ-lactones from unsaturated acids with sodium hypochlorite and Lewis acids. Tetrahedron Lett., 2007, 48(10), 1749-1752.
[58]
Genovese, S.; Epifano, F.; Pelucchini, C.; Procopio, A.; Curini, M. Ytterbium triflate catalyzed synthesis of chlorinated lactones. Tetrahedron Lett., 2010, 51(46), 5992-5995.
[59]
Grabarczyk, M.; Białońska, A. Biotransformations of chloro-, bromo- and iodolactone with trimethylcyclohexane system using fungal strains. Biocatal. Biotransform., 2010, 28(5-6), 408-414.
[60]
Grabarczyk, M.; Mączka, W.; Wińska, K.; Żarowska, B.; Anioł, M. The new halolactones and hydroxylactone with trimethylcyclohexene ring obtained through combined chemical and microbial processes. J. Mol. Catal., B Enzym., 2014, 102, 195-203.
[61]
Tanase, C.I.; Draghici, C.; Shova, S.; Cojocaru, A.; Maganu, M.; Munteanu, C.V.A.; Cocu, F. Regioselective reactions on a 1,3-disubstituted dihydroxymethyl or dicarboxyl hexahydropentalene skeleton. Tetrahedron, 2015, 71, 6852-6859.
[62]
Gładkowski, W.; Skrobiszewski, A.; Mazur, M.; Siepka, M.; Pawlak, A.; Obmińska-Mrukowicz, B.; Białońska, A.; Poradowski, D.; Drynda, A.; Urbaniak, M. Synthesis and anticancer activity of novel halolactones with β-aryl substituents from simple aromatic aldehydes. Tetrahedron, 2013, 69, 10414-10423.
[63]
Griffin, J.D.; Cavanaugh, C.L.; Nicewicz, D.A. Reversing the regioselectivity of halofunctionalization reactions through cooperative photoredox and copper catalysis. Angew. Chem., 2017, 129, 2129-2132.
[64]
Ma, S.; Wu, S. CuBr2-mediated direct aqueous bromolactonization of 2,3-allenoates. An efficient access to β-bromobutenolides. Tetrahedron Lett., 2001, 42(24), 4075-4077.
[65]
Bourgeois, M.J.; Campagnole, M.; Montaudon, E. A highly diastereoselective synthesis of trans-para-menthanic epoxyesters. Synthesis, 2001, 12, 1883-1887.
[66]
Arnold, R.T.; de Moura Campos, M.; Lindsay, K.L. Participation of a neighboring carboxyl group in addition reactions. I. The mechanism of the reaction of bromine with γ,δ-unsaturated acids and esters. J. Am. Chem. Soc., 1953, 75(5), 1044-1047.
[67]
Gelat, F.; Coffinet, M.; Lebrun, S.; Agbossou-Niedercorn, F.; Michon, C.; Deniau, E. Regioselective organocatalyzed asymmetric bromolactonization of aryl acrylate-type carboxylic acids: a new approach towards enantioenriched 3-substituted isobenzofuranones. Tetrahedron Asymm, 2016, 27(19), 980-989.
[68]
Grotowska, A.K.; Wawrzeńczyk, C. Lactones 13. Biotransformation of iodolactones. J. Mol. Catal., B Enzymatic., 2002, 19-20, 203-208.
[69]
Paruch, E.; Ciunik, Z.; Nawrot, J.; Wawrzeńczyk, C. Lactones. 9. Synthesis of terpenoid lactones active insect antifeedants. J. Agric. Food Chem., 2000, 48(10), 4973-4977.
[70]
Grabarczyk, M.; Szumny, A.; Gładkowski, W.; Białońska, A.; Ciunik, Z.; Wawrzeńczyk, C. Lactones 18. Synthesis of bicyclic lactones with methyl-, di- and trimethyl substituted cyclohexane system. Polish . J. Chem., 2005, 79(11), 1763-1771.
[71]
Marino, J.P.; Floyd, D.M. Generation and reactivity of α-carbethoxyvinylcuprate. J. Am. Chem. Soc., 1974, 96(2), 7138-7140.
[72]
Chavan, S.P.; Sharma, A.K. Iodolactonization and iodoetherification of β,γ-unsaturated acids and alcohols using FeCl3 and NaI. Tetrahedron Lett., 2001, 42(29), 4923-4924.
[73]
Kristianslund, R.; Aursnes, M.; Tungen, J.E.; Hansen, T.V. Squaramide catalyzed enantioselective iodolactonization of allenoic acids. Tetrahedron Lett., 2016, 57(47), 5232-5236.