Electrochemical Determination of Non-Steroidal Anti-Inflammatory Drugs

Page: [485 - 501] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Electrochemical methods have been used for the determination of nonsteroidal antiinflammatory drugs (NSAID) just as used in the determination of various drugs. Among voltammetric methods; differential pulse voltammetric method, square wave voltammetric method and linear sweep voltammetric method are the most commonly used ones. NSAIDs are widely used in the treatment of inflammatory conditions such as musculoskeletal disorders (rheumatoid arthritis, osteoarthritis, acute gouty arthritis) and dental pain, menstrual pain, postoperative pain and migraine. In this review, some selected recent electrochemical studies were selected related to the nonsteroidal antiinflammatory drug analyzes. The aim of this review is to evaluate and discuss the advantages, details and usages of electroanalytical methods in the determination of nonsteroidal anti-inflammatory drug.

Keywords: Drug analysis, electroanalytical methods, nonsteroidal anti-inflammatory drugs, voltammetric methods, electrochemistry, reduction-oxidation (redox) reactions.

Graphical Abstract

[1]
Palacek, E.; Scheller, F.; Wang, J. Electrochemistry of Nucleic Acids and Proteins:Towards Electrochemical Sensors for Genomics and Proteomics; Elsevier Science: Amsterdam, 2005.
[2]
Gosser, D.K. Cyclic voltammetry: Simulation and Analysis of Reaction Mechanisms; VCH Publishers: New York, 1994.
[3]
Vire, J.C.; Kauffmann, J-M. Trends in electrochemistry in drug analysis. Curr. Top. Electrochem., 1994, 3, 493-515.
[4]
Brown, E.R.; Large, R.F.; Weissberg, A.; Rossiter, B.W. Physical Methods of Chemistry; Wiley Interscience: New York, 1964.
[5]
Ozkan, S.A. Electroanalytical Methods in Pharmaceutical Analysis and Their Validation , 1st ed.; HNB Pub, Palenville. 2012.
[6]
Zhang, X.; Ju, H.; Wang, J. Electrochemical sensors, biosensors and their biomedical applications; Elsevier: Amsterdam, 2008.
[7]
Brett, C.M.A. Electrochemistry. Principles, Methods and Applications; Oxford University Press: Oxford, 1993.
[8]
Greef, R.; Peat, R.; Peter, L.M.; Pletcher, D. Instrumental Methods in Electrochemistry; Ellis Horwood: Amsterdam, 1990.
[9]
Hart, J.P. Electroanalysis of Biologically Important Compounds; Ellis Horwood: Amsterdam, 1990.
[10]
Harvey, D. Modern Analytical Chemistry, 1st ed; The McGraw-Hill Companies, Inc., 2000.
[11]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[12]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[13]
Alavi-Tabari, S.A.R.; Khalilzadeh, M.A.; Karimi-Maleh, H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem., 2018, 811, 84-88.
[14]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P.; Sadrnia, A. Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug. Appl. Surf. Sci., 2018, 441, 55-60.
[15]
Tseng, C-C.; Wolfe, M.M. Nonsteroidal anti-inflammatory drugs. Med. Clin. North Am., 2000, 84(5), 1329-1344.
[16]
Murray, M.D.; Brater, D.C. Nonsteroidal anti-inflammatory drugs. Clin. Geriatr. Med., 1990, 6(2), 365-397.
[17]
Dugowson, C.E.; Gnanashanmugam, P. Nonsteroidal anti-inflammatory drugs. Phys. Med. Rehabil. Clin. N. Am., 2006, 17(2), 347-354.
[18]
Girgis, L.; Brooks, P. Nonsteroidal anti-inflammatory drugs. Drugs Aging, 1994, 4(2), 101-112.
[19]
Mills, J.A. Nonsteroidal anti-inflammatory drugs. N. Engl. J. Med., 1974, 290(14), 781-784.
[20]
Carson, J.L.; Strom, B.L.; Morse, M.L.; West, S.L.; Soper, K.A.; Stolley, P.D.; Jones, J.K. The relative gastrointestinal toxicity of the nonsteroidal anti-inflammatory drugs. Arch. Intern. Med., 1987, 147(6), 1054.
[21]
Gabriel, S.E.; Jaakkimainen, L.; Bombardier, C. Risk for serious gastrointestinal complications related to use of nonsteroidal anti-inflammatory drugs. Ann. Intern. Med., 1991, 115(10), 787.
[22]
Vane, J.; Botting, R. Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J., 1987, 1(2), 89-96.
[23]
Goodwin, J.S.; Regan, M. Cognitive dysfunction associated with naproxen and ibuprofen in the elderly. Arthritis Rheum., 1982, 25(8), 1013-1015.
[24]
Netter, P.; Lapicque, F.; Bannwarth, B.; Tamisier, J.N.; Thomas, P.; Royer, R.J. Diffusion of intramuscular ketoprofen into the cerebrospinal fluid. Eur. J. Clin. Pharmacol., 1985, 29(3), 319-321.
[25]
Starek, M. Review of the applications of different analytical techniques for coxibs research. Talanta, 2011, 85(1), 8-27.
[26]
Peesa, J.P.; Yalavarthi, P.R.; Rasheed, A.; Mandava, V.B.R. A perspective review on role of novel NSAID prodrugs in the management of acute inflammation. J. Acute Dis., 2016, 5(5), 364-381.
[27]
Ardoin, S.P.; Sundy, J.S. Update on nonsteriodal anti-inflammatory drugs. Curr. Opin. Intern. Med, 2006, 5(4), 372-377.
[28]
VANE J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol., 1971, 231(25), 232-235.
[29]
Kato, M.; Nishida, S.; Kitasato, H.; Sakata, N.; Kawai, S. Cyclooxygenase-1 and Cyclooxygenase-2 Selectivity of Non-Steroidal anti-inflammatory drugs: investigation using human peripheral monocytes. J. Pharm. Pharmacol., 2001, 53(12), 1679-1685.
[30]
Cryer, B.; Feldman, M. Cyclooxygenase-1 and Cyclooxygenase-2 Selectivity of widely used nonsteroidal anti-inflammatory drugs. Am. J. Med., 1998, 104(5), 413-421.
[31]
Nageswara Rao, R.; Meena, S.; Raghuram Rao, A. An overview of the recent developments in analytical methodologies for determination of COX-2 inhibitors in bulk drugs, pharmaceuticals and biological matrices. J. Pharm. Biomed. Anal., 2005, 39(3-4), 349-363.
[32]
Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res. IJPR, 2011, 10(4), 655-683.
[33]
Green, G.A. Understanding NSAIDs: From aspirin to COX-2. Clin. Cornerstone, 2001, 3(5), 50-60.
[34]
Starek, M.; Krzek, J. A review of analytical techniques for determination of oxicams, nimesulide and nabumetone. Talanta, 2009, 77(3), 925-942.
[35]
Castillo, M.A.; Bruzzone, L. Indirect fluorometric determination of diclofenac sodium. Anal. Sci., 2006, 22(3), 431-433.
[36]
Small, R.E. Diclofenac sodium. Clin. Pharm., 1989, 8(8), 545-558.
[37]
Scholer, D.W.; Ku, E.C.; Boettcher, I.; Schweizer, A. Pharmacology of diclofenac sodium. Am. J. Med., 1986, 80(4), 34-38.
[38]
Maier, R.; Menassé, R.; Riesterer, L.; Pericin, C.; Ruegg, M.; Ziel, R. The pharmacology of diclofenac sodium (voltarol). Rheumatol. Rehabil., 1979(Suppl. 2), 11-21.
[39]
Suresh, E.; Sundaram, K.; Kavitha, B.; Kumar, A.N.S. Square Wave Voltammetry Sensing of Ibuprofen on Glassy Carbon Electrode. Int. J. Curr. Pharm. Res, 2016, 9, 182-188.
[40]
Bushra, R.; Aslam, N. An overview of clinical pharmacology of ibuprofen. Oman Med. J., 2010, 25(3), 155-1661.
[41]
Rainsford, K.D. Ibuprofen: Pharmacology, efficacy and safety. Inflammopharmacology, 2009, 17(6), 275-342.
[42]
Adams, S.S.; McCullough, K.F.; Nicholson, J.S. The pharmacological properties of ibuprofen, an anti-inflammatory, analgesic and antipyretic agent. Arch. Int. Pharmacodyn. Ther., 1969, 178(1), 115-129.
[43]
Evans, A.M. Comparative pharmacology of S(+)-Ibuprofen and (RS)-Ibuprofen. Clin. Rheumatol., 2001, 20(S1), 9-14.
[44]
Loudiki, A.; Hammani, H.; Boumya, W.; Lahrich, S.; Farahi, A.; Achak, M.; Bakasse, M.; El Mhammedi, M.A. Electrocatalytical effect of montmorillonite to oxidizing ibuprofen: analytical application in river water and commercial tablets. Appl. Clay Sci., 2016, 123, 99-108.
[45]
Rogers, J.; Kirby, L.C.; Hempelman, S.R.; Berry, D.L.; McGeer, P.L.; Kaszniak, A.W.; Zalinski, J.; Cofield, M.; Mansukhani, L.; Willson, P. Clinical trial of indomethacin in Alzheimer’s disease. Neurology, 1993, 43(8), 1609-1611.
[46]
Gersony, W.M.; Peckham, G.J.; Ellison, R.C.; Miettinen, O.S.; Nadas, A.S. Effects of indomethacin in premature infants with patent ductus arteriosus: Results of a national collaborative study. J. Pediatr., 1983, 102(6), 895-906.
[47]
Balali-Mood, M.; Proudfoot, A.T.; Critchley, J.A.J.H.; Prescott, L.F. Mefenamic acid overdosage. Lancet, 1981, 317(8234), 1354-1356.
[48]
Kasichayanula, S.; Liu, X.; Griffen, S.C.; LaCreta, F.P.; Boulton, D.W. Effects of rifampin and mefenamic acid on the pharmacokinetics and pharmacodynamics of dapagliflozin. Diabetes Obes. Metab., 2013, 15(3), 280-283.
[49]
Winder, C.V.; Lembke, L.A.; Stephens, M.D. Comparative bioassay of drugs in adjuvant-induced arthritis in rats: Flufenamic Acid, Mefenamic Acid, and Phenylbutazone. Arthritis Rheum., 1969, 12(5), 472-482.
[50]
Ozgoli, G.; Goli, M.; Moattar, F. Comparison of effects of ginger, mefenamic acid, and ibuprofen on pain in women with primary dysmenorrhea. J. Altern. Complement. Med., 2009, 15(2), 129-132.
[51]
Adhoum, N.; Monser, L.; Toumi, M.; Boujlel, K. Determination of naproxen in pharmaceuticals by differential pulse voltammetry at a platinum electrode. Anal. Chim. Acta, 2003, 495(1-2), 69-75.
[52]
Roda, R.S. Naproxen: Pharmacology and dental therapeutics. J. Can. Dent. Assoc., 1992, 58(5), 401-405.
[53]
Dorfman, R.I. Chemistry and pharmacology of naproxen. Arzneimittelforschung, 1975, 25(2A), 278-281.
[54]
Schwartz, J.I.; Vandormael, K.; Malice, M.P.; Kalyani, R.N.; Lasseter, K.C.; Holmes, G.B.; Gertz, B.J.; Gottesdiener, K.M.; Laurenzi, M.; Redfern, K-J. Comparison of rofecoxib, celecoxib, and naproxen on renal function in elderly subjects receiving a normal-salt diet. Clin. Pharmacol. Ther., 2002, 72(1), 50-61.
[55]
Fortunato de Carvalho Rocha, W.; Luis Rosa, A.; Antônio Martins, J.; Poppi, R.J. Multivariate control charts based on net analyte signal and near infrared spectroscopy for quality monitoring of nimesulide in pharmaceutical formulations. J. Mol. Struct., 2010, 982(1-3), 73-78.
[56]
Famaey, J.P. In Vitro and in Vivo pharmacological evidence of selective cyclooxygenase-2 inhibition by nimesulide: An overview. Inflamm. Res., 1997, 46(11), 437-446.
[57]
Bennett, A.; Villa, G. Nimesulide: An NSAID that preferentially inhibits COX-2, and has various unique pharmacological activities. Expert Opin. Pharmacother., 2000, 1(2), 277-286.
[58]
Gupta, S.K.; Bansal, P.; Bhardwaj, R.K.; Velpandian, T. Comparative anti-nociceptive, anti-inflammatory and toxicity profile of nimesulide vs nimesulide and piperine combination. Pharmacol. Res., 2000, 41(6), 657-662.
[59]
Singla, A.K.; Chawla, M.; Singh, A. Review nimesulide: Some pharmaceutical and pharmacological aspects-An Update. J. Pharm. Pharmacol., 2000, 52(5), 467-486.
[60]
Ward, A.; Brogden, R.N. Nimesulide. Drugs, 1988, 36(6), 732-753.
[61]
Torriero, A.A.J.; Tonn, C.E.; Sereno, L.; Raba, J. Electrooxidation mechanism of non-steroidal anti-inflammatory drug piroxicam at glassy carbon electrode. J. Electroanal. Chem., 2006, 588(2), 218-225.
[62]
Dahl, S.L.; Ward, J.R. Pharmacology, Clinical efficacy, and adverse effects of piroxicam, A new nonsteroidal anti-inflammatory agent. Pharmacother. J. Hum. Pharmacol. Drug Ther, 1982, 2(2), 80-90.
[63]
Ishizaki, T.; Nomura, T.; Abe, T. Pharmacokinetics of Piroxicam, a New Nonsteroidal Anti-Inflammatory Agent, under Fasting and Postprandial States in Man. J. Pharmacokinet. Biopharm., 1979, 7(4), 369-381.
[64]
McEwen, J. Clinical pharmacology of piroxicam--Cyclodextrin. Clin. Drug Investig., 2000, 19(Suppl. 2), 27-31.
[65]
Brogden, R.N.; Heel, R.C.; Speight, T.M.; Avery, G.S. Piroxicam. Drugs, 1981, 22(3), 165-187.
[66]
Posac, J.R.; Vázquez, M.D.; Tascón, M.L.; Acuña, J.A.; de la Fuente, C.; Velasco, E.; Sánchez-Batanero, P. Determination of aceclofenac using adsorptive stripping voltammetric techniques on conventional and surfactant chemically modified carbon paste electrodes. Talanta, 1995, 42(2), 293-304.
[67]
Veitonmäki, T.; Tammela, T.L.J.; Auvinen, A.; Murtola, T.J. Use of aspirin, but not other non-steroidal anti-inflammatory drugs is associated with decreased prostate cancer risk at the population level. Eur. J. Cancer, 2013, 49(4), 938-945.
[68]
Calado, L.M.; Cordas, C.M.; Sousa, J.P. Acemetacin and indomethacin detection using modified carbon microelectrodes. Anal. Bioanal. Electrochem, 2013, 5(6), 665-671.
[69]
Tavares, I.A.; Bennett, A. Acemetacin and indomethacin: Differential inhibition of constitutive and inducible cyclo-oxygenases in human gastric mucosa and leucocytes. Int. J. Tissue React., 1993, 15(2), 49-53.
[70]
Sanphui, P.; Bolla, G.; Das, U.; Mukherjee, A.K.; Nangia, A. Acemetacin polymorphs: A rare case of carboxylic acid catemer and dimer synthons. CrystEngComm, 2013, 15(1), 34-38.
[71]
Dell, H.D.; Doersing, M.; Fischer, W.; Jacobi, H.; Kamp, R.; Köhler, G.; Schöllnhammer, G. Metabolism and Pharmacokinetics of Acemetacin in Man (Author’s Transl). Arzneimittelforschung, 1980, 30(8A), 1391-1398.
[72]
Kuhnert-Brandstätter, M.; Völlenklee, R. Thermoanalytische Und IR-Spektroskopische untersuchungen an polymorphen arzneisto-ffen: acemetacin, piroxicam, propranololhydrochlorid und urapidil. Fresenius’ Zeitschrift für Anal. Chemie,, 1985, 322(2), 164-169.
[73]
Notarianni, L.J.; Collins, A.J. Method for the determination of acemetacin, and non-steroidal anti-inflammatory drug, in plasma by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl., 1987, 413, 305-308.
[74]
Beltagi, A.M. Utilization of a Montmorillonite-Ca-Modified carbon paste electrode for the stripping voltammetric determination of diflunisal in its pharmaceutical formulations and human blood. J. Appl. Electrochem., 2009, 39(12), 2375-2384.
[75]
Davies, R.O. Review of the animal and clinical pharmacology of diflunisal. Pharmacotherapy, 1983, 3(2Pt2), 9S-22S.
[76]
Steelman, S.L.; Cirillo, V.J.; Tempero, K.F. The chemistry, pharmacology and clinical pharmacology of diflunisal. Curr. Med. Res. Opin., 1978, 5(7), 506-514.
[77]
Stone, C.; Arman, C.; Lotti, V.; Minsker, D.; Risley, E.; Bagdon, W.; Bokelman, D.; Jensen, R.; Mendlowski, B.; Tate, C. Pharmacology and toxicology of diflunisal. Br. J. Clin. Pharmacol., 1977, 4(S1), 19S-29S.
[78]
Brogden, R.N.; Heel, R.C.; Pakes, G.E.; Speight, T.M.; Avery, G.S. Diflunisal. Drugs, 1980, 19(2), 84-106.
[79]
Sturm, J.C.; Canelo, H.; Nuñez-Vergara, L.J.; Squella, J.A. Voltammetric study of ketorolac and its differential pulse polarographic determination in pharmaceuticals. Talanta, 1997, 44(5), 931-937.
[80]
Mishra, A.; Veerasamy, R.; Jain, P.K.; Dixit, V.K.; Agrawal, R.K. Synthesis, characterization and pharmacological evaluation of amide prodrugs of ketorolac. Eur. J. Med. Chem., 2008, 43(11), 2464-2472.
[81]
Buckley, M.M-T.; Brogden, R.N. Ketorolac. Drugs, 1990, 39(1), 86-109.
[82]
Handley, D.A.; Cervoni, P.; McCray, J.E.; McCullough, J.R. Preclinical enantioselective pharmacology of (R)- and (S)- ketorolac. J. Clin. Pharmacol., 1998, 38(2S), 25S-35S.
[83]
Litvak, K.M.; McEvoy, G.K. Ketorolac, an injectable nonnarcotic analgesic. Clin. Pharm., 1990, 9(12), 921-935.
[84]
Rooks, W.H. The pharmacologic activity of ketorolac tromethamine. Pharmacother. J. Hum. Pharmacol. Drug Ther., 1990, 10(6P2), 1-10.
[85]
Beltagi, A.; El-Attar, M.; Ghoneim, E. Adsorptive stripping voltammetric determination of the anti-inflammatory drug tolmetin in bulk form, pharmaceutical formulation and human serum. Open Chem., 2007, 5(3), 835-845.
[86]
Selley, M.L.; Glass, J.; Triggs, E.J.; Thomas, J. Pharmacokinetic studies of tolmetin in man. Clin. Pharmacol. Ther., 1975, 17(5), 599-605.
[87]
Brogden, R.N.; Heel, R.C.; Speight, T.M.; Avery, G.S. Tolmetin. Drugs, 1978, 15(6), 429-450.
[88]
Caruso, A.; Cutuli, V.M.; De Bernardis, E.; Attaguile, G.; Amico-Roxas, M. Pharmacological properties and toxicology of MED-15, a prodrug of tolmetin. Drugs Exp. Clin. Res., 1992, 18(11-12), 481-485.
[89]
Beirne, J.A.; Bianchine, J.R.; Johnson, P.C.; Wortham, G.F. Gastrointestinal blood loss caused by tolmetin, aspirin, and indomethacin. Clin. Pharmacol. Ther., 1974, 16(5part1), 821-825.
[90]
Selley, M.L.; Madsen, B.W.; Thomas, J. Protein binding of tolmetin. Clin. Pharmacol. Ther., 1978, 24(6), 694-705.
[91]
Flores-Murrieta, F.J.; Ko, H.C.; Flores-Acevedo, D.M.; López-Muñoz, F.J.; Jusko, W.J.; Sale, M.E.; Castañeda-Hernández, G. Pharmacokinetic-Pharmacodynamic modeling of tolmetin antinociceptive effect in the rat using an indirect response model: a population approach. J. Pharmacokinet. Pharmacodyn., 1998, 26(5), 547-557.
[92]
Sumner, D.D.; Dayton, P.G.; Cucinell, S.A.; Plostnieks, J. Metabolism of tolmetin in rat, monkey, and man. Drug Metab. Dispos., 1975, 3(4), 283-286.
[93]
Gopu, G.; Muralidharan, B.; Vedhi, C.; Manisankar, P. Determination of three analgesics in pharmaceutical and urine sample on nano poly (3, 4-Ethylenedioxythiophene) modified electrode. Ionics (Kiel), 2012, 18(1-2), 231-239.
[94]
Pierre, S.C.; Schmidt, R.; Brenneis, C.; Michaelis, M.; Geisslinger, G.; Scholich, K. Inhibition of Cyclooxygenases by Dipyrone. Br. J. Pharmacol., 2009, 151(4), 494-503.
[95]
Huguley, C.M. Agranulocytosis induced by dipyrone, a hazardous antipyretic and analgesic. JAMA, 1964, 189(12), 938-941.
[96]
Hinz, B.; Cheremina, O.; Bachmakov, J.; Renner, B.; Zolk, O.; Fromm, M.F.; Brune, K. Dipyrone elicits substantial inhibition of peripheral cyclooxygenases in humans: New insights into the pharmacology of an old analgesic. FASEB J., 2007, 21(10), 2343-2351.
[97]
Abd El-Hady, D.; Youssef, A.K. Hyphenation of Ionic Liquid Albumin Glassy Carbon Biosensor or Protein Label-Free Sensor with Differential Pulse Stripping Voltammetry for Interaction Studies of Human Serum Albumin with Fenoprofen Enantiomers. Anal. Chim. Acta, 2013, 772, 68-74.
[98]
Rubin, A.; Knadler, M.P.; Ho, P.P.K.; Bechtol, L.D.; Wolen, R.L. Stereoselective inversion of (R)-Fenoprofen to (S)-Fenoprofen in humans. J. Pharm. Sci., 1985, 74(1), 82-84.
[99]
Gruber, C.M. Clinical pharmacology of fenoprofen: A review. J. Rheumatol., 1976, 2, 8-17.
[100]
Volland, C.; Sun, H.; Dammeyer, J.; Benet, L.Z. Stereoselective degradation of the fenoprofen acyl glucuronide enantiomers and irreversible binding to plasma protein. Drug Metab. Dispos., 1991, 19(6), 1080-1086.
[101]
Brogden, R.N.; Pinder, R.M.; Speight, T.M.; Avery, G.S. Fenoprofen. Drugs, 1977, 13(4), 241-265.
[102]
Bozal, B.; Uslu, B. Applications of carbon based electrodes for voltammetric determination of lornoxicam in pharmaceutical dosage form and human serum. Comb. Chem. High Throughput Screen., 2010, 13(7), 598-609.
[103]
Prakash, A.; Patyar, S.; Byrav, P.; Medhi, B.; Prakash, A.; Patyar, S.; Wadhwa, S. Lornoxicam: A newer NSAID. IJPMR, 2009, 20(271), 27-31.
[104]
Skjodt, N.M.; Davies, N.M. Clinical pharmacokinetics of lornoxicam. Clin. Pharmacokinet., 1998, 34(6), 421-428.
[105]
Bianchi, M.; Panerai, A.E. Effects of lornoxicam, piroxicam, and meloxicam in a model of thermal hindpaw hyperalgesia induced by formalin injection in rat tail. Pharmacol. Res., 2002, 45(2), 101-105.
[106]
Balfour, J.A.; Fitton, A.; Barradell, L.B. Lornoxicam. Drugs, 1996, 51(4), 639-657.
[107]
Pruss, T.P.; Stroissnig, H.; Radhofer-Welte, S.; Wendtlandt, W.; Mehdi, N.; Takacs, F.; Fellier, H. Overview of the pharmacological properties, pharmacokinetics and animal safety assessment of lornoxicam. Postgrad. Med. J., 1990, 66(Suppl. 4), S18-S21.
[108]
Hillstrom, C.; Jakobsson, J.G. Lornoxicam: Pharmacology and usefulness to treat acute postoperative and musculoskeletal pain a narrative review. Expert Opin. Pharmacother., 2013, 14(12), 1679-1694.
[109]
Reguera, C.; Ortiz, M.C.C.; Arcos, M.J.J. Differential pulse voltammetric simultaneous determination of four anti-inflammatory drugs by using soft modelling. Electroanalysis, 2002, 14(24), 1699-1706.
[110]
Bradshaw, D.; Cashin, C.H.; Kennedy, A.J.; Roberts, N.A. Pharmacological and biochemical activities of tenoxicam (Ro 12-0068), a new non-steroidal anti-inflammatory drug. Agents Actions, 1984, 15(5-6), 569-577.
[111]
Todd, P.A.; Clissold, S.P. Tenoxicam. Drugs, 1991, 41(4), 625-646.
[112]
Nilsen, O.G. Clinical pharmacokinetics of tenoxicam. Clin. Pharmacokinet., 1994, 26(1), 16-43.
[113]
Altinoz, S.; Nemutlu, E.; Kr, S. Polarographic behaviour of meloxicam and its determination in tablet preparations and spiked plasma. Farmaco, 2002, 57(6), 463-468.
[114]
Engelhardt, G. Pharmacology of meloxicam, a new non-steroidal anti-inflammatory drug with an improved safety profile through preferential inhibition of COX-2. Rheumatology, 1996, 35(Suppl. 1), 4-12.
[115]
Ogino, K.; Hatanaka, K.; Kawamura, M.; Katori, M.; Harada, Y. Evaluation of pharmacological profile of meloxicam as an anti-inflammatory agent, with particular reference to its relative selectivity for Cyclooxygenase-2 over Cyclooxygenase-1. Pharmacology, 1997, 55(1), 44-53.
[116]
Ortiz, M.I.; Castañeda-Hernández, G.; Granados-Soto, V. Pharmacological evidence for the activation of Ca2+-Activated K+ channels by meloxicam in the formalin test. Pharmacol. Biochem. Behav., 2005, 81(4), 725-731.
[117]
Engelhardt, G.; Homma, D.; Schlegel, K.; Utzmann, R.; Schnitzler, C. Anti-Inflammatory, analgesic, antipyretic and related properties of meloxicam, a new non-steroidal anti-inflammatory agent with favourable gastrointestinal tolerance. Inflamm. Res., 1995, 44(10), 423-433.
[118]
Ogino, K.; Saito, K.; Osugi, T.; Satoh, H. Meloxicam (Mobic): A review of its pharmacological and clinical profile. Nippon Yakurigaku Zasshi, 2002, 120(6), 391-397.
[119]
Ghoneim, M.; Beltagi, A. Adsorptive stripping voltammetric determination of the anti-inflammatory drug celecoxib in pharmaceutical formulation and human serum. Talanta, 2003, 60(5), 911-921.
[120]
Nezhadali, A.; Sadeghzadeh, S. Experimental design-artificial neural network-genetic algorithm optimization and computer-assisted design of celecoxib molecularly imprinted polymer/carbon nanotube sensor. J. Electroanal. Chem., 2017, 795, 32-40.
[121]
Yilmaz, S.; Uslu, B.; Özkan, S.A. Anodic oxidation of etodolac and its square wave and differential pulse voltammetric determination in pharmaceuticals and human serum. Talanta, 2001, 54(2), 351-360.
[122]
Humber, L.G. Etodolac: The chemistry, pharmacology, metabolic disposition, and clinical profile of a novel anti-inflammatory pyranocarboxylic acid. Med. Res. Rev., 1987, 7(1), 1-28.
[123]
Glaser, K.; Sung, M-L.; O’Neill, K.; Belfast, M.; Hartman, D.; Carlson, R.; Kreft, A.; Kubrak, D.; Hsiao, C-L.; Weichman, B. Etodolac selectively inhibits human prostaglandin G/H synthase 2 (PGHS-2) versus human PGHS-1. Eur. J. Pharmacol., 1995, 281(1), 107-111.
[124]
Inoue, K.; Fujisawa, H.; Sasaki, Y.; Nishimura, T.; Nishimura, I.; Inoue, Y.; Yokota, M.; Masuda, T.; Ueda, F.; Shibata, Y. Pharmacological properties of the new non-steroidal anti-inflammatory agent etodolac. Arzneimittelforschung, 1991, 41(3), 228-235.
[125]
Balfour, J.A.; Buckley, M.M-T. Etodolac. Drugs, 1991, 42(2), 274-299.
[126]
Cappello, B.; di Maio, C.; Iervolino, M.; Miro, A.; Calignano, A. Etodolac/cyclodextrin formulations: Physicochemical characteriza-tion and in Vivo pharmacological studies. Drug Dev. Ind. Pharm., 2009, 35(7), 877-886.
[127]
Boni, J.; Korth-Bradley, J.; McGoldrick, K.; Appel, A.; Cooper, S. Pharmacokinetic and pharmacodynamic action of etodolac in patients after oral surgery. J. Clin. Pharmacol., 1999, 39(7), 729-737.
[128]
Ghoneim, M.M.; Beltagi, A.M. Adsorptive stripping voltammetric determination of the anti-inflammatory drug celecoxib in pharmaceutical formulation and human serum. Talanta, 2003, 60(5), 911-921.
[129]
Santhosh, P.; Senthil Kumar, N.; Renukadevi, M.; Gopalan, A.I.; Vasudevan, T.; Lee, K-P. Enhanced electrochemical detection of ketorolac tromethamine at polypyrrole modified glassy carbon electrode. Anal. Sci., 2007, 23(4), 475-478.
[130]
Goyal, R.N.; Chatterjee, S.; Agrawal, B. Electrochemical investigations of diclofenac at edge plane pyrolytic graphite electrode and its determination in human urine. Sens. Actuators B Chem., 2010, 145(2), 743-748.
[131]
Muralidharan, B.; Gopu, G.; Vedhi, C.; Manisankar, P. Voltammetric determination of analgesics using a montmorillonite modified electrode. Appl. Clay Sci., 2008, 42(1-2), 206-213.
[132]
Wang, C.Y.; Wang, Z.X.; Guan, J.; Hu, X.Y. Voltammetric determination of meloxicam in pharmaceutical formulation and human serum at glassy carbon electrode modified by cysteic acid formed by electrochemical oxidation of L-Cysteine. Sensors, 2005, 6(9), 1139-1152.
[133]
Norouzi, P.; Dousty, F.; Ganjali, M.R.; Daneshgar, P. Dysprosium nanowire modified carbon paste electrode for the simultaneous determination of naproxen and paracetamol: Application in pharmaceutical formulation and biological fluid. Int. J. Electrochem. Sci., 2009, 4, 1373-1386.
[134]
Bukkitgar, S.D.; Shetti, N.P.; Kulkarni, R.M.; Doddamani, M.R. Electro-Oxidation of nimesulide at 5% barium-doped zinc oxide nanoparticle modified glassy carbon electrode. J. Electroanal. Chem., 2016, 762, 37-42.
[135]
Gholivand, M.B.; Malekzadeh, G.; Derakhshan, A.A. Boehmite nanoparticle modified carbon paste electrode for determination of piroxicam. Sens. Actuators B Chem., 2014, 201, 378-386.
[136]
Meng, X.; Xu, Z.; Wang, M.; Yin, H.; Ai, S. Electrochemical behavior of antipyrine at a Bi 2 S 3 modified glassy carbon electrode and its determination in pharmaceutical formulations. Anal. Methods, 2012, 4(6), 1736-1741.
[137]
Bashkatova, N.V.; Korotkova, E.I.; Karbainov, Y.A.; Yagovkin, A.Y.; Bakibaev, A.A. Electrochemical, quantum-chemical and antioxidant properties of antipyrine and its derivatives. J. Pharm. Biomed. Anal., 2005, 37(5), 1143-1147.
[138]
Arkan, E.; Karimi, Z.; Shamsipur, M.; Saber, R. Electrochemical determination of celecoxib on a graphene based carbon ionic liquid electrode modified with gold nanoparticles and its application to pharmaceutical analysis. Anal. Sci., 2013, 29(8), 855-860.
[139]
Blanco‐López, M.C.; Fernández‐Llano, L.; Lobo‐Castañón, M.J.; Miranda‐Ordieres, A.J.; Tuñón‐Blanco, P. Voltammetry of diclofenac at graphite, carbon composites, and molecularly imprinted polymer‐composite electrodes. Anal. Lett., 2004, 37(5), 915-927.
[140]
Daneshgar, P.; Norouzi, P.; Ganjali, M.R.; Dinarvand, R.; Moosavi-Movahedi, A.A. Determination of diclofenac on a dysprosium nanowire-modified carbon paste electrode accomplished in a flow injection system by advanced filtering. Sensors, 2009, 9(10), 7903-7918.
[141]
Manea, F.; Ihos, M.; Remes, A.; Burtica, G.; Schoonman, J. Electrochemical determination of diclofenac sodium in aqueous solution on Cu-Doped Zeolite-Expanded Graphite-Epoxy electrode. Electroanalysis, 2010, 22(17-18), 2058-2063.
[142]
Ciltas, U.; Yilmaz, B.; Kaban, S.; Akcay, B.K.; Nazik, G. Square wave voltammetric determination of diclofenac in pharmaceutical preparations and human serum. Iran. J. Pharm. Res. IJPR, 2015, 14(3), 715-722.
[143]
Chethana, B.K.; Basavanna, S.; Naik, Y.A. Voltammetric Determination of Diclofenac Sodium Using Tyrosine- Modi Fi Ed Carbon Paste Electrode. Ind. Eng. Chem. Res., 2012, 51(31), 10287-10295.
[144]
Fernández-Llano, L.; Blanco-López, M.C.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Determination of diclofenac in urine samples by molecularly-imprinted solid-phase extraction and adsorptive differential pulse voltammetry. Electroanalysis, 2007, 19(15), 1555-1561.
[145]
Arvand, M.; Hassannezhad, M. Square wave voltammetric determination of uric acid and diclofenac on multi-walled carbon nanotubes decorated with magnetic core-shell Fe3O4@SiO2 nanoparticles as an enhanced sensing interface. Ionics (Kiel), 2015, 21(12), 3245-3256.
[146]
Karuppiah, C.; Cheemalapati, S.; Chen, S.M.; Palanisamy, S. Carboxyl-Functionalized graphene oxide-modified electrode for the electrochemical determination of nonsteroidal anti-inflammatory drug diclofenac. Ionics (Kiel), 2014, 21(1), 231-238.
[147]
Sarhangzadeh, K.; Khatami, A.A.; Jabbari, M.; Bahari, S. Simultaneous determination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nanocomposite. J. Appl. Electrochem., 2013, 43(12), 1217-1224.
[148]
Thiagarajan, S.; Rajkumar, M.; Chen, S. Nano TiO 2 -PEDOT film for the simultaneous detection of ascorbic acid and diclofenac. Int. J. Electrochem. Sci., 2012, 7, 2109-2122.
[149]
Yilmaz, B.; Kaban, S.; Akcay, B.K.; Ciltas, U. Differential pulse voltammetric determination of diclofenac in pharmaceutical preparations and human serum. Braz. J. Pharm. Sci., 2015, 51(2), 285-294.
[150]
Oliveira, T.M.B.F.; Pessoa, G. de P.; dos Santos, A.B.; de Lima-Neto, P.; Correia, A.N. Simultaneous electrochemical sensing of emerging organic contaminants in full-scale sewage treatment plants. Chem. Eng. J., 2015, 267, 347-354.
[151]
Afkhami, A.; Bahiraei, A.; Madrakian, T. Gold Nanoparticle/multi-Walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater. Sci. Eng. C, 2016, 59, 168-176.
[152]
Arvand, M.; Gholizadeh, T.M.; Zanjanchi, M.A. MWCNTs/ Cu(OH) 2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mater. Sci. Eng. C, 2012, 32(6), 1682-1689.
[153]
Goodarzian, M.; Khalilzade, M.A.; Karimi, F.; Kumar Gupta, V.; Keyvanfard, M.; Bagheri, H.; Fouladgar, M. Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. J. Mol. Liq., 2014, 197, 114-119.
[154]
Mokhtari, A.; Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H. Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples. Sens. Actuators B Chem., 2012, 169, 96-105.
[155]
Sayn, F.; Kr, S. Analysis of diflunisal by electrochemical methods. J. Pharm. Biomed. Anal., 2001, 25(1), 153-163.
[156]
Ramadan, A.A.; Mandil, H.; Hafez, B. Determination of dipyrone in pure form and pharmaceutical formulations by differential pulse polarographic analysis. Asian J. Chem., 2011, 23, 403.
[157]
Teixeira, M.; Marcolino-Junior, L.; Fatibello-Filho, O.; Moraes, F.; Nunes, R. Determination of Analgesics (Dipyrone and Acetaminophen) in pharmaceutical preparations by cyclic voltammetry at a copper(ii) hexacyanoferrate(iii) modified carbon paste electrode. Curr. Anal. Chem., 2009, 5(4), 303-310.
[158]
Teixeira, M.F.S.; Marcolino-júnior, L.H.; Fatibello-filho, O.; Dockal, E.R. Voltammetric determination of dipyrone using a modified carbon-paste electrode., 2004, 15(6), 803-808.
[159]
Martin, C.S.; Teixeira, M.F.S. Electrocatalytic Study of an electrode modified with reactive blue 4 dye covalently immobilized on amine-functionalized silica. J. Solid State Electrochem., 2012, 16(12), 3877-3886.
[160]
Baranowska, I.; Markowski, P.; Gerle, A.; Baranowski, J. Deter-mination of selected drugs in human urine by differential pulse voltammetry technique. Bioelectrochemistry, 2008, 73(1), 5-10.
[161]
Ghica, M.E.; Ferreira, G.M.; Brett, C.M.A. Poly(thionine)-Carbon nanotube modified carbon film electrodes and application to the simultaneous determination of acetaminophen and dipyrone. J. Solid State Electrochem., 2015, 19(9), 2869-2881.
[162]
Muralidharan, B.; Gopu, G.; Vedhi, C.; Manisankar, P. Determination of analgesics in pharmaceutical formulations and urine samples using nano polypyrrole modified glassy carbon electrode. J. Appl. Electrochem., 2009, 39(8), 1177-1184.
[163]
Jain, R.; Shrivastava, S.A. Graphene-Polyaniline-Bi2O3 hybrid film sensor for voltammetric quantification of anti-inflammatory drug etodolac. J. Electrochem. Soc., 2014, 161(4), H189-H194.
[164]
Sabry, S.M.; Mahgoub, H. Voltammetric, spectrofluorimetric and spectrophotometric methods to determine flufenamic acid. J. Pharm. Biomed. Anal., 1999, 21(5), 993-1001.
[165]
Amor-García, I.; Blanco-López, M.C.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Flufenamic acid determination in human serum by adsorptive voltammetry with in situ surfactant modified carbon paste electrodes. Electroanalysis, 2005, 17(17), 1555-1562.
[166]
Santini, A.O.; de Oliveira, J.E.; Pezza, H.R.; Pezza, L. A new potentiometric ibuprofenate ion sensor immobilized in a graphite matrix for determination of ibuprofen in tablets. Microchem. J., 2006, 84(1-2), 44-49.
[167]
Lima, A.B.; Faria, E.O.; Montes, R.H.O.; Cunha, R.R.; Richter, E.M.; Munoz, R.A.A.; dos Santos, W.T.P. Electrochemical oxidation of ibuprofen and its voltammetric determination at a boron-doped diamond electrode. Electroanalysis, 2013, 25(7), 1585-1588.
[168]
Manea, F.; Motoc, S.; Pop, A.; Remes, A.; Schoonman, J. Silver-Functionalized carbon nanofiber composite electrodes for ibuprofen detection. Nanoscale Res. Lett., 2012, 7(1), 331.
[169]
Lima, A.B.; Torres, L.M.F.C.; Guimarães, C.F.R.C.; Verly, R.M.; L.M., da Silva; Carvalho Júnior, Á.D.; W.T.P., dos Santos Simultaneous determination of paracetamol and ibuprofen in pharmaceutical samples by differential pulse voltammetry using a boron-doped diamond electrode. J. Braz. Chem. Soc., 2014, 25(3), 478-483.
[170]
Roushani, M.; Shahdost-Fard, F. Fabrication of an ultrasensitive ibuprofen nanoaptasensor based on covalent attachment of aptamer to electrochemically deposited gold-nanoparticles on glassy carbon electrode. Talanta, 2015, 144, 510-516.
[171]
Amin, S.; Soomro, M.T.; Memon, N.; Solangi, A.R. Sirajuddin; Qureshi, T.; Behzad, A.R. Disposable screen printed graphite electrode for the direct electrochemical determination of ibuprofen in surface water. Environ. Nanotechnol. Monit. Manag., 2014, 1-2, 8-13.
[172]
Radi, A.; Beltagi, A.; Ghoneim, M. Determination of ketorolac in human serum by square wave adsorptive stripping voltammetry. Talanta, 2001, 54(2), 283-289.
[173]
Babaei, A.; Afrasiabi, M.; Babazadeh, M. A glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite as a new sensor for simultaneous determination of acetaminophen and mefenamic acid in pharmaceutical preparations and biological samples. Electroanalysis, 2010, 22(15), 1743-1749.
[174]
Radi, A-E.; Ghoneim, M.; Beltagi, A. Cathodic adsorptive stripping square-wave voltammetry of the anti-inflammatory drug meloxicam. Chem. Pharm. Bull. (Tokyo), 2001, 49(10), 1257-1260.
[175]
Huang, H.; Gao, H.Y.; Zeng, Y.H. Adsorptive voltammetric behavior of meloxicam. Acta Pharm. Sin. B, 2000, 35, 699-704.
[176]
Beltagi, A.M.; Ghoneim, M.M.; Radi, A. Electrochemical reduction of meloxicam at mercury electrode and its determination in tablets. J. Pharm. Biomed. Anal., 2002, 27(5), 795-801.
[177]
Cheemalapati, S.; Devadas, B.; Chen, S-M. Novel Poly-L-Lysine/carboxyl-Group enriched graphene oxide/modified electrode preparation, characterization and applications for the electrochemical determination of meloxicam in pharmaceutical tablets and blood serum. Anal. Methods, 2014, 6(20), 8426-8434.
[178]
Azodi-Deilami, S.; Asadi, E.; Abdouss, M.; Ahmadi, F.; Najafabadi, A.H.; Farzaneh, S. Determination of meloxicam in plasma samples using a highly selective and sensitive voltammetric sensor based on carbon paste electrodes modified by molecularly imprinted polymer nanoparticle-multiwall carbon nanotubes. Anal. Methods, 2015, 7(4), 1280-1292.
[179]
Radi, A.; El Ries, M.A.; El-Anwar, F.; El-Sherif, Z. Electrochemical oxidation of meloxicam and its determination in tablet dosage form. Anal. Lett., 2001, 34(5), 739-748.
[180]
Wang, C.; Shao, X.; Liu, Q.; Qu, Q.; Yang, G.; Hu, X. Differential pulse voltammetric determination of nimesulide in pharmaceutical formulation and human serum at glassy carbon electrode modified by cysteic acid/CNTs based on electrochemical oxidation of l-cysteine. J. Pharm. Biomed. Anal., 2006, 42(2), 237-244.
[181]
Aguilar-Lira, G.Y.; Romero, G.A.Á.; Rojas-Hernández, A.; Páez-Hernández, M.E.; Rodríguez-Ávila, J.A.; Romero-Romo, M.A. voltammetric analysis of naproxen in graphite electrodes and its determination in pharmaceutical samples. Electroanalysis, 2014, 26(7), 1573-1581.
[182]
Afzali, F.; Rounaghi, G.; Zavar, M.H.A.; Ashraf, N. Supramolecular β-Cyclodextrin/Multi-Walled carbon nanotube paste electrode for amperometric detection of naproxen. J. Electrochem. Soc., 2016, 163(3), B56-B61.
[183]
Tashkhourian, J.; Hemmateenejad, B.; Beigizadeh, H.; Hosseini-Sarvari, M.; Razmi, Z. ZnO nanoparticles and multiwalled carbon nanotubes modified carbon paste electrode for determination of naproxen using electrochemical techniques. J. Electroanal. Chem., 2014, 714-715, 103-108.
[184]
Suryanarayanan, V.; Zhang, Y.; Yoshihara, S.; Shirakashi, T. Voltammetric assay of naproxen in pharmaceutical formulations using boron-doped diamond electrode. Electroanalysis, 2005, 17(11), 925-932.
[185]
Ghavami, R.; Navaee, A. Determination of nimesulide in human serum using a glassy carbon electrode modified with sic nanoparticles. Mikrochim. Acta, 2012, 176(3-4), 493-499.
[186]
Furlanetto, S.; Orlandini, S.; Aldini, G.; Gotti, R.; Dreassi, E.; Pinzauti, S. Designing experiments to optimise and validate the adsorptive stripping voltammetric determination of nimesulide. Anal. Chim. Acta, 2000, 413(1-2), 229-239.
[187]
Álvarez-Lueje, A.; Vásquez, P.; Núñez-Vergara, L.J.; Squella, J.A. Voltammetric study of nimesulide and its differential pulse polarographic determination in pharmaceuticals. Electroanalysis, 1997, 9(15), 1209-1213.
[188]
Zhang, J.; Tan, X.; Zhao, D.; Tan, S.; Huang, Z.; Mi, Y.; Huang, Z. Study of nimesulide and its determination using multiwalled carbon nanotubes modified glassy carbon electrodes. Electrochim. Acta, 2010, 55(7), 2522-2526.
[189]
El-Sayed, G.O.; Yasin, S.A.; Ries, M.A. El; El-Badawy, A.A. Adsorptive voltammetric determination of nimesulide at glassy carbon electrode. Lat. Am. J. Pharm. Am. J. Pharm, 2009, 28(5), 741-746.
[190]
Asadpour-zeynali, K.; Majidi, M.R.; Zarifi, M. Carbon ceramic electrode incorporated with zeolite zsm-5 for determination of piroxicam. Inst. Pet, 2010, 8(1), 155-162.
[191]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-Hydroxyphenyl)-3,5-dinitro-benzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[192]
Abbaspour, A.; Mirzajani, R. Electrochemical monitoring of piroxicam in different pharmaceutical forms with multi-walled carbon nanotubes paste electrode. J. Pharm. Biomed. Anal., 2007, 44(1), 41-48.
[193]
Gholivand, M.B.; Karimian, N. Development of piroxicam sensor based on molecular imprinted polymer-modified carbon paste electrode. Mater. Sci. Eng. C, 2011, 31(8), 1844-1851.
[194]
Wong, A.; Santos, A.M.; Fatibello-Filho, O. Determination of piroxicam and nimesulide using an electrochemical sensor based on reduced graphene oxide and PEDOT:PSS. J. Electroanal. Chem., 2017, 799, 547-555.
[195]
Shahrokhian, S.; Jokar, E.; Ghalkhani, M. Electrochemical determination of piroxicam on the surface of pyrolytic graphite electrode modified with a film of carbon nanoparticle-chitosan. Mikrochim. Acta, 2010, 170(1), 141-146.
[196]
Shaikh, T. uddin, S.J.; Talpur, F.N.; Khaskeli, A.R.; Agheem, M. H.; Shah, M.R.; Sherazi, T.H.; Siddiqui, S. Ultrasensitive determination of piroxicam at diflunisal-derived gold nanoparticle-modified glassy carbon electrode. J. Electron. Mater., 2017, 46(10), 5957-5966.
[197]
Babaei, A.; Sohrabi, M.; Afrasiabi, M. A sensitive simultaneous determination of epinephrine and piroxicam using a glassy carbon electrode modified with a nickel hydroxide nanoparticles/multi-walled carbon nanotubes composite. Electroanalysis, 2012, 24(12), 2387-2394.
[198]
Babaei, A.; Afrasiabi, M. A glassy carbon electrode modified with MCM-41/nickel hydroxide nanoparticle/multiwalled carbon nanotube composite as a sensor for the simultaneous determination of dopamine, piroxicam, and cefixime. Ionics (Kiel), 2015, 21(6), 1731-1740.
[199]
Norouzi, P.; Ganjali, M.R.; Labbafi, S.; Mohammadi, A. Subsecond FFT-Adsorptive voltammetric technique as a novel method for subnano level monitoring of piroxicam in its tablets and bulk form at au microelectrode in flowing solutions. Anal. Lett., 2007, 40(4), 747-762.
[200]
Norouzi, P.; Ghaheri, N. β-Cyclodextrine modified carbon paste electrode as a selective sensor for determination of piroxicam using flow injection cyclic voltammerty analytical & bioanalytical electrochemistry. Anal. Bioanal. Electrochem. Anal. Bioanal. Electrochem, 2011, 3(1), 87-101.
[201]
Karim-Nezhad, G.; Khorablou, Z.; Dorraji, P. Applications of polymer and nanoscale carbon-based materials in piroxicam sensing and detection. Sens. Lett., 2017, 15(3), 282-288.
[202]
Attia, A.K.; Rashed, N.S.; Fouad, M.M.; Wasfy, R.A. Electrochemical determination of tolfenamic acid in bulk, tablets and urine. Anal. Bioanal. Electrochem, 2017, 9(4), 453-468.
[203]
Xuecai, T.; Yaohua, L.; Shaowei, W. Adsorptive stripping voltammetry of tolmetin. Chin. J. Anal. Chem., 1998, 4, 1-17.