Electroanalysis of Tricyclic Psychotropic Drugs using Modified Electrodes

Page: [423 - 442] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Background: Tricyclic psychotropic drugs are defined as a tricyclic rings of the dibenzazepine group with the presence of sulfur and nitrogen atoms. They have been prescribed for antidepressive therapy over the years. Due to their medical importance, many analytical methods have been developed for their monitoring. However, benefits of electrochemical techniques such as costeffectiveness, fast, easy operation and non-destructiveness make them appropriate analytical methods for drug assays. Electrochemical determinations of pharmaceuticals require suitable working electrodes. During years, many electrodes are modified by a variety of modifiers and several sensors were developed based on them. In this regard, nanomaterials, due to their remarkable properties, are one of the most important choices.

Objective: Here, the application of electroanalytical methods in the determination of electroactive tricyclic psychotropic drugs will be reviewed and the nanomaterials which are used for improvements of the working electrodes will be considered.

Keywords: Electroanalytical methods, electrode modification, nanomaterials, sensors, tricyclic psychotropic drugs, dibenzazepine group.

Graphical Abstract

[1]
Available at: http://www.who.int/mediacentre/factsheets/fs396/en/ (Accessed Jan 2018).
[2]
Esteve-Romero, J.; Albiol-Chiva, J.; Peris-Vicente, J. A review on development of analytical methods to determine monitorable drugs in serum and urine by micellar liquid chromatography using direct injection. Anal. Chim. Acta, 2016, 926, 1-16.
[3]
Maksimova, T.V.; Pleteneva, T.V.; Salomatin, E.M.; Kozina, E.A.; Barsegyan, S.S. The determination of amitriptyline and its metabolite, nortriptyline, in the biological objects of the corpse by the high-performance liquid chromatography technique. Sud. Med. Ekspert., 2015, 58(1), 31-34.
[4]
Zhang, L.; Wu, P.; Jin, Q.; Hu, Z.; Wang, J. Multi-residue analysis of sedative drugs in human plasma by ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1072, 305-314.
[5]
Xu, R.; Lee, H.K. Application of electro-enhanced solid phase microextraction combined with gas chromatography-mass spectrometry for the determination of tricyclic antidepressants in environmental water samples. J. Chromatogr. A, 2014, 1350, 15-22.
[6]
Nozawa, H.; Minakata, K.; Yamagishi, I.; Hasegawa, K.; Suzuki, M.; Gonmori, K.; Suzuki, O.; Watanabe, K. Simultaneous determination of cyclic antidepressants and their related drugs and the estimation of new metabolites in human whole blood and urine by MALDI-QTOF-mass spectrometry. Forensic Toxicol., 2016, 34(2), 244-255.
[7]
Farnoudian-Habibi, A.; Massoumi, B.; Jaymand, M. A novel strategy for spectrophotometric simultaneous determination of amitriptyline and nortriptyline based on derivation with a quinonoid compound in serum samples. Spectrochim.Acta Part A. Mol. Biomol. Spectrosc., 2016, 168, 235-243.
[8]
Taha, E.A.; Soliman, S.M.; Abdellatef, H.E.; Ayad, M.M. Colorimetric methods for the determination of some tricyclic antidepressant drugs in their pure and dosage forms. Mikrochim. Acta, 2002, 140(3-4), 175-182.
[9]
Krieg, A.K.; Gauglitz, G. Ultrasensitive label-free immunoassay for optical determination of amitriptyline and related tricyclic antidepressants in human serum. Anal. Chem., 2015, 87(17), 8845-8850.
[10]
Carroll, B.J. Mukhopadhyay, S.; Feinberg, M.Clinical Pharmacology in Psychiatry: Neuroleptic and Antidepressant Research, Palgrave; Macmillan, 2016, pp. 19-25.
[11]
Banitaba, M.H.; Hosseiny Davarani, S.S.; Ahmar, H.; Movahed, S.K. Application of a new fiber coating based on electrochemically reduced graphene oxide for the cold-fiber headspace solid-phase microextraction of tricyclic antidepressants. J. Sep. Sci., 2014, 37(9-10), 1162-1169.
[12]
Santos, M.G.; Tavares, I.M.C.; Barbosa, A.F.; Bettini, J.; Figueiredo, E.C. Analysis of tricyclic antidepressants in human plasma using online-restricted access molecularly imprinted solid phase extraction followed by direct mass spectrometry identification/quantification. Talanta, 2017, 163, 8-16.
[13]
Madej, K.; Woźniakiewicz, M.; Karabinowska, K. Capillary electrophoresis screening method for six tricyclic antidepressants in human serum. Acta Pol. Pharm. Drug Res., 2012, 69(6), 1023-1029.
[14]
Beitollahi, H.; Movlaee, K.; Ganjali, M.R.; Norouzi, P. A sensitive graphene and ethyl 2-(4-ferrocenyl-[1,2,3]triazol-1-yl) acetate modified carbon paste electrode for the concurrent determination of isoproterenol, acetaminophen, tryptophan and theophylline in human biological fluids. J. Electroanal. Chem., 2017, 799, 576-582.
[15]
Dezfuli, A.S.; Ganjali, M.R.; Jafari, H.; Faridbod, F. Samaria/reduced graphene oxide nanocomposites; sonochemical synthesis and electrochemical evaluation. J. Mater. Sci. Mater. Electron., 2017, 28(8), 6176-6185.
[16]
Pur, M.R.K.; Hosseini, M.; Faridbod, F.; Ganjali, M.R.; Hosseinkhani, S. Early detection of cell apoptosis by a cytochrome C label-Free electrochemiluminescence aptasensor. Sens. Actuators B Chem., 2018, 257, 87-95.
[17]
Movlaee, K.; Beitollahi, H.; Ganjali, M.R.; Norouzi, P. Electrochemical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a graphene and ferrocene modified carbon paste electrode. MicrochimActa, 2017, 184(9), 3281-3289.
[18]
Movlaee, K.; Beitollahi, H.; Ganjali, M.R.; Norouzi, P. Strategy for simultaneous determination of droxidopa, acetaminophen and tyrosine using carbon paste electrode modified with graphene and ethyl 2-(4-ferrocenyl-[1,2,3]triazol-1-yl) acetate. J. Electrochem. Soc., 2017, 164(6), H407-H412.
[19]
Dezfuli, A.S.; Ganjali, M.R.; Norouzi, P.; Faridbod, F. Facile sonochemical synthesis and electrochemical investigation of ceria/graphene nanocomposites. J. Mater. Chem. B, 2015, 3(11), 2362-2370.
[20]
Sanati, A.L.; Faridbod, F.; Ganjali, M.R. Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J. Mol. Liq., 2017, 241, 316-320.
[21]
Ganjali, M.R.; Rezapour, M.; Torkestani, S.K.; Rashedi, H.; Norouzi, P. Long-Term stable fabrication of a NanocompositeTm(III) sensor containing Nanographene/Nanosilica /RTIL/Ionophore. Int. J. Electrochem. Sci., 2011, 6(7), 2323-2332.
[22]
Jafari, H.; Ganjali, M.R.; Dezfuli, A.S.; Faridbod, F. Long term determination of dopamine and uric acid in the presence of ascorbic acid using ytterbia/reduced graphene oxide nanocomposite prepared through a sonochemical route. Appl. Surf. Sci., 2018, 427, 496-506.
[23]
Movlaee, K.; Ganjali, M.R.; Aghazadeh, M.; Beitollahi, H.; Hosseini, M.; Shahabi, S.; Norouzi, P. Graphene nanocomposite modified glassy carbon electrode: As a sensing platform for simultaneous determination of methyldopa and uric acid. Int. J. Electrochem. Sci., 2017, 12(1), 305-315.
[24]
Naderi, H.R.; Ganjali, M.R.; Dezfuli, A.S.; Norouzi, P. Sonochemical preparation of a ytterbium oxide/reduced graphene oxide nanocomposite for supercapacitors with enhanced capacitive performance. RSC Advances, 2016, 6(56), 51211-51220.
[25]
Naderi, H.R.; Norouzi, P.; Ganjali, M.R. Electrochemical study of a novel high performance supercapacitor based on MnO2/nitrogen-doped graphene nanocomposite. Appl. Surf. Sci., 2016, 366, 552-560.
[26]
Naderi, H.R.; Norouzi, P.; Ganjali, M.R.; Gholipour-Ranjbar, H. Synthesis of a novel magnetite/nitrogen-doped reduced graphene oxide nanocomposite as high performance supercapacitor. Powder Technol., 2016, 302, 298-308.
[27]
Norouzi, P.; Ganjali, H.; Larijani, B.; Ganjali, M.R.; Faridbod, F.; Zamani, H.A. A glucose biosensor based on nanographene and ZnO nanoparticles using fft continuous cyclic voltammetry. Int. J. Electrochem. Sci., 2011, 6(11), 5189-5199.
[28]
Norouzi, P.; Larijani, B.; Ganjali, M.R. Ochratoxin A sensor based on nanocomposite hybrid film of ionic liquid-graphene nano-sheets using coulometric FFT cyclic voltammetry. Int. J. Electrochem. Sci., 2012, 7(8), 7313-7324.
[29]
Shoghi-Kalkhoran, M.; Faridbod, F.; Norouzi, P.; Ganjali, M.R. Praseodymium molybdate nanoplates/reduced graphene oxide nanocomposite based electrode for simultaneous electrochemical determination of entacapone, levodopa and carbidopa. J. Mater. Sci. Mater. Electron., 2018, 29, 20-31.
[30]
Norouzi, P.; Pirali-Hamedan, M.; Ganjali, M.R. Candesartan cilexetil determination by electrode modified with hybrid film of ionic liquid- graphene nanosheets-silicon carbide nanoparticle using continuous coulometricfft cyclic voltammetry. Int. J. Electrochem. Sci., 2013, 8(2), 2023-2033.
[31]
Naderi, H.R.; Norouzi, P.; Ganjali, M.R.; Gholipour-Ranjbar, H. Sonochemical synthesis of porous nanowall Co3O4/nitrogen-doped reduced graphene oxide as an efficient electrode material for supercapacitors. J. Mater. Sci. Mater. Electron., 2017, 28(19), 14504-14514.
[32]
Naderi, H.R.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ganjali, M.R. Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Appl. Surf. Sci., 2017, 423, 1025-1034.
[33]
Jafari, S.; Faridbod, F.; Norouzi, P.; Dezfuli, A.S.; Ajloo, D.; Mohammadipanah, F.; Ganjali, M.R. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry. Anal. Chim. Acta, 2015, 895, 80-88.
[34]
Rashedi, H.; Norouzi, P.; Ganjali, M.R. Determination of alfuzosin by hybrid of ionic liquid-graphene nano-composite film using coulometric FFT linear sweep voltammetry. Int. J. Electrochem. Sci., 2013, 8(2), 2479-2490.
[35]
Ebrahimi, M.; Nikoofard, H.; Faridbod, F.; Dezfuli, A.S.; Beigizadeh, H.; Norouzi, P. A ceria NPs decorated graphene nano-composite sensor for sulfadiazine determination in pharmaceutical formulation. J. Mater. Sci. Mater. Electron., 2017, 1, 1-9.
[36]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P. Electrochemical nanostructure platform for the analysis of glutathione in the presence of uric acid and tryptophan. Anal. Methods, 2017, 9(44), 6228-6234.
[37]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. Simultaneous determination of amaranth and nitrite in foodstuffs via electrochemical sensor based on carbon paste electrode modified with CuO/SWCNTs and room temperature ionic liquid. Food Anal. Methods, 2017, 10(11), 3773-3780.
[38]
Karimi-Maleh, H.; Salehi, M.; Faghani, F. Application of novel Ni(II) complex and ZrO2 nanoparticle as mediators for electrocatalytic determination of N-acetylcysteine in drug samples. J. Food Drug Anal., 2017, 25(4), 1000-1007.
[39]
Bananezhad, A.; Ganjali, M.R.; Karimi-Maleh, H.; Norouzi, P. Fabrication of amplified nanostructure based sensor for analysis of N-Acetylcysteine in presence of high concentration folic acid. Int. J. Electrochem. Sci., 2017, 12, 8045-8058.
[40]
Pur, M.R.K.; Hosseini, M.; Faridbod, F.; Ganjali, M.R. Highly sensitive label-free electrochemiluminescence aptasensor for early detection of myoglobin, a biomarker for myocardial infarction. Mikrochim. Acta, 2017, 184(9), 3529-3537.
[41]
Norouzi, P.; Haji-Hashemi, H.; Larijani, B.; Aghazadeh, M.; Pourbasheer, E.; Ganjali, M.R. Application of new advanced electrochemical methods combine with nano-based materials sensor in drugs analysis. Curr. Anal. Chem., 2017, 13(1), 70-80.
[42]
Jahani, S.; Beitollahi, H. Carbon paste electrode modified with TiO2/Fe3O4 /MWCNT nanocomposite and ionic liquids as a voltammetric sensor for sensitive ascorbic acid and tryptophan detection. Anal. Bioanal. Electrochem., 2016, 8, 158-168.
[43]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.R. Moradi, Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[44]
Najafi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem., 2014, 158, 125-131.
[45]
Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor. Biosens. Bioelectron., 2016, 86, 879-884.
[46]
Lamani, S.D.; Teradale, A.B.; Unki, S.N.; Nandibewoor, S.T. Electrochemical Oxidation and Determination of Methocarbamol at Multi-walled Carbon Nanotubes-Modified Glassy Carbon Electrode. Anal. Bioanal. Electrochem., 2016, 8, 304-317.
[47]
Maulidiyah, Tribawono. D. S.; Wibowo, D.; Nurdin, M. Electrochemical Profile Degradation of Amino Acid by Flow System using TiO2/Ti Nanotubes Electrode. Anal. Bioanal. Electrochem., 2016, 8, 761-776.
[48]
Balooei, M.; Raoof, J.B.; Chekin, F.; Ojani, R. Novel Sensor Based on 3-Mercaptopropyltrimethoxysilane Functionalized Carbon Nanotubes Modified Glassy Carbon Electrode for Electrochemical Determination of Cefixime. Anal. Bioanal. Electrochem., 2017, 9, 266-276.
[49]
Babaei, A. Nanomolar Simultaneous determination of amlodipine and uric acid at the novel carbon paste electrode modified with magnetic carbon nanotubes/diatomite earth composite. Anal. Bioanal. Electrochem., 2016, 8, 489-504.
[50]
Venkataprasad, G.; Reddy, T.M.; Shaikshavali, P.; Gopal, P.; Narayana, P.V. Electrochemical determination of 3,5-dinitrobenzoic acid in the presence and absence of ctab at multi-walled carbon nanotubes modified glassy carbon electrode: A Voltammetric Study. Anal. Bioanal. Electrochem., 2017, 9, 400-411.
[51]
Jahani, S.; Beitollahi, H. Carbon paste electrode modified with TiO2/Fe3O4 /MWCNT nanocomposite and ionic liquids as a voltammetric sensor for sensitive ascorbic acid and tryptophan detection. Anal. Bioanal. Electrochem., 2016, 8, 158-168.
[52]
Leucht, C.; Huhn, M.; Leucht, S. Amitriptyline versus placebo for major depressive disorder. Cochrane Database Syst. Rev., 2012, 12CD009138
[53]
Li, H.; Sumarah, M.W.; Topp, E. Persistence of the tricyclic antidepressant drugs amitriptyline and nortriptyline in agriculture soils. Environ. Toxicol. Chem., 2013, 32, 509-516.
[54]
Duarte, E.H.; Dos Santos, W.P.; Hudari, F.F.; Bott Neto, J.L.; Sartori, E.R.; Dallantonia, L.H.; Pereira, A.C.; Tarley, C.R. A highly improved method for sensitive determination of amitriptyline in pharmaceutical formulations using an unmodified carbon nanotube electrode in the presence of sulfuric acid. Talanta, 2014, 127, 26-32.
[55]
Bunaciu, A.A.; Ionescu, M.S.; Plivan, C.; Coofre, V.V. Amitriptyline-selective plastic membrane sensors and their pharmaceutical applications. Analyst, 1991, 116(3), 239-243.
[56]
Biryol, I.; Uslu, B.; Küçükyavuz, Z. Voltammetric determination of imipramine hydrochloride and amitriptyline hydrochloride using a polymer-modified carbon paste electrode. J. Pharm. Biomed. Anal., 1996, 15(3), 371-381.
[57]
De Toledo, R.A.; Mazo, L.H.; Dos Santos, M.C.; Honório, K.M.; Da Silva, A.B.F.; Cavalheiro, É.T.G. Electrochemical and quantum-chemical studies of the oxidation of the antidepressant amitriptyline. Quim. Nova, 2005, 28(3), 456-461.
[58]
Marco, J.P.; Borges, K.B.; Tarley, C.R.T.; Ribeiro, E.S.; Pereira, A.C. Development and application of an electrochemical biosensor based on carbon paste and silica modified with niobium oxide, alumina and DNA (SiO 2/Al2O3/Nb2O5/DNA) for amitriptyline determination. J. Electroanal. Chem. , 2013, 704, 159-168.
[59]
Eslami, E.; Farjami, F. AberoomandAzar, P.; SaberTehrani, M. Adsorptive stripping voltammetric determination of imipramine and amitriptiline at a nanoclay composite carbon ionic liquid electrode. Electroanalysis, 2014, 26(2), 424-431.
[60]
Zad, Z.R.; Davarani, S.S.H.; Taheri, A.R.; Bide, Y. Highly selective determination of amitriptyline using Nafion-AuNPs@branched polyethyleneimine-derived carbon hollow spheres in pharmaceutical drugs and biological fluids. Biosens. Bioelectron., 2016, 86, 616-622.
[61]
Jain, R.; Radhapyari, K. Cathodic adsorptive stripping voltammetric behavior and determination of tricyclic antidepressant drug nortriptyline hydrochloride in bulk form and pharmaceutical formulation. Organic and Biological Electrochemistry Symposium in Honor of Yoshihiro Matsumura - 213th Meeting of the Electrochemical Society, 2008, pp. 21-46.Phoenix, AZ
[62]
Jain, R.; Dwivedi, A.; Mishra, R. Adsorptive stripping voltammetric behavior of nortriptyline hydrochloride and its determination in surfactant media. Langmuir, 2009, 25(17), 10364-10369.
[63]
de Toledo, R.A.; Santos, M.C.; Suffredini, H.B.; Homem-de-Mello, P.; Honorio, K.M.; Mazo, L.H. DFT and electrochemical studies on nortriptyline oxidation sites. J. Mol. Model., 2009, 15(8), 945-952.
[64]
Xu, X.; Huang, F.; Zhou, G.; Zhang, S.; Kong, J. A novel electrochemical sensor for probing doxepin created on a glassy carbon electrode modified with poly(4-amino- benzoic acid)/multi-walled carbon nanotubes composite film. Sensors, 2010, 10(9), 8398-8410.
[65]
Delini-Stula, A.; Mikkelsen, H.; Angst, J. Therapeutic efficacy of antidepressants in agitated anxious depression--a meta-analysis of moclobemide studies. J. Affect. Disord., 1995, 35, 21-30.
[66]
Tatsumi, M.; Groshan, K.; Blakely, R.D.; Richelson, E. Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur. J. Pharmacol., 1997, 340(2-3), 249-258.
[67]
Khodari, M.; Mansour, H.; Salah El-Din, H. Preconcentration and determination of the tricyclic antidepressant drug - Imipramine at modified carbon paste electrode. Anal. Lett., 1997, 30(10), 1909-1921.
[68]
Ferancová, A.; Korgová, E.; Mikó, R.; Labuda, J. Determination of tricyclic antidepressants using a carbon paste electrode modified with β-cyclodextrin. J. Electroanal. Chem., 2000, 492(1), 74-77.
[69]
Ferancová, A.; Korgová, E.; Buzinkaiová, T.; Kutner, W.; Štěpánek, I.; Labuda, J. Electrochemical sensors using screen-printed carbon electrode assemblies modified with the β-cyclodextrin or carboxymethylated β-cyclodextrin polymer films for determination of tricyclic antidepressive drugs. Anal. Chim. Acta, 2001, 447(1-2), 47-54.
[70]
De Toledo, R.A.; Santos, M.C.; Honório, K.M.; Da Silva, A.B.F.; Cavalheiro, E.T.G.; Mazo, L.H. Use of graphite polyurethane composite electrode for imipramine oxidation - Mechanism proposal and electroanalytical determination. Anal. Lett., 2006, 39(3), 507-520.
[71]
Xu, X.; Zhou, G.; Li, H.; Liu, Q.; Zhang, S.; Kong, J. A novel molecularly imprinted sensor for selectively probing imipramine created on ITO electrodes modified by Au nanoparticles. Talanta, 2009, 78(1), 26-32.
[72]
Sanghavi, B.J.; Srivastava, A.K. Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst , 2013, 138(5), 1395-1404.
[73]
Lakshmi, A.; Vedhi, C. Synthesis and characterization of poly (3-hexylthiophene) and used as modified electrode for determination of antidepressants in pharmaceutical formulations and urine samples. J. Electrochem. Soc., 2013, 160(4), H252-H7.
[74]
Safavi, A.; Banazadeh, A.; Sedaghati, F. Synthesis of palladium nanoparticles on organically modified silica: Application to design of a solid-state electrochemiluminescence sensor for highly sensitive determination of imipramine. Anal. Chim. Acta, 2013, 796, 115-121.
[75]
De Toledo, R.A.; Santos, M.C.; Shim, H.; Mazo, L.H. Electroanalytical determination of imipramine in reconstituted serum with a graphite-polyurethane composite electrode. Int. J. Electrochem. Sci., 2015, 10(9), 6975-6985.
[76]
Dos Santos Neto, A.G.; de Sousa, C.S.; da Silva Freires, A.; Silva, S.M.; Zanin, H.; Damos, F.S.; Silva Luz, R.D.C. Electrochemical sensor for detection of imipramine antidepressant at low potential based on oxidized carbon nanotubes, ferrocenecarboxylic acid, and cyclodextrin: application in psychotropic drugs and urine samples. J. Solid State Electrochem., 2017, 1, 1-10.
[77]
Shishehbore, M.R.; Vafai-Shahi, S.; Shefaie, F.; Meshayekhee, H.A. Differential pulse voltammetry technique for the determination of imipramine, dopamine and norepinephrine using a hydroquinone derivative multi-wall carbon nano-tube carbon paste electrode. Orient. J. Chem., 2017, 33(2), 1017-1020.
[78]
Cincotto, F.H.; Golinelli, D.L.C.; Machado, S.A.S.; Moraes, F.C. Electrochemical sensor based on reduced graphene oxide modified with palladium nanoparticles for determination of desipramine in urine samples. Sens. Actuators B Chem., 2017, 239, 488-493.
[79]
Wang, J.; Golden, T.; Ozsoz, M.; Lu, Z. Sensitive and selective voltammetric measurements of tricyclic antidepressants using lipid-coated electrodes. J. Electroanal. Chem. Interfacial Electrochem., 1990, 298(3), 217-226.
[80]
Jin, G.Y.; Huang, F.; Kong, J.L. Sensitive determination of clomipramine at poly-ABSA/Pt nano-clusters modified glassy carbon electrode. Anal. Lett., 2007, 40(18), 3392-3404.
[81]
Huang, F.; Qu, S.; Zhang, S.; Liu, B.; Kong, J. Sensitive voltammetric detection of clomipramine at 16-mercapto- hexadecanoic acid self-assembled monolayer modified gold electrode. Mikrochim. Acta, 2008, 161(1-2), 149-155.
[82]
Khodari, M. Voltammetric determination of the antidepressant trimipramine at a lipid‐modified carbon paste electrode. Electroanalysis, 1993, 5(5-6), 521-523.
[83]
Leikin, J.B.; Paloucek, F.P. Poisoning and Toxicology Handbook, 4th ed; Informa Health Care: New York, 2008.
[84]
Nevitt, S.J.; Marson, A.G.; Weston, J.; Tudur Smith, C. Carbamazepine versus phenytoin monotherapy for epilepsy: An individual participant data review. Cochrane Database Syst. Rev., 2017, 2CD001911
[85]
Doods, L.J. Drugs in use: Clinical case studies for pharmacists, 4th ed; Pharmaceutical Press: London, 2010, p. 357.
[86]
Stamatelatou, K.; Frouda, C.; Fountoulakis, M.; Drillia, P.; Kornaros, M.; Lyberatos, G. Pharmaceuticals and health care products in wastewater effluents: the example of carbamazepine. Water Supply, 2003, 3, 131.
[87]
Lavanya, N.; Sekar, C.; Ficarra, S.; Tellone, E.; Bonavita, A.; Leonardi, S.G.; Neri, G. A novel disposable electrochemical sensor for determination of carbamazepine based on Fe doped SnO2 nanoparticles modified screen-printed carbon electrode. Mater. Sci. Eng. C, 2016, 62, 53-60.
[88]
Veiga, A.; Dordio, A.; Carvalho, A.J.P.; Teixeira, D.M.; Teixeira, J.G. Ultra-sensitive voltammetric sensor for trace analysis of carbamazepine. Anal. Chim. Acta, 2010, 674(2), 182-189.
[89]
Kalanur, S.S.; Jaldappagari, S.; Balakrishnan, S. Enhanced electrochemical response of carbamazepine at a nano-structured sensing film of fullerene-C60 and its analytical applications. Electrochim. Acta, 2011, 56(15), 5295-5301.
[90]
Pruneanu, S.; Pogacean, F.; Biris, A.R.; Ardelean, S.; Canpean, V.; Blanita, G.; Dervishi, E.; Biris, A.S. Novel graphene-gold nano-particle modified electrodes for the high sensitivity electrochemical spectroscopy detection and analysis of carbamazepine. J. Phys. Chem. C, 2011, 115(47), 23387-23394.
[91]
Liu, L.H.; Duan, C.Q.; Gao, Z.N. Electrochemical behavior and electrochemical determination of carbamazepine at an ionic liquid modified carbon paste electrode in the presence of sodium dodecyl sulfate. J. Serb. Chem. Soc., 2012, 77(4), 483-496.
[92]
Unnikrishnan, B.; Mani, V.; Chen, S.M. Highly sensitive amperometric sensor for carbamazepine determination based on electrochemically reduced graphene oxide-single-walled carbon nanotube composite film. Sens. Actuators B Chem., 2012, 173, 274-280.
[93]
Maashhadizadeh, M.H.; Refahati, R.; Amereh, E. Ag/TiO2 nanocomposite modified carbon paste electrode used to differential pulse voltammetric determination of carbamazepine. Anal. Bioanal. Electrochem., 2013, 5(3), 270-282.
[94]
Pruneanu, S.; Pogacean, F.; Biris, A.R.; Coros, M.; Watanabe, F.; Dervishi, E.; Biris, A.S. Electro-catalytic properties of graphene composites containing gold or silver nanoparticles. Electrochim. Acta, 2013, 89, 246-252.
[95]
Trišović, N.P.; Božić, B.D.; Petrovi, S.D.; Tadić, S.J.; Ivić, M.L.A. Electrochemical characterization and determination of carbama-zepine as pharmaceutical standard and tablet content on gold electrode. Hem. Ind., 2014, 68(2), 207-212.
[96]
Daneshvar, L.; Rounaghi, G. E’Shaghi, Z.; Chamsaz, M.; Tarahomi, S. Electrochemical determination of carbamazepin in the presence of paracetamol using a carbon ionic liquid paste electrode modified with a three-dimensional graphene/MWCNT hybrid composite film. J. Mol. Liq., 2016, 215, 316-322.
[97]
Daneshvar, L.; Rounaghi, G.H. An electrochemical sensing platform for carbamazepine determination based on trimetallic Au-Ag-Pd dendritic nanopatricles, supramolecular β-cyclodextrin and [bmim] NTF2 ionic liquids. J. Electrochem. Soc., 2017, 164(6), B177-B8.
[98]
Essali, A.; Al-Haj Haasan, N.; Li, C.; Rathbone, J. Clozapine versus typical neuroleptic medication for schizophrenia. Cochrane Database Syst. Rev., 2009, 1CD000059
[99]
Siskind, D.; McCartney, L.; Goldschlager, R.; Kisely, S. Clozapine vs. first- and second-generation antipsychotics in treatment-refractory schizophrenia: systematic review and meta-analysis. British J. Psychiatr. J. Mental Sci., 2016, 209, 385-392.
[100]
Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kulkarni, R.M. An electrochemical sensor for clozapine at ruthenium doped TiO2 nanoparticles modified electrode. Sens. Actuators B Chem., 2017, 247, 858-867.
[101]
Kauffmann, J.M.; Laudet, A.; Viré, J.C.; Patriarche, G.J.; Christian, G.D. Voltammetric oxidation of pharmaceutical organic compounds at a new modified electrode: The aluminum graphite spray-covered electrode. Microchem. J., 1983, 28(3), 357-362.
[102]
Hernández, L.; González, E.; Hernández, P. Determination of clozapine by adsorptive anodic voltammetry using glassy carbon and modified carbon paste electrodes. Analyst, 1988, 113(11), 1715-1718.
[103]
Farhadi, K.; Yamchi, R.H.; Sabzi, R. Electrochemical study of interaction between clozapine and DNA and its analytical application. Anal. Lett., 2007, 40(9), 1750-1762.
[104]
Huang, F.; Qu, S.; Zhang, S.; Liu, B.; Kong, J. Sensitive detection of clozapine using a gold electrode modified with 16-mercaptohexadecanoic acid self-assembled monolayer. Talanta, 2007, 72(2), 457-462.
[105]
Arvand, M.; Shiraz, M.G. Voltammetric determination of clozapine in pharmaceutical formulations and biological fluids using an in situ surfactant-modified carbon ionic liquid electrode. Electroanalysis, 2012, 24(3), 683-690.
[106]
Shahrokhian, S.; Kamalzadeh, Z.; Hamzehloei, A. Electrochemical determination of clozapine on MWCNTs/new coccine doped ppy modified GCE: An experimental design approach. Bioelectrochemistry, 2013, 90, 36-43.
[107]
Kim, E.; Chocron, S.E.; Ben-Yoav, H.; Winkler, T.E.; Liu, Y.; Glassman, M. Programmable “semismart” sensor: Relevance to monitoring antipsychotics. Adv. Funct. Mater., 2015, 25(14), 2156-2165.
[108]
Fathi, M.R.; Almasifar, D. Electrochemical sensor for square wave voltammetric determination of clozapine by glassy carbon electrode modified by WO3 nanoparticles. IEEE Sens. J., 2017, 17(18), 6069-6076.
[109]
Kang, M.; Kim, E.; Winkler, T.E.; Banis, G.; Liu, Y.; Kitchen, C.A. Reliable clinical serum analysis with reusable electrochemical sensor: Toward point-of-care measurement of the antipsychotic medication clozapine. Biosens. Bioelectron., 2017, 95, 55-59.
[110]
Tammari, E.; Nezhadali, A.; Lotfi, S.; Veisi, H. Fabrication of an electrochemical sensor based on magnetic nanocomposite Fe3O4/β-alanine/Pd modified glassy carbon electrode for determination of nanomolar level of clozapine in biological model and pharmaceutical samples. Sens. Actuators B Chem., 2017, 241, 879-886.
[111]
Shahrokhian, S.; Azimzadeh, M.; Hosseini, P. Modification of a glassy carbon electrode with a bilayer of multiwalled carbon nanotube/benzene disulfonate-doped polypyrrole: Application to sensitive voltammetric determination of olanzapine. RSC Advances, 2014, 4(76), 40553-40560.
[112]
Merli, D.; Dondi, D.; Pesavento, M.; Profumo, A. Electrochemistry of olanzapine and risperidone at carbon nanotubes modified gold electrode through classical and DFT approaches. J. Electroanal. Chem., 2012, 683, 103-111.
[113]
Arvand, M.; Palizkar, B. Development of a modified electrode with amine-functionalized TiO 2/multi-walled carbon nanotubes nanocomposite for electrochemical sensing of the atypical neuroleptic drug olanzapine. Mater. Sci. Eng. C, 2013, 33(8), 4876-4883.
[114]
Ahmed, H.M.; Mohamed, M.A.; Salem, W.M. New voltammetric analysis of olanzapine in tablets and human urine samples using a modified carbon paste sensor electrode incorporating gold nanoparticles and glutamine in a micellar medium. Anal. Methods, 2015, 7(2), 581-589.
[115]
Arvand, M.; Orangpour, S.; Ghodsi, N. Differential pulse stripping voltammetric determination of the antipsychotic medication olanzapine at a magnetic nano-composite with a core/shell structure. RSC Advances, 2015, 5(57), 46095-46103.
[116]
Mohammadi-Behzad, L.; Gholivand, M.B.; Shamsipur, M.; Gholivand, K.; Barati, A.; Gholami, A. Highly sensitive voltamme-tric sensor based on immobilization of bisphosphoramidate-derivative and quantum dots onto multi-walled carbon nanotubes modified gold electrode for the electrocatalytic determination of olanzapine. Mater. Sci. Eng. C, 2016, 60, 67-77.
[117]
Nigović, B.; Spajić, J. A novel electrochemical sensor for assaying of antipsychotic drug quetiapine. Talanta, 2011, 86(1), 393-399.
[118]
Nigović, B.; Mornar, A.; Sertić, M. Graphene nanocomposite modified glassy carbon electrode for voltammetric determination of the antipsychotic quetiapine. Mikrochim. Acta, 2016, 183(4), 1459-1467.
[119]
Ławrywianiec, M.; Smajdor, J.; Paczosa-Bator, B.; Piech, R. Application of a glassy carbon electrode modified with carbon black nanoparticles for highly sensitive voltammetric determination of quetiapine. Anal. Methods, 2017, 9(47), 6662-6668.