Phosphazene Base-Catalyzed Double Michael Addition: Stereoselective Synthesis of Cyclohexanones

Page: [76 - 80] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Phosphazene bases have been utilized as efficient organocatalysts to catalyze the double Michael additions of divinyl ketones with active methylenes to afford functionalized cyclohexanones in 36-91% yields with >25:1 diastereoselectivity.

Keywords: Phosphazene base, double Michael addition, cyclohexanone, organocatalysis, divinyl ketone, methylene.

Graphical Abstract

[1]
(a) Ishikawa, T. In Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts; John Wiley & Sons: UK, 2009.
(b) Kondo, Y. Phosphazene: Preparation, Reaction and Catalytic Role.Superbases for Organic Synthesis; John Wiley & Sons, 2009.
(c) Verkade, J.G.; Kisanga, P.B. Tetrahedron, 2003, 59, 7819-7858.
(d) Schwesinger, R.; Schlemper, H. Angew. Chem. Int. Ed., 1987, 26, 1167-1169.
(e) Schwesinger, R.; Hasenfratz, C.; Schlemper, H.; Walz, L.; Peters, E-M.; Peters, K.; von Schnering, H.G. Angew. Chem. Int. Ed., 1993, 32, 1361-1363.
(f) Verkade, J.G.; Kisanga, P.B. J. Org. Chem., 2000, 65, 5431-5432.
[2]
(a) Imahori, T.; Kondo, Y. J. Am. Chem. Soc., 2003, 125, 8082-8083.
(b) Kobayashi, K.; Ueno, M.; Kondo, Y. Chem. Commun. , 2006, 3128-3130.
(c) Ueno, M.; Yonemoto, M.; Hashimoto, M.; Wheatley, A.E.H.; Naka, H.; Kondo, Y. Chem. Commun. , 2007, 2264-2266.
(d) Kobayashi, K.; Ueno, M.; Naka, H.; Kondo, Y. Chem. Commun. , 2008, 3780-3782.
(e) Kobayashi, K.; Ueno, M.; Naka, H.; Kondo, Y. Chem.-Eur. J., 2009, 15, 9805-9809.
(f) Araki, Y.; Kobayashi, K.; Yonemoto, M.; Kondo, Y. Org. Biomol. Chem., 2011, 9, 78-80.
(g) Kawai, H.; Yuan, Z.; Tokunaga, E.; Shibata, N. Org. Biomol. Chem., 2013, 11, 1446-1450.
(h) Kisanga, P.; Verkade, J. J. Org. Chem., 1999, 64, 4298-4303.
(i)D’Sa, B.; Kisanga, P.B.; Verkade, J.G. J. Org. Chem., 1998, 63, 3961-3967.
(j)Kisanga, P.; McLeod, D.; D’Sa, B.; Verkade, J. J. Org. Chem., 1999, 64, 3090-3094.
(k)Kisanga, P.; D’Sa, B.; Verkade, J. J. Org. Chem., 1998, 63, 10057-10059.
(l)Arumugam, S.; Verkade, J.G. J. Org. Chem., 1997, 62, 4827-4828.
(m)Kisanga, P.; D’Sa, B.; Verkade, J.G. Tetrahedron, 2001, 57, 8047-8052.
(n)Yildiz, Y.; Pamuk, H.; Karatepe, Ö.; Dasdelen, Z.; Şen, F. RSC Advances, 2016, 6, 32858-32862.
(o)Yildiz, Y.; Kuzu, S.; Sen, B.; Savk, A.; Akocak, S.; Şen, F. Int. J. Hydrogen Energy, 2017, 42, 13061-13069.
(p)Erken, E.; Yildiz, Y.; Kilbaş, B. Şen, F. J. Nanosci. Nanotechnol., 2016, 16, 5944-5950.
[3]
(a) Du, G-F.; Wang, Y.; Gu, C-Z.; Bai, B.; He, L. RSC Advances, 2015, 5, 35421-35424.
(b) Ueno, M.; Hori, C.; Suzawa, K.; Ebisawa, M.; Kondo, Y. Eur. J. Org. Chem., 2005, 2005, 1965-1968.
(c) Suzawa, K.; Ueno, M.; Wheatley, A.E.H.; Kondo, Y. Chem. Commun. , 2006, 4850-4852.
(d) Naka, H.; Koseki, D.; Kondo, Y. Adv. Synth. Catal., 2008, 350, 1901-1906.
(e) Chintareddy, V.R.; Wadhwa, K.; Verkade, J.G. J. Org. Chem., 2009, 74, 8118-8132.
(f) Wadhwa, K.; Verkade, J.G. J. Org. Chem., 2009, 74, 4368-4371.
Kobayashi, K.; Ueno, M.; Kondo, Y. Chem; Commum, 2006, pp. pp. 3128-3130.
(h) Wadhwa, K.; Verkade, J.G. J. Org. Chem., 2009, 74, 5683-5686.
(i)Wadhwa, K.; Verkade, J.G. J. Org. Chem., 2009, 74, 4368-4371.
(j)Chintareddy, V.R.; Wadhwa, K.; Verkade, J.G. J. Org. Chem., 2011, 76, 4482-4488.
(k)Chintareddy, V.R.; Wadhwa, K.; Verkade, J.G. J. Org. Chem., 2009, 74, 8118-8132.
(l)Wadhwa, K.; Chintareddy, V.R.; Verkade, J.G. J. Org. Chem., 2009, 74, 6681-6690.
[4]
Zhao, J.; Hadjichristidis, N.; Schlaad, H. Polymerization Using Phosphazene Bases.Anionic Polymerization: Principles, Practice, Strength, Consequences and Applications; Hadjichristidis, N; Hirao, A., Ed.; Springer: Tokyo, 2015, pp. 429-449.
(b) Boileau, S.; Illy, N. Prog. Polym. Sci., 2011, 36, 1132-1151.
(c) Hu, S-Y.; Dai, G-X.; Zhao, J-P.; Zhang, G-G. Macromolecules, 2016, 49, 4462-4472.
(d) Alamri, H.; Zhao, J.; Pahovnik, D.; Hadjichristidis, N. Polym. Chem., 2014, 5, 5471-5478.
(e) Zhao, J.; Hadjichristidis, N.; Gnanou, Y. Polimery, 2014, 59, 49-59.
(f) Isono, T.; Asai, S.; Satoh, Y.; Takaoka, T.; Tajima, K.; Kakuchi, T.; Satoh, T. Macromolecules, 2015, 48, 3217-3229.
(g) Isono, T.; Kamoshida, K.; Satoh, Y.; Takaoka, T.; Sato, S.; Satoh, T.; Kakuchi, T. Macromolecules, 2013, 46, 3841-3849.
(h) Satoh, Y.; Miyachi, K.; Matsuno, H.; Isono, T.; Tajima, K.; Kakuchi, T.; Satoh, T. Macromolecules, 2016, 49, 499-509.
[5]
(a) Kisanga, P.B.; Ilankumaran, P.; Fetterly, B.M.; Verkade, J.G. J. Org. Chem., 2002, 67, 3555-3560.
(b) Simón, L.; Paton, R.S. J. Org. Chem., 2017, 82, 3855-3863.
(c) Uraguchi, D.; Yoshioka, K.; Ueki, Y.; Ooi, T. J. Am. Chem. Soc., 2012, 134, 19370-19373.
(d) Bensa, D.; Brunel, J-M.; Buono, G.; Rodriguez, J. Synlett, 2001, 2001, 715-717.
(e) Uraguchi, D.; Yoshioka, K.; Ooi, T. Nat. Commun., 2017, 8, 14793.
(f) Venkat, C.R.; Verkade, J.G. J. Org. Chem., 2007, 72, 3093-3096.
(g) Masuda, K.; Nakano, J.; Yamashita, Y.; Kobayashi, S. Asian J. Org. Chem., 2013, 2, 303-306.
(h) Fetterly, B.M.; Jana, N.K.; Verkade, J.G. Tetrahedron, 2006, 62, 440-456.
(i)Daşdelen, Z.; Yildiz, Y.; Eriş, S.; Şen, F. Appl. Catal. B, 2017, 219, 511-516.
(j)Şen, B.; Akdere, E.H.; Şavk, A.; Gültekin, E.; Parali, Ö.; Göksu, H.; Şen, F. Appl. Catal. B, 2018, 225, 148-153.
(k)Aday, B.; Pamuk, H.; Kaya, M.; Şen, F. J. Nanosci. Nanotechnol., 2016, 16, 6498-6504.
(l)Aday, B.; Yildiz, Y.; Ulus, R.; Eriş, S.; Şen, F.; Kaya, M. New J. Chem., 2016, 40, 748-754.
(m)Yildiz, Y.; Erken, E.; Pamuk, H.; Sert, H.; Şen, F. J. Nanosci. Nanotechnol., 2016, 16, 5951-5958.
[6]
(a) Zhang, Y.; Li, R.; He, Y-H.; Guan, Z. Catal. Lett., 2017, 147, 633-639.
(b) Xu, D-Z.; Zhan, M-Z.; Huang, Y. Tetrahedron, 2014, 70, 176-180.
(c) Bredenkötter, B.; Linke, J.; Kuck, D. Eur. J. Org. Chem., 2017, 2017, 4414-4428.
(d) Liu, C-H.; Xu, Y-L.; Niu, S-Y.; Wei, L-Q.; Liu, Y.; Wang, Y-B.; Zhu, J-Y.; Fu, J-Y.; Yuan, J-F. Chin. J. Chem., 2017, 35, 1231-1238.
(e) Chande, M.S.; Khanwelkar, R.R. Tetrahedron Lett., 2005, 46, 7787-7792.
(f) Zhang, D.; Xu, X.; Tan, J.; Liu, Q. Synlett, 2010, 2010, 917-920.
(g) Li, J-T.; Xu, W-Z.; Chen, G-F.; Li, T-S. Ultrason. Sonochem., 2005, 12, 473-476.
(h) Li, X.; Wang, B.; Zhang, J.; Yan, M. Org. Lett., 2011, 13, 374-377.
(i)De Fusco, C.; Lattanzi, A. Eur. J. Org. Chem., 2011, 2011, 3728-3731.
(j)Ramachary, D.B.; Reddy, Y.V.; Prakash, B.V. Org. Biomol. Chem., 2008, 6, 719-726.
(k)Alvarez, S.G.; Hasegawa, S.; Hirano, M.; Komiya, S. Tetrahedron Lett., 1998, 39, 5209-5212.
(l)Ranu, B.C.; Banerjee, S. Org. Lett., 2005, 7, 3049-3052.
(m)Wang, L-L. Peng. L.; Bai, J.-F.; Jia, L.-N.; Luo, X.-Y.; Huang, Q.-C.; Xu, X.-Y.; Wang, L.-X. Chem. Commun. , 2011, 47, 5593-5595.
[7]
(a) Guo, H.; Xing, F.; Du, G-F.; Huang, K-W.; Dai, B.; He, L. J. Org. Chem., 2015, 80, 12606-12613.
(b) Li, Y-Z.; Wang, Y.; Du, G-F.; Zhang, H-Y.; Yang, H-L.; He, L. Asian J. Org. Chem., 2015, 4, 327-332.
(c) Cong, Z-S.; Li, Y-G.; Du, G-F.; Gu, C-Z.; Dai, B.; He, L. Chem. Commun. , 2017, 53, 13129-13132.
(d) Cong, Z-S.; Li, Y-G.; Du, G-F.; Gu, C-Z.; Dai, B.; He, L. Chem. Commun. , 2017, 53, 13129.
(e) Xing, F.; Feng, Z-N.; Wang, Y.; Du, G-F.; Gu, C-Z.; Dai, B.; He, L. Adv. Synth. Catal., 2018, 360, 1704-1710.