Trends in Diagnosis for Active Tuberculosis Using Nanomaterials

Page: [1946 - 1959] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Tuberculosis (TB), one of the leading causes of death worldwide, is difficult to diagnose based only on signs and symptoms. Methods for TB detection are continuously being researched to design novel effective clinical tools for the diagnosis of TB.

Objective: This article reviews the methods to diagnose TB at the latent and active stages and to recognize prospective TB diagnostic methods based on nanomaterials.

Methods: The current methods for TB diagnosis were reviewed by evaluating their advantages and disadvantages. Furthermore, the trends in TB detection using nanomaterials were discussed regarding their performance capacity for clinical diagnostic applications.

Results: Current methods such as microscopy, culture, and tuberculin skin test are still being employed to diagnose TB, however, a highly sensitive point of care tool without false results is still needed. The utilization of nanomaterials to detect the specific TB biomarkers with high sensitivity and specificity can provide a possible strategy to rapidly diagnose TB. Although it is challenging for nanodiagnostic platforms to be assessed in clinical trials, active TB diagnosis using nanomaterials is highly expected to achieve clinical significance for regular application. In addition, aspects and future directions in developing the high-efficiency tools to diagnose active TB using advanced nanomaterials are expounded.

Conclusion: This review suggests that nanomaterials have high potential as rapid, costeffective tools to enhance the diagnostic sensitivity and specificity for the accurate diagnosis, treatment, and prevention of TB. Hence, portable nanobiosensors can be alternative effective tests to be exploited globally after clinical trial execution.

Keywords: Tuberculosis, diagnosis, nanobiosensor, nanomaterials, immunoassay, antigen detection.

[1]
World Health OrganizationTB: A Global Emergency. WHO Report on the TB Epidemic; World Health Organization: Geneva, 1994.
[2]
World Health OrganizationWHO methods and data sources for country‐level causes of death 2000‐2015; World Health Organization: Geneva, 2017.
[3]
World Health OrganizationGlobal tuberculosis report 2017; World Health Organization: Geneva, 2017.
[4]
Pai, M.; Rodrigues, C. Management of latent tuberculosis infection: An evidence-based approach. Lung India, 2015, 32(3), 205-207.
[5]
Centers for Disease Control and Prevention, TB elimination. The difference between latent TB infection and TB disease. Available at: https://www.cdc.gov/tb/publications/ factsheets/general/ltbiandactivetb.htm (Accessed Feb 26, 2019).
[6]
Barry, C.E., III; Boshoff, H.I.; Dartois, V.; Dick, T.; Ehrt, S.; Flynn, J.; Schnappinger, D.; Wilkinson, R.J.; Young, D. The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies. Nat. Rev. Microbiol., 2009, 7(12), 845-855.
[7]
World Health OrganizationGuidelines on the management of latent tuberculosis infection; World Health Organization: Geneva, 2015.
[8]
Campbell, I.A.; Bah-Sow, O. Pulmonary tuberculosis: Diagnosis and treatment. BMJ, 2006, 332(7551), 1194-1197.
[9]
Ormerod, L.P. Multidrug-resistant tuberculosis (MDR-TB): Epidemiology, prevention and treatment. Br. Med. Bull., 2005, 73-74, 17-24.
[10]
World Health OrganizationGlobal tuberculosis report 2016; World Health Organization: Geneva, 2016.
[11]
World Health OrganizationGlobal tuberculosis report 2015; World Health Organization: Geneva, 2015.
[12]
World Health OrganizationA guide to monitoring and evaluation for collaborative TBHIV activities; World Health Organization: Geneva, 2015.
[13]
World Health OrganizationIntegrating collaborative TB and HIV services within a comprehensive package of care for people who inject drugs; World Health Organization: Geneva, 2016.
[14]
Gunneberg, C.; Reid, A.; Williams, B.G.; Floyd, K.; Nunn, P. Global monitoring of collaborative TB-HIV activities. Int. J. Tuberc. Lung Dis., 2008, 12(3)(Suppl. 1), 2-7.
[15]
World Health OrganizationCollaborative framework for care and control of tuberculosis and diabetes; World Health Organization: Geneva, 2011.
[16]
World Health OrganizationCompanion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis; World Health Organization: Geneva, 2014.
[17]
Jensen, P.A.; Lambert, L.A.; Iademarco, M.F.; Ridzon, R. Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care settings 2005. MMWR Recomm. Rep., 2005, 54(Rr-17), 1-141.
[18]
World Health OrganizationEarly detection of Tuberculosis. An overview of approaches, guidelines and tools; World Health Organization: Geneva, 2011.
[19]
World Health OrganizationThe worldwide magnitude of protein-energy malnutrition: an overview from the World Health Organisation. Provisional guidelines for the diagnosis and classification of the EPI target diseases for primary health care, surveillance and special studies; World Health Organization: Geneva, 1983.
[20]
World Health OrganizationChest radiography in tuberculosis detection; World Health Organization: Geneva, 2016.
[21]
Hina, K.; Khalid, S.; Akbar, M.U. A review on automatic tuberculosis screening using chest radiographs Proceeding of the 2016 Sixth International Conference on Innovative Computing Technology (INTECH), 2016, pp. 285-289.
[22]
Kaguthi, G.; Nduba, V.; Nyokabi, J.; Onchiri, F.; Gie, R.; Borgdorff, M. Chest radiographs for pediatric TB diagnosis: Interrater agreement and utility. Interdiscip. Perspect. Infect. Dis., 2014, 2014291841
[23]
Swingler, G.H.; du Toit, G.; Andronikou, S.; van der Merwe, L.; Zar, H.J. Diagnostic accuracy of chest radiography in detecting mediastinal lymphadenopathy in suspected pulmonary tuberculosis. Arch. Dis. Child., 2005, 90(11), 1153-1156.
[24]
Jeong, Y.J.; Lee, K.S. Pulmonary tuberculosis: Up-to-date imaging and management. AJR Am. J. Roentgenol., 2008, 191(3), 834-844.
[25]
Im, J.G.; Itoh, H.; Shim, Y.S.; Lee, J.H.; Ahn, J.; Han, M.C.; Noma, S. Pulmonary tuberculosis: CT findings--early active disease and sequential change with antituberculous therapy. Radiology, 1993, 186(3), 653-660.
[26]
Lee, J.Y.; Lee, K.S.; Jung, K.J.; Han, J.; Kwon, O.J.; Kim, J.; Kim, T.S. Pulmonary tuberculosis: CT and pathologic correlation. J. Comput. Assist. Tomogr., 2000, 24(5), 691-698.
[27]
Burrill, J.; Williams, C.J.; Bain, G.; Conder, G.; Hine, A.L.; Misra, R.R. Tuberculosis: a radiologic review. Radiographics, 2007, 27(5), 1255-1273.
[28]
Nachiappan, A.C.; Rahbar, K.; Shi, X.; Guy, E.S.; Mortani Barbosa, E.J., Jr; Shroff, G.S.; Ocazionez, D.; Schlesinger, A.E.; Katz, S.I.; Hammer, M.M. Pulmonary tuberculosis: Role of radiology in diagnosis and management. Radiographics, 2017, 37(1), 52-72.
[29]
Caulfield, A.J.; Wengenack, N.L. Diagnosis of active tuberculosis disease: From microscopy to molecular techniques. J. Clin. Tuberc. Other Mycobact. Dis., 2016, 4, 33-43.
[30]
Abdelaziz, M.M.; Bakr, W.M.; Hussien, S.M.; Amine, A.E. Diagnosis of pulmonary tuberculosis using Ziehl-Neelsen stain or cold staining techniques? J. Egypt. Public Health Assoc., 2016, 91(1), 39-43.
[31]
Weldu, Y.; Asrat, D.; Woldeamanuel, Y.; Hailesilasie, A. Comparative evaluation of a two-reagent cold stain method with Ziehl-Nelseen method for pulmonary tuberculosis diagnosis. BMC Res. Notes, 2013, 6, 323-323.
[32]
Goyal, R.; Kumar, A. A Comparison of Ziehl-Neelsen staining and fluorescent microscopy for diagnosis of pulmonary Tuberculosis. J. Dent. Med. Sci., 2013, 8, 5-8.
[33]
Hooja, S.; Pal, N.; Malhotra, B.; Goyal, S.; Kumar, V.; Vyas, L. Comparison of Ziehl Neelsen & Auramine O staining methods on direct and concentrated smears in clinical specimens. Indian J. Tuberc., 2011, 58(2), 72-76.
[34]
Marais, B.J.; Brittle, W.; Painczyk, K.; Hesseling, A.C.; Beyers, N.; Wasserman, E.; van Soolingen, D.; Warren, R.M. Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum. Clin. Infect. Dis., 2008, 47(2), 203-207.
[35]
World Health OrganizationFluorescent light-emitting diode (LED) microscopy for diagnosis of tuberculosis; World Health Organization: Geneva, 2011.
[36]
World Health OrganizationSystematic screening for active tuberculosis: Principles and recommendations; World Health Organization: Geneva, 2013.
[37]
Singhal, R.; Myneedu, V.P. Microscopy as a diagnostic tool in pulmonary tuberculosis. Int. J. Mycobacteriol., 2015, 4(1), 1-6.
[38]
Matee, M.; Mtei, L.; Lounasvaara, T.; Wieland-Alter, W.; Waddell, R.; Lyimo, J.; Bakari, M.; Pallangyo, K.; von Reyn, C.F. Sputum microscopy for the diagnosis of HIV-associated pulmonary tuberculosis in Tanzania. BMC Public Health, 2008, 8, 68-68.
[39]
Cattamanchi, A.; Dowdy, D.W.; Davis, J.L.; Worodria, W.; Yoo, S.; Joloba, M.; Matovu, J.; Hopewell, P.C.; Huang, L. Sensitivity of direct versus concentrated sputum smear microscopy in HIV-infected patients suspected of having pulmonary tuberculosis. BMC Infect. Dis., 2009, 9, 53.
[40]
Centers for Disease Control and PreventionCore curriculum on Tuberculosis: What the clinician should know; Centers for Disease Control and Prevention: Atlanta, 2013.
[41]
National Collaborating Centre for ChronicC. and N. Centre for Clinical Practice at. Tuberculosis: Clinical diagnosis and management of tuberculosis, and measures for its prevention and control; National Institute for Health and Clinical Excellence: London, 2011.
[42]
Dinnes, J.; Deeks, J.; Kunst, H.; Gibson, A.; Cummins, E.; Waugh, N.; Drobniewski, F.; Lalvani, A. A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol. Assess., 2007, 11(3), 1-196.
[43]
Sorlozano, A.; Soria, I.; Roman, J.; Huertas, P.; Soto, M.J.; Piedrola, G.; Gutierrez, J. Comparative evaluation of three culture methods for the isolation of mycobacteria from clinical samples. J. Microbiol. Biotechnol., 2009, 19(10), 1259-1264.
[44]
Rageade, F.; Picot, N.; Blanc-Michaud, A.; Chatellier, S.; Mirande, C.; Fortin, E.; van Belkum, A. Performance of solid and liquid culture media for the detection of Mycobacterium tuberculosis in clinical materials: Meta-analysis of recent studies. Eur. J. Clin. Microbiol. Infect. Dis., 2014, 33(6), 867-870.
[45]
Cruciani, M.; Scarparo, C.; Malena, M.; Bosco, O.; Serpelloni, G.; Mengoli, C. Meta-analysis of BACTEC MGIT 960 and BACTEC 460 TB, with or without solid media, for detection of mycobacteria. J. Clin. Microbiol., 2004, 42(5), 2321-2325.
[46]
Pfyffer, G.E.; Wittwer, F. Incubation time of mycobacterial cultures: How long is long enough to issue a final negative report to the clinician? J. Clin. Microbiol., 2012, 50(12), 4188-4189.
[47]
Ogwang, S.; Mubiri, P.; Bark, C.M.; Joloba, M.L.; Boom, W.H.; Johnson, J.L. Incubation time of Mycobacterium tuberculosis complex sputum cultures in BACTEC MGIT 960: 4weeks of negative culture is enough for physicians to consider alternative diagnoses. Diagn. Microbiol. Infect. Dis., 2015, 83(2), 162-164.
[48]
Essa, S.A.; Abdel-Samea, S.A-R.; Ismaeil, Y.M.; Mohammad, A.A. Comparative study between using Lowenstein Jensen and Bio-FM media in identification of Mycobacterium tuberculosis. Egypt. J. Chest Dis. Tuberc., 2013, 62, 249-255.
[49]
Kobayashi, M.; Ray, S.M.; Hanfelt, J.; Wang, Y.F. Diagnosis of tuberculosis by using a nucleic acid amplification test in an urban population with high HIV prevalence in the United States. PLoS One, 2014, 9(10)e107552
[50]
Coll, P.; Garrigó, M.; Moreno, C.; Martí, N. Routine use of Gen-Probe amplified Mycobacterium tuberculosis Direct (MTD) test for detection of Mycobacterium tuberculosis with smear-positive and smear-negative specimens. Int. J. Tuberc. Lung Dis., 2003, 7(9), 886-891.
[51]
Moore, D.F.; Guzman, J.A.; Mikhail, L.T. Reduction in turnaround time for laboratory diagnosis of pulmonary tuberculosis by routine use of a nucleic acid amplification test. Diagn. Microbiol. Infect. Dis., 2005, 52(3), 247-254.
[52]
Smith, M.B.; Bergmann, J.S.; Harris, S.L.; Woods, G.L. Evaluation of the Roche AMPLICOR MTB assay for the detection of Mycobacterium tuberculosis in sputum specimens from prison inmates. Diagn. Microbiol. Infect. Dis., 1997, 27(4), 113-116.
[53]
Maugein, J.; Fourche, J.; Vacher, S.; Grimond, C.; Bebear, C. Evaluation of the BDProbeTec ET DTB assay(1) for direct detection of Mycobacterium tuberculosis complex from clinical samples. Diagn. Microbiol. Infect. Dis., 2002, 44(2), 151-155.
[54]
Campos, M.; Quartin, A.; Mendes, E.; Abreu, A.; Gurevich, S.; Echarte, L.; Ferreira, T.; Cleary, T.; Hollender, E.; Ashkin, D. Feasibility of shortening respiratory isolation with a single sputum nucleic acid amplification test. Am. J. Respir. Crit. Care Med., 2008, 178(3), 300-305.
[55]
Pfyffer, G.E.; Kissling, P.; Jahn, E.M.; Welscher, H.M.; Salfinger, M.; Weber, R. Diagnostic performance of amplified Mycobacterium tuberculosis direct test with cerebrospinal fluid, other nonrespiratory, and respiratory specimens. J. Clin. Microbiol., 1996, 34(4), 834-841.
[56]
Laraque, F.; Griggs, A.; Slopen, M.; Munsiff, S.S. Performance of nucleic acid amplification tests for diagnosis of tuberculosis in a large urban setting. Clin. Infect. Dis., 2009, 49(1), 46-54.
[57]
Noordhoek, G.T.; Mulder, S.; Wallace, P.; van Loon, A.M. Multicentre quality control study for detection of Mycobacterium tuberculosis in clinical samples by nucleic amplification methods. Clin. Microbiol. Infect., 2004, 10(4), 295-301.
[58]
Altez-Fernandez, C.; Ortiz, V.; Mirzazadeh, M.; Zegarra, L.; Seas, C.; Ugarte-Gil, C. Diagnostic accuracy of nucleic acid amplification tests (NAATs) in urine for genitourinary tuberculosis: A systematic review and meta-analysis. BMC Infect. Dis., 2017, 17(1), 390.
[59]
World Health OrganizationThe use of a commercial loop-mediated isothermal amplification assay (TB-LAMP) for the detection of tuberculosis; World Health Organization: Geneva, 2013.
[60]
World Health OrganizationThe use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis; World Health Organization: Geneva, 2016.
[61]
World Health OrganizationAutomated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert TB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children: Policy update; World Health Organization: Geneva, 2013.
[62]
Kim, C-H.; Woo, H.; Hyun, I.G.; Kim, C.; Choi, J-H.; Jang, S-H.; Park, S.M.; Kim, D-G.; Lee, M.G.; Jung, K-S.; Hyun, J.; Kim, H.S. A comparison between the efficiency of the Xpert MTB/RIF assay and nested PCR in identifying Mycobacterium tuberculosis during routine clinical practice. J. Thorac. Dis., 2014, 6(6), 625-631.
[63]
World Health Organization. WHO Meeting Report of a Technical Expert Consultation: Non-inferiority analysis of Xpert MTB/RIF Ultra compared to Xpert MTB/RIF, World Health Organization: Geneva,2017.
[64]
Singh, B.K.; Sharma, S.K.; Sharma, R.; Sreenivas, V.; Myneedu, V.P.; Kohli, M.; Bhasin, D.; Sarin, S. Diagnostic utility of a line probe assay for multidrug resistant-TB in smear-negative pulmonary tuberculosis. PLoS One, 2017, 12(8)e0182988
[65]
Morgan, M.; Kalantri, S.; Flores, L.; Pai, M. A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: A systematic review and meta-analysis. BMC Infect. Dis., 2005, 5, 62.
[66]
Ling, D.I.; Zwerling, A.A.; Pai, M. Rapid diagnosis of drug-resistant TB using line probe assays: From evidence to policy. Expert Rev. Respir. Med., 2008, 2(5), 583-588.
[67]
Van Rie, A.; De Vos, M. The role of line probe assays in the Xpert MTB/RIF ultra era. J. Lab. Precis. Med., 2017, 2, 32.
[68]
Nathavitharana, R.R.; Cudahy, P.G.T.; Schumacher, S.G.; Steingart, K.R.; Pai, M.; Denkinger, C.M. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: A systematic review and meta-analysis. Eur. Respir. J., 2017, 49(1)1601075
[69]
Yacoob, F.L.; Philomina Jose, B.; Karunakaran Lelitha, S.D.; Sreenivasan, S. Primary multidrug resistant Tuberculosis and utility of line probe assay for its detection in smear-positive sputum samples in a tertiary care hospital in south India. J. Pathogens, 2016, 20166235618
[70]
Ayub, A.; Yale, S.H.; Reed, K.D.; Nasser, R.M.; Gilbert, S.R. Testing for latent tuberculosis. Clin. Med. Res., 2004, 2(3), 191-194.
[71]
Yang, H.; Kruh-Garcia, N.A.; Dobos, K.M. Purified protein derivatives of tuberculin--past, present, and future. FEMS Immunol. Med. Microbiol., 2012, 66(3), 273-280.
[72]
Pai, M.; Denkinger, C.M.; Kik, S.V.; Rangaka, M.X.; Zwerling, A.; Oxlade, O.; Metcalfe, J.Z.; Cattamanchi, A.; Dowdy, D.W.; Dheda, K.; Banaei, N. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin. Microbiol. Rev., 2014, 27(1), 3-20.
[73]
Redelman-Sidi, G.; Sepkowitz, K.A. IFN-γ release assays in the diagnosis of latent tuberculosis infection among immunocompromised adults. Am. J. Respir. Crit. Care Med., 2013, 188(4), 422-431.
[74]
Menzies, R.; Vissandjee, B. Effect of bacille Calmette-Guérin vaccination on tuberculin reactivity. Am. Rev. Respir. Dis., 1992, 145(3), 621-625.
[75]
Kobashi, Y.; Shimizu, H.; Ohue, Y.; Mouri, K.; Obase, Y.; Miyashita, N.; Oka, M. False negative results of QuantiFERON TB-2G test in patients with active tuberculosis. Jpn. J. Infect. Dis., 2009, 62(4), 300-302.
[76]
Ewer, K.; Deeks, J.; Alvarez, L.; Bryant, G.; Waller, S.; Andersen, P.; Monk, P.; Lalvani, A. Comparison of T-cell-based assay with tuberculin skin test for diagnosis of Mycobacterium tuberculosis infection in a school tuberculosis outbreak. Lancet, 2003, 361(9364), 1168-1173.
[77]
Kunst, H. Diagnosis of latent tuberculosis infection: The potential role of new technologies. Respir. Med., 2006, 100(12), 2098-2106.
[78]
World Health OrganizationUse of tuberculosis interferon-gamma release assays (IGRAs) in low- and middle-income countries; World Health Organization: Geneva, 2011.
[79]
Chan, E.D.; Heifets, L.; Iseman, M.D. Immunologic diagnosis of tuberculosis: A review. Tuber. Lung Dis., 2000, 80(3), 131-140.
[80]
Wang, S.; Wu, J.; Chen, J.; Gao, Y.; Zhang, S.; Zhou, Z.; Huang, H.; Shao, L.; Jin, J.; Zhang, Y.; Zhang, W. Evaluation of Mycobacterium tuberculosis-specific antibody responses for the discrimination of active and latent tuberculosis infection. Int. J. Infect. Dis., 2018, 70, 1-9.
[81]
Welch, R.J.; Lawless, K.M.; Litwin, C.M. Antituberculosis IgG antibodies as a marker of active Mycobacterium tuberculosis disease. Clin. Vaccine Immunol., 2012, 19(4), 522-526.
[82]
Raja, A.; Ranganathan, U.D.; Bethunaickan, R. Improved diagnosis of pulmonary tuberculosis by detection of antibodies against multiple Mycobacterium tuberculosis antigens. Diagn. Microbiol. Infect. Dis., 2008, 60(4), 361-368.
[83]
Kadival, G.V.; Kameswaran, M.; Ray, M.K. Radioimmunoassay antibody detection in pulmonary tuberculosis. Ind. J. Tub, 2000, 47, 97-100.
[84]
Chandramuki, A.; Lyashchenko, K.; Kumari, H.B.; Khanna, N.; Brusasca, P.; Gourie-Devi, M.; Satishchandra, P.; Shankar, S.K.; Ravi, V.; Alcabes, P.; Kanaujia, G.V.; Gennaro, M.L. Detection of antibody to Mycobacterium tuberculosis protein antigens in the cerebrospinal fluid of patients with tuberculous meningitis. J. Infect. Dis., 2002, 186(5), 678-683.
[85]
Al-Zamel, F.A. Detection and diagnosis of Mycobacterium tuberculosis. Expert Rev. Anti Infect. Ther., 2009, 7(9), 1099-1108.
[86]
Shen, C-Y.; Hsieh, S-C.; Yu, C-L.; Wang, J-Y.; Lee, L-N.; Yu, C-J. Autoantibody prevalence in active tuberculosis: Reactive or pathognomonic? BMJ Open, 2013, 3(7)e002665
[87]
Imaz, M.S.; Zerbini, E. Antibody response to culture filtrate antigens of Mycobacterium tuberculosis during and after treatment of tuberculosis patients. Int. J. Tuberc. Lung Dis., 2000, 4(6), 562-569.
[88]
Goodridge, A.; Zhang, T.; Miyata, T.; Lu, S.; Riley, L.W. Antiphospholipid IgM antibody response in acute and chronic Mycobacterium tuberculosis mouse infection model. Clin. Respir. J., 2014, 8(2), 137-144.
[89]
Shete, P.B.; Ravindran, R.; Chang, E.; Worodria, W.; Chaisson, L.H.; Andama, A.; Davis, J.L.; Luciw, P.A.; Huang, L.; Khan, I.H.; Cattamanchi, A. Evaluation of antibody responses to panels of M. tuberculosis antigens as a screening tool for active tuberculosis in Uganda. PLoS One, 2017, 12(8)e0180122
[90]
Ravindran, R.; Krishnan, V.V.; Dhawan, R.; Wunderlich, M.L.; Lerche, N.W.; Flynn, J.L.; Luciw, P.A.; Khan, I.H. Plasma antibody profiles in non-human primate tuberculosis. J. Med. Primatol., 2014, 43(2), 59-71.
[91]
Flores, L.L.; Steingart, K.R.; Dendukuri, N.; Schiller, I.; Minion, J.; Pai, M.; Ramsay, A.; Henry, M.; Laal, S. Systematic review and meta-analysis of antigen detection tests for the diagnosis of tuberculosis. Clin. Vaccine Immunol., 2011, 18(10), 1616-1627.
[92]
World Health OrganizationThe use of lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis and screening of active tuberculosis in people living with HIV; World Health Organization: Geneva, 2015.
[93]
Wang, X.; Chen, S.; Xu, Y.; Zheng, H.; Xiao, T.; Li, Y.; Chen, X.; Huang, M.; Zhang, H.; Fang, X.; Jiang, Y.; Li, M.; Liu, H.; Wan, K. Identification and evaluation of the novel immunodominant antigen Rv2351c from Mycobacterium tuberculosis. Emerg. Microbes Infect., 2017, 6(6)e48
[94]
Luo, L.; Zhu, L.; Yue, J.; Liu, J.; Liu, G.; Zhang, X.; Wang, H.; Xu, Y. Antigens Rv0310c and Rv1255c are promising novel biomarkers for the diagnosis of Mycobacterium tuberculosis infection. Emerg. Microbes Infect., 2017, 6(7)e64
[95]
Aliannejad, R.; Bahrmand, A.; Abtahi, H.; Seifi, M.; Safavi, E.; Abdolrahimi, F.; Shahriaran, S. Accuracy of a new rapid antigen detection test for pulmonary tuberculosis. Iran. J. Microbiol., 2016, 8(4), 238-242.
[96]
Shen, G-H.; Chiou, C-S.; Hu, S-T.; Wu, K-M.; Chen, J-H. Rapid identification of the Mycobacterium tuberculosis complex by combining the ESAT-6/CFP-10 immunochromatographic assay and smear morphology. J. Clin. Microbiol., 2011, 49(3), 902-907.
[97]
Fox, A.; J., Jeffries D.; C Hill, P.; Hammond, A.S.; Lugos, M.; Jackson-Sillah, D.; Donkor, S.; Owiafe, P.; McAdam, K.; H Brookes, R. ESAT-6 and CFP-10 can be combined to reduce the cost of testing for Mycobacterium tuberculosis infection, but CFP-10 responses associate with active disease. Trans. R. Soc. Trop. Med. Hyg., 2007, 101(7), 691-698.
[98]
Turbawaty, D.K.; Sugianli, A.K.; Soeroto, A.Y.; Setiabudiawan, B.; Parwati, I. Comparison of the performance of urinary Mycobacterium tuberculosis antigens cocktail (ESAT6, CFP10 and MPT64) with culture and microscopy in pulmonary Tuberculosis patients. Int. J. Microbiol., 2017, 20173259329
[99]
Gey van Pittius, N.C.; Warren, R.M.; van Helden, P.D. ESAT-6 and CFP-10: What is the diagnosis? Infect. Immun., 2002, 70(11), 6509-6510.
[100]
Skjøt, R.L.V.; Brock, I.; Arend, S.M.; Munk, M.E.; Theisen, M.; Ottenhoff, T.H.M.; Andersen, P. Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. Infect. Immun., 2002, 70(10), 5446-5453.
[101]
Wood, R.; Racow, K.; Bekker, L-G.; Middelkoop, K.; Vogt, M.; Kreiswirth, B.N.; Lawn, S.D. Lipoarabinomannan in urine during tuberculosis treatment: association with host and pathogen factors and mycobacteriuria. BMC Infect. Dis., 2012, 12, 47-47.
[102]
Torati, S.R.; Reddy, V.; Yoon, S.S.; Kim, C. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform. Biosens. Bioelectron., 2016, 78, 483-488.
[103]
Diouani, M.F.; Ouerghi, O.; Refai, A.; Belgacem, K.; Tlili, C.; Laouini, D.; Essafi, M. Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. Mater. Sci. Eng. C, 2017, 74, 465-470.
[104]
Zhou, B.; Zhu, M.; Qiu, Y.; Yang, P. Novel electrochemiluminescence-sensing platform for the precise analysis of multiple latent tuberculosis infection markers. ACS Appl. Mater. Interfaces, 2017, 9(22), 18493-18500.
[105]
Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron., 2001, 16(1-2), 121-131.
[106]
Liu, S.; Yuan, H.; Bai, H.; Zhang, P.; Lv, F.; Liu, L.; Dai, Z.; Bao, J.; Wang, S. Electrochemiluminescence for electric-driven antibacterial therapeutics. J. Am. Chem. Soc., 2018, 140(6), 2284-2291.
[107]
Tran, V.T.; Kim, J.; Tufa, L.T.; Oh, S.; Kwon, J.; Lee, J. Magnetoplasmonic nanomaterials for biosensing/imaging and in vitro/in vivo biousability. Anal. Chem., 2017, 90(1), 225-239.
[108]
Thakur, H.; Kaur, N.; Sareen, D.; Prabhakar, N. Electrochemical determination of M. tuberculosis antigen based on Poly(3,4-ethylenedioxythiophene) and functionalized carbon nanotubes hybrid platform. Talanta, 2017, 171, 115-123.
[109]
Bai, L.; Chen, Y.; Bai, Y.; Chen, Y.; Zhou, J.; Huang, A. Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials, 2017, 133, 11-19.
[110]
Wang, L.; Leng, C.; Tang, S.; Lei, J.; Ju, H. Enzyme-free signal amplification for electrochemical detection of Mycobacterium lipoarabinomannan antibody on a disposable chip. Biosens. Bioelectron., 2012, 38(1), 421-424.
[111]
Barreda-García, S.; González-Álvarez, M.J.; de-Los-Santos-Álvarez, N.; Palacios-Gutiérrez, J.J.; Miranda-Ordieres, A.J.; Lobo-Castañón, M.J. Attomolar quantitation of Mycobacterium tuberculosis by asymmetric helicase-dependent isothermal DNA-amplification and electrochemical detection. Biosens. Bioelectron., 2015, 68, 122-128.
[112]
Ng, B.Y.; Xiao, W.; West, N.P.; Wee, E.J.; Wang, Y.; Trau, M. Rapid, single-cell electrochemical detection of Mycobacterium tuberculosis using colloidal gold nanoparticles. Anal. Chem., 2015, 87(20), 10613-10618.
[113]
Zaid, M.H.M.; Abdullah, J.; Yusof, N.A.; Sulaiman, Y.; Wasoh, H.; Noh, M.F.M.; Issa, R. PNA biosensor based on reduced graphene oxide/water soluble quantum dots for the detection of Mycobacterium tuberculosis. Sens. Actuators B Chem., 2017, 241, 1024-1034.
[114]
Wu, M-S.; Liu, Z.; Shi, H-W.; Chen, H-Y.; Xu, J-J. Visual electrochemiluminescence detection of cancer biomarkers on a closed bipolar electrode array chip. Anal. Chem., 2015, 87(1), 530-537.
[115]
Su, M.; Liu, H.; Ge, S.; Ren, N.; Ding, L.; Yu, J.; Song, X. An electrochemiluminescence lab-on-paper device for sensitive detection of two antigens at the MCF-7 cell surface based on porous bimetallic AuPd nanoparticles. RSC Advances, 2016, 6, 16500-16506.
[116]
Zhou, B.; Zhu, M.; Hao, Y.; Yang, P. Potential-resolved electrochemiluminescence for simultaneous determination of triple latent tuberculosis infection markers. ACS Appl. Mater. Interfaces, 2017, 9(36), 30536-30542.
[117]
Wallis, R.S.; Pai, M.; Menzies, D.; Doherty, T.M.; Walzl, G.; Perkins, M.D.; Zumla, A. Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet, 2010, 375(9729), 1920-1937.
[118]
Steingart, K.R.; Dendukuri, N.; Henry, M.; Schiller, I.; Nahid, P.; Hopewell, P.C.; Ramsay, A.; Pai, M.; Laal, S. Performance of purified antigens for serodiagnosis of pulmonary tuberculosis: A meta-analysis. Clin. Vaccine Immunol., 2009, 16(2), 260-276.
[119]
Toh, S.Y.; Citartan, M.; Gopinath, S.C.; Tang, T-H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron., 2015, 64, 392-403.
[120]
Bunka, D.H.; Stockley, P.G. Aptamers come of age - at last. Nat. Rev. Microbiol., 2006, 4(8), 588-596.
[121]
Kanayeva, D.; Bekniyazov, I.; Ashikbayeva, Z. Detection of tuberculosis using biosensors: Recent progress and future trends. Sens Transducers, 2013, 149, 166-173.
[122]
Ng, B.Y.; Wee, E.J.; West, N.P.; Trau, M. Naked-eye colorimetric and electrochemical detection of Mycobacterium tuberculosis - toward rapid screening for active case finding. ACS Sens., 2015, 1, 173-178.
[123]
Abdalhai, M.H.; Fernandes, A.M.; Bashari, M.; Ji, J.; He, Q.; Sun, X. Rapid and sensitive detection of foodborne pathogenic bacteria (Staphylococcus aureus) using an electrochemical DNA genomic biosensor and its application in fresh beef. J. Agric. Food Chem., 2014, 62(52), 12659-12667.
[124]
Kim, E.J.; Kim, E.B.; Lee, S.W.; Cheon, S.A.; Kim, H-J.; Lee, J.; Lee, M-K.; Ko, S.; Park, T.J. An easy and sensitive sandwich assay for detection of Mycobacterium tuberculosis Ag85B antigen using quantum dots and gold nanorods. Biosens. Bioelectron., 2017, 87, 150-156.
[125]
Wang, L.; Jin, Y.; Deng, J.; Chen, G. Gold nanorods-based FRET assay for sensitive detection of Pb2+ using 8-17DNAzyme. Analyst (Lond.), 2011, 136(24), 5169-5174.
[126]
Kim, J.; Hong, S.C.; Hong, J.C.; Chang, C.L.; Park, T.J.; Kim, H-J.; Lee, J. Clinical immunosensing of tuberculosis CFP-10 antigen in urine using interferometric optical fiber array. Sens. Actuators B Chem., 2015, 216, 184-191.
[127]
Kim, J.; Lee, J.; Lee, K-I.; Park, T.J.; Kim, H-J.; Lee, J. Rapid monitoring of CFP-10 during culture of Mycobacterium tuberculosis by using a magnetophoretic immunoassay. Sens. Actuators B Chem., 2013, 177, 327-333.
[128]
Kim, J.; Lee, K-S.; Kim, E.B.; Paik, S.; Chang, C.L.; Park, T.J.; Kim, H-J.; Lee, J. Early detection of the growth of Mycobacterium tuberculosis using magnetophoretic immunoassay in liquid culture. Biosens. Bioelectron., 2017, 96, 68-76.
[129]
Alnour, T.M.S. Smear microscopy as a diagnostic tool of tuberculosis: Review of smear negative cases, frequency, risk factors, and prevention criteria. Indian J. Tuberc., 2018, 65(3), 190-194.
[130]
Nurwidya, F.; Handayani, D.; Burhan, E.; Yunus, F. Molecular diagnosis of tuberculosis. Chonnam Med. J., 2018, 54(1), 1-9.
[131]
Golichenari, B.; Nosrati, R.; Farokhi-Fard, A.; Abnous, K.; Vaziri, F.; Behravan, J. Nano-biosensing approaches on tuberculosis: Defy of aptamers. Biosens. Bioelectron., 2018, 117, 319-331.
[132]
Gupta, S.; Kakkar, V. Recent technological advancements in tuberculosis diagnostics - A review. Biosens. Bioelectron., 2018, 115, 14-29.
[133]
Sulis, G.; Centis, R.; Sotgiu, G.; D’Ambrosio, L.; Pontali, E.; Spanevello, A.; Matteelli, A.; Zumla, A.; Migliori, G.B. Recent developments in the diagnosis and management of tuberculosis. NPJ Prim. Care Respir. Med., 2016, 26, 16078.
[134]
García-Basteiro, A.L.; DiNardo, A.; Saavedra, B.; Silva, D.R.; Palmero, D.; Gegia, M.; Migliori, G.B.; Duarte, R.; Mambuque, E.; Centis, R.; Cuevas, L.E.; Izco, S.; Theron, G. Point of care diagnostics for tuberculosis. Pulmonology, 2018, 24(2), 73-85.
[135]
Xu, K.; Liang, C.Z.; Ding, X.; Hu, H.; Liu, S.; Nurmik, M.; Bi, S.; Hu, F.; Ji, Z.; Ren, J.; Yang, S.; Yang, Y.; Li, L. Nanomaterials in the prevention, diagnosis, and treatment of Mycobacterium tuberculosis infections. Adv. Healthc. Mater., 2017, 71700509
[136]
El-Samadony, H.; Althani, A.; Tageldin, M.A.; Azzazy, H.M.E. Nanodiagnostics for tuberculosis detection. Expert Rev. Mol. Diagn., 2017, 17(5), 427-443.
[137]
World Health OrganizationEthics Guidance for The Implementation of The End TB Strategy; World Health Organization: Geneva, 2017.