Nanoscience & Nanotechnology-Asia

Author(s): Ali Hasani*

DOI: 10.2174/2210681208666180904102649

Approaches to Graphene, Carbon Nanotube and Carbon nanohorn, Synthesis, Properties and Applications

Page: [4 - 11] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

By far the most important members of carbon-based materials family, are graphene, Carbon Nanotube (CNT) and Carbon Nanohorn (CNH). Thanks to their outstanding features and effective applications, have been broadly researched in recent times. Numerous ways have been proposed to synthesize graphene, CNT and CNH. This paper presents an overview of approaches to graphene, CNT and CNH synthesis, properties and applications. Most of the ways to create graphene is related to Hummer's method. Thanks to the exclusive electrical and thermal properties of graphene, it has been applied to build batteries, gas and vapor sensors, and elimination of numerous pollutants from water. Also, this review involves the conventional definition of the carbon nanotubes growth mechanism. Undoubtedly, an expert interpretation of nanotube growth at the atomic scale is one of the major challenges to improve nanotubes bulk synthesis procedure. In fact, a controlled growth may lead to get the ideal form of nanotube. Moreover, carbon nanohorn is a new member of single-graphene tubules family with a diameter of 3-6 nm and a length 35-45 nm. According to the latest reports, a new fluid including carbon nanohorns and ethylene glycol can be used for solar energy applications. Carbon nanohorns have an important role in increasing sunlight absorption as for the pure base fluid. Nanohorn spectral characteristics are far more interesting than those of amorphous carbon for the exclusive application. They can be used in important industries such as gas sensors, drug delivery, detecting some food borne contaminants.

Keywords: Graphene, carbon nanotube, carbon nanohorn, synthesis, gas sensors, graphite.

Graphical Abstract

[1]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666-669.
[2]
Zhang, C.; Nicolosi, V. Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater., 2019, 16, 102-125.
[3]
Bruno, M.M.; Cotella, N.G.; Miras, M.C.; Koch, T.; Seidler, S.; Barbero, C. Characterization of monolithic porous carbon prepared from resorcinol formaldehyde gels with cationic surfactant. Colloid Surf A, 2010, 358(1-3), 13-20.
[4]
Gao, X. Wang, B.; Zhang, Y.; Liu, H.; Dou, S. Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater., 2019, 16, 46-55.
[5]
Khan, U.; O’Neill, A.; Lotya, M.; De, S.; Coleman, J.N. High concentration solvent exfoliation of graphene. Small, 2010, 6(7), 864-871.
[6]
Wang, L.; Wei, Z.; Mao, M.; Wang, H. Ma, J. Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Mater., 2019, 16, 434-454.
[7]
Campana, F.P.; Buqa, H.; Nova’k, P.; Kotz, R.; Siegenthaler, H. In situ atomic force microscopy study of exfoliation phenomena on graphite basal planes. Electrochem. Commun., 2008, 10(10), 1590-1593.
[8]
Meng, Q.; Deng, B.; Zhang, H.; Wang, B.; Huang, Y. Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene. Energy Storage Mater., 2019, 16, 419-425.
[9]
Ren, F.; Peng, Z.; Wang, M.; Xie, Y.; Wang, D. Over-potential induced Li/Na filtrated depositions using stacked graphene coating on copper scaffold. Energy Storage Mater., 2019, 16, 364-373.
[10]
Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: A review of graphene. Chem. Rev., 2010, 110, 132-145.
[11]
Wu, Y.P.; Rahm, E.; Holze, R. Carbon anode materials for lithium ion batteries. J. Power Sources, 2003, 114(2), 228-236.
[12]
Zhao, Y.; Dong, F.; Han, W.; Zhao, H.; Tang, Z. The synergistic catalytic effect between graphene oxide and three-dimensional ordered mesoporous Co3O4 nanoparticles for low-temperature CO oxidation. Microporous Mesoporous Mater., 2019, 273, 1-9.
[13]
Schnyder, B.; Alliata, D.; Kotz, R.; Siegenthaler, H. Electrochemical intercalation of perchlorate ions in HOPG: An SFM/LFM and XPS study. Appl. Surf. Sci., 2001, 173(3-4), 221-232.
[14]
Li, H.; Chen, X.; Jin, T.; Bao, W.; Jiao, L. Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries. Energy Storage Mater., 2019, 16, 383-390.
[15]
Chung, D.D.L. Review graphite. J. Mater. Sci., 2002, 37(8), 1475-1489.
[16]
Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y. Synthesis of graphene-based nano sheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7), 1558-1565.
[17]
Viculis, L.M.; Mack, J.J.; Mayer, O.M.; Hahn, H.T.; Kaner, R.B. Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem., 2005, 15(9), 974-978.
[18]
Guo, H.L.; Wang, X.F.; Qian, Q.Y.; Wang, F.B.; Xia, X.H. A green approach to the synthesis of graphene nanosheets. ACS Nano, 2009, 3(9), 2653-2659.
[19]
Lim, J.; Lee, G.; Lee, H.; Cha, S.; Kim, S. Open porous graphene nanoribbon hydrogel via additive-free interfacial self-assembly: Fast mass transport electrodes for high-performance biosensing and energy storage. Energy Storage Mater., 2019, 16, 251-258.
[20]
Markle, W.; Tran, N.; Goers, D.; Spahr, M.E.; Novak, P. The influence of electrolyte and graphite type on the PF_ 6 intercalation behaviour at high potentials. Carbon, 2009, 47(11), 2727-2732.
[21]
Zhang, M.; Song, X.; Ou, X.; Tang, Y. Rechargeable batteries based on anion intercalation graphite cathodes. Energy Storage Mater., 2019, 16, 65-84.
[22]
Hill, E.; Vijayaragahvan, A.; Novoselov, K. Graphene sensors. IEEE Sens. J., 2011, 11, 3161-3170.
[23]
Inagaki, M.; Kim, Y.; Endo, M. Graphene: Preparation and structural perfection. J. Mater. Chem., 2011, 21, 3280-3294.
[24]
Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nano walls against bacteria. ACS Nano, 2010, 4(10), 5731-5736.
[25]
Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y. Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem., 2010, 20(4), 743-748.
[26]
Liu, N.; Luo, F.; Wu, H.; Liu, Y.; Zhang, C.; Chen, J. One-step ionicliquid- assisted electrochemical synthesis of ionic-liquid functionalized graphene sheets directly from graphite. Adv. Funct. Mater., 2008, 18(10), 1518-1525.
[27]
Lu, J.; Yang, J.X.; Wang, J.; Lim, A.; Wang, S.; Loh, K.P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3(8), 2367-2375.
[28]
Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39, 228-240.
[29]
Qiu, J-D.; Huang, J.; Liang, R-P. Nano composite film based on graphene oxide for high performance flexible glucose biosensor. Sens. Actuators B Chem., 2011, 160, 287-294.
[30]
Rai, A.; Subramanian, N.; Chattopadhyay, A. Investigation of damage mechanisms in CNT nanocomposites using multiscale analysis. Int. J. Solids Struct., 2017, 120, 115-124.
[31]
Han, J.; Su, D.; Zhao, Z.; Li, X.; Jin, Z. Fabrication and toughening behavior of carbon nanotube (CNT) scaffold reinforced SiBCN ceramic composites with high CNT loading. Ceram. Int., 2017, 43, 9024-9031.
[32]
Ma, J.; Lan, X.; Niu, B.; Fan, D. The in situ growth of 3D net-like CNTs on C fiber. Mater. Chem. Phys., 2017, 192, 210-214.
[33]
Milsom, B.; Porwal, H.; Viola, G.; Gao, Z.; Reece, M. Understanding and quantification of grain growth mechanism in ZrO2-carbon nanotube composites. Mater. Des., 2017, 133, 325-331.
[34]
Omidi, M.; Khodabandeh, A.; Nategh, S.; Khakbiz, M. Wear mechanisms maps of CNT reinforced Al6061 nanocomposites treated by cryomilling and mechanical milling. Tribol. Int., 2017, 110, 151-160.
[35]
Yu, C.; Cheng, K.; Ding, J.; Deng, C. Synthesis and characterisation of Al4O4C nanorod/CNT composites. Ceram. Int., 2017, 43, 11415-11420.
[36]
Krätschmer, W.; Huffman, D.; Lamb, L.; Fostiropoulos, K. Solid C60: A new form of carbon. Nature, 1990, 347, 354-358.
[37]
Hoecker, C.; Smail, F.; Pick, M.; Boies, A. The influence of carbon source and catalyst nanoparticles on CVD synthesis of CNT aerogel. Chem. Eng. J., 2017, 314, 388-395.
[38]
Fan, L.; Li, J.; Wu, Y.; Zhang, L.; Yu, Z. Pool boiling heat transfer during quenching in carbon nanotube (CNT)-based aqueous nanofluids: Effects of length and diameter of the CNTs. Appl. Therm. Eng., 2017, 122, 555-565.
[39]
Jin, H.; Shu, H.; Bai, G.; Chen, D.; Zeng, Q. In situ synthesis of CNTs in HfB2 powders by chemical vapor deposition of methane to fabricate reinforced HfB2 composites. J. Alloys Compd., 2018, 745, 1-7.
[40]
Ubnoske, S.; Radauscher, E.; Meshot, E.; Stoner, B. Integrating carbon nanotube forests into polysilicon MEMS: Growth kinetics, mechanisms, and adhesion. Carbon, 2017, 113, 192-204.
[41]
Iijima, S.; Bandow, S.; Kokai, F.; Takahashi, K.; Yudasaka, M.; Qin, L.C. Interlayer spacing anomaly of single-wall carbon nanohorn aggregate. Chem. Phys. Lett., 2000, 321, 514.
[42]
Roslan, M.S.; Chaudhary, K.T.; Doylend, N.; Agam, A.; Kamarulzaman, R.; Haider, Z.; Mazalan, E.; Ali, J. Growth of wall-controlled MWCNTs by magnetic field assisted arc discharge plasma. J. Saudi Chem. Soc., 2019, 23(2), 171-181.
[43]
Hassan, N.; Fattah, K.; Tamimi, A. Modelling mechanical behavior of cementitious material incorporating CNTs using design of experiments. Constr. Build. Mater., 2017, 154, 763-770.
[44]
Kumar, R.; Singh, R.; Singh, D.; Vaz, A. Synthesis of self-assembled and hierarchical palladium-CNTs-reduced graphene oxide composites for enhanced field emission properties. Mater. Des., 2017, 122, 110-117.
[45]
Song, J.L.; Chen, W.G.; Dong, L.L.; Wang, J.J.; Deng, N. An electroless plating and planetary ball milling process for mechanical properties enhancement of bulk CNTs/Cu composites. J. Alloys Compd., 2017, 720, 54-62.
[46]
Sahoo, R.K.; Jacob, C. Iridium catalyzed growth of vertically aligned CNTs by APCVD. Mater. Sci. Eng., 2014, 185, 99-104.
[47]
Chen, C.; Chen, W.; Zhang, Y. Synthesis of carbon nano-tubes by pulsed laser ablation at normal pressure in metal nano-sol. Phys. E, 2005, 28, 121-127.
[48]
Khodabakhshi, F.; Gerlich, A.P.; Švec, P. Reactive friction-stir processing of an Al-Mg alloy with introducing multi-walled carbon nano-tubes (MW-CNTs): Microstructural characteristics and mechanical properties. Mater. Charact., 2017, 131, 359-373.
[49]
Laplaze, D.; Bernier, P.; Maser, W.K.; Flamant, G.; Guillard, T.; Loiseau, A. Carbon nanotubes: The solar approach. Carbon, 1998, 36, 685-688.
[50]
Cho, W.; Schulz, M.; Shanov, V. Growth and characterization of vertically aligned centimeter long CNT arrays. Carbon, 2014, 72, 264-273.
[51]
Rahimian-Koloor, M.; Hashemianzadeh, M. M.; Shokrieh, M. Effect of CNT structural defects on the mechanical properties of CNT/Epoxy nanocomposite. Phys. B, 2018, 540, 16-25.
[52]
Zhu, Z.; Chan, Y.; Chen, Z.; Gan, C.; Wu, F. Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder. Mater. Sci. Eng. A, 2018, 727, 160-169.
[53]
Ghosh, P.; Soga, T.; Ghosh, K.; Afre, R.A.; Jimbo, T.; Ando, Y. Vertically aligned N-doped carbon nanotubes by spray pyrolysis of turpentine oil and pyridine derivative with dissolved ferrocene. J. Non-Cryst. Solids, 2008, 354, 4101.
[54]
Faria, B.; Guarda, C.; Silvestre, N.; Lopes, J.; Galhofo, D. Strength and failure mechanisms of cnt-reinforced copper nanocomposite. Compos., Part B Eng., 2018, 145, 108-120.
[55]
Kuang-Ting, H.; Sadeghian, R.; Gangireddy, S.; Minaie, B. Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Compos. A, 2006, 37(10), 1787-1795.
[56]
Nan, Y.; Li, B.; Sano, N.; Song, X. A novel structure “oversized carbon nanohorns”. Mater. Lett., 2018, 227, 254-257.
[57]
Sano, N.; Ishii, T.; Tamon, H. Transformation from single-walled carbon nanotubes to nanohorns by simple heating with Pd at 1600 °C. Carbon, 2011, 49(11), 3698-3700.
[58]
Carli, S.; Lambertini, L.; Zucchini, E.; Ciarpella, F.; Ricci, D. Single walled carbon nanohorns composite for neural sensing and stimulation. Sens. Actuators B Chem., 2018, 271, 280-288.
[59]
Li, N.; Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Synthesis of single wall carbon nanohorns by arc-discharge in air and their formation mechanism. Carbon, 2010, 48, 1580.
[60]
Agresti, F.; Barison, S.; Famengo, A.; Pagura, C.; Fabrizio, M. Surface oxidation of single wall carbon nanohorns for the production of surfactant free water-based colloids. J. Colloid Interface Sci., 2018, 514, 528-533.
[61]
Basu, S.; Bhattacharyya, P. Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B Chem., 2012, 173, 1-21.
[62]
Tanigaki, N.; Murata, K.; Hayashi, T.; Kaneko, K. Mild oxidation-production of subnanometer-sized nanowindows of single wall carbon nanohorn. J. Colloid Interface Sci., 2018, 529, 332-336.
[63]
Zobir, S.A.M.; Zainal, Z.; Keng, C.S.; Sarijo, S.H.; Yusop, M. Synthesis of carbon nanohorn–carbon nanotube hybrids using palm olein as a precursor. Carbon, 2013, 54, 492-494.
[64]
Isaac, K.; Sabaraya, I.; Ghousifam, N.; Das, D.; Rylander, M. Functionalization of single-walled carbon nanohorns for simultaneous fluorescence imaging and cisplatin delivery in vitro. Carbon, 2018, 138, 309-318.
[65]
Sano, N.; Nakano, J.; Kanki, T. Synthesis of single-walled carbon nanotubes with nanohorns by arc in liquid nitrogen. Carbon, 2004, 42(3), 686-688.
[66]
Mehra, N.; Jain, A.; Nahar, M. Carbon nanomaterials in oncology: An expanding horizon. Drug Discov. Today, 2018, 23, 1016-1025.
[67]
Sano, N. Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection. J. Phys. D Appl. Phys., 2004, 37(8), 17-20.
[68]
Nan, Y.; Li, B.; Zhao, X.; Song, X.; Su, L. Probing the mechanical properties of carbon nanohorns subjected to uniaxial compression and hydrostatic pressure. Carbon, 2017, 125, 236-244.
[69]
Irie, M.; Nakamura, M.; Zhang, M.; Yuge, R.; Iijima, S.; Yudasaka, M. Quantification of thin graphene sheets contained in spherical aggregates of single-walled carbon nanohorns. Chem. Phys. Lett., 2010, 500, 96.
[70]
Yuge, R.; Nihey, F.; Toyama, K.; Yudasaka, M. Carbon nanotubes forming cores of fibrous aggregates of carbon nanohorns. Carbon, 2017, 122, 665-668.
[71]
Yudasaka, M.; Ichihashi, T.; Kasuya, D.; Kataura, H.; Iijima, S. Structure changes of single-wall carbon nanotubes and single wall carbon nanohorns caused by heat treatment. Carbon, 2003, 41(6), 1273-1280.
[72]
Liew, K.M.; Kai, M.F.; Zhang, L.W. Mechanical and damping properties of CNT-reinforced cementitious composites. Compos. Struct., 2017, 160, 81-88.
[73]
Nam, I.W.; Park, S.M.; Lee, H.K.; Zheng, L. Mechanical properties and piezoresistive sensing capabilities of FRP composites incorporating CNT fibers. Compos. Struct., 2017, 178, 1-8.
[74]
Sarno, M.; Sannino, D.; Leone, C.; Ciambelli, P. Evaluating the effects of operating conditions on the quantity, quality and catalyzed growth mechanisms of CNTs. J. Mol. Catal. A Chem., 2012, 357, 26-38.
[75]
Taşyürek, M.; Tarakçioğlu, N. Enhanced fatigue behavior under internal pressure of CNT reinforced filament wound cracked pipes. Compos., Part B Eng., 2017, 124, 23-30.
[76]
Zhan, M.; Pan, G.; Wang, Y.; Kuang, T.; Zhou, F. Ultrafast carbon nanotube growth by microwave irradiation. Diamond Related Materials, 2017, 77, 65-71.
[77]
Chong, C.; Tan, W.; Lee, S.; Chong, W. Morphology and growth of carbon nanotubes catalytically synthesized by premixed hydrocarbon-rich flames. Mater. Chem. Phys., 2017, 197, 246-255.
[78]
Passacantando, M.; Bussolotti, F.; Santucci, S. Tuning electromechanical response of individual CNT by selective electron beam induced deposition. J. Non-Cryst. Solids, 2010, 356, 2038-2041.