Hydrogel-clay Nanocomposites as Carriers for Controlled Release

Page: [919 - 954] Pages: 36

  • * (Excluding Mailing and Handling)

Abstract

The present review aims to summarize the research efforts undertaken in the last few years in the development and testing of hydrogel-clay nanocomposites proposed as carriers for controlled release of diverse drugs. Their advantages, disadvantages and different compositions of polymers/biopolymers with diverse types of clays, as well as their interactions are discussed. Illustrative examples of studies regarding hydrogel-clay nanocomposites are detailed in order to underline the progressive researches on hydrogel-clay-drug pharmaceutical formulations able to respond to a series of demands for the most diverse applications. Brief descriptions of the different techniques used for the characterization of the obtained complex hybrid materials such as: swelling, TGA, DSC, FTIR, XRD, mechanical, SEM, TEM and biology tests, are also included. Enlightened by the presented data, we can suppose that hydrogel-clay nanocomposites will still be a challenging subject of global assiduous researches. We can dare to dream to an efficient drug delivery platform for the treatment of multiple affection concomitantly, these being undoubtedly like ”a tree of life” bearing different kinds of fruits and leaves proper for human healing.

Keywords: Clay, drug, hydrogel, nanocomposites, controlled release, hydrogel-clay, biopolymer.

[1]
Portal, S. Statistics portal, total global pharmaceutical research and development (R&D) spending from 2008 to 2022 (in billion U.S. dollars). Available at: https://www.statista.com/statistics/309466/global-r-and-d-expenditure-for-pharmaceuticals/ (Accessed Date: 2 Febuary, 2018)
[2]
Babul Reddy, A.B.M.; T., Jayaramudu; E.R., Sadiku; P., Anand Babu; S, Periyar Selvam. Design and characterization of bio-nanocomposites for 5-fluorouracil drug delivery and antimicrobial study. Nano-Micro Lett., 2016.
[3]
Manjula, B.A.B.R.; E.R., Sadiku; Reshma, B. Nabia, S. Periyar Selvam. Design and characterization of bio nanocomposites for 5-fluorouracil drug delivery and antimicrobial study. Proceedings of Research World International Conference, 2016.
[4]
Barkhordari, S.; Yadollahi, M.; Namazi, H. pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. J. Polym. Res., 2014, 21(6), 1.
[http://dx.doi.org/10.1007/s10965-014-0454-z]
[5]
Bignotti, F.; Lebon, F.; Peroni, I. Effect of filler networking on the response of thermosensitive composite hydrogels. Eur. Polym. J., 2007, 43(5), 1996-2006.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.03.002]
[6]
Chang, C-W.; van Spreeuwel, A.; Zhang, C.; Varghese, S. PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter, 2010, 6(20), 5157.
[http://dx.doi.org/10.1039/c0sm00067a]
[7]
Churochkina, N.A.; Starodoubtsev, S.G.; Khokhlov, A.R. Swelling and collapse of the gel composites based on neutral and slightly charged poly(acrylamide) gels containing Na-montmorillonite. Polym. Gels Netw., 1998, 6(3-4), 205-215.
[http://dx.doi.org/10.1016/S0966-7822(97)00014-2]
[8]
Dadkhah, D.; Navarchian, A.H.; Aref, L.; Tavakoli, N. Application of taguchi method to investigate the drug release behavior of poly(acrylamide-co-maleic acid)/montm-orillonite nanocomposite hydrogels. Advances in Polymer Technology., 2014, 33(4)
[http://dx.doi.org/10.1002/adv.21426]
[9]
El Salmawi, K.M.; Ibrahim, S.M. Characterization of superabsorbent carboxymethylcellulose/clay hydrogel prepared by electron beam irradiation. Macromol. Res., 2011, 19(10), 1029-1034.
[http://dx.doi.org/10.1007/s13233-011-1006-6]
[10]
Fan, L.; Zhang, J.; Wang, A. In situ generation of sodium alginate/hydroxyapatite/halloysite nanotubes nanocomposite hydrogel beads as drug-controlled release matrices. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(45), 6261.
[http://dx.doi.org/10.1039/c3tb20971g]
[11]
Fraile, J.M.; Garcia-Martin, E.; Gil, C.; Mayoral, J.A.; Pablo, L.E.; Polo, V.; Prieto, E.; Vispe, E. Laponite as carrier for controlled in vitro delivery of dexamethasone in vitreous humor models. Eur. J. Pharm. Biopharm., 2016, 108, 83-90.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.015] [PMID: 27594212 ]
[12]
Gao, D.; Heimann, R.B. Structure and mechanical properties of superabsorbent poly(acrylamide)-montmorillonite composite hydrogels. Polym. Gels Netw., 1993, 1(4), 225-246.
[http://dx.doi.org/10.1016/0966-7822(93)90002-Y]
[13]
Gregory, J.; Cannell, J.; Kofron, M.; Yeghiazarian, L.; Nistor, V. Functionalization of hybrid poly(n-isopropylacrylamide) hydrogels forEscherichia colicell capture via adsorbed intermediate dye molecule. J. Appl. Polym. Sci., 2015, 132(10)
[http://dx.doi.org/10.1002/app.41557]
[14]
Cole, G.; Gok, M.K.; Guclu, G. Removal of basic dye from aqueous solutions using a novel nanocomposite hydrogel: n-vinyl 2-pyrrolidone/itaconic acid/organo clay. Water Air Soil Pollut., 2013, 224(11)
[http://dx.doi.org/10.1007/s11270-013-1760-5]
[15]
Hong, H-J.; Kim, J.; Suh, Y.J.; Kim, D.; Roh, K-M.; Kang, I. pH-sensitive mesalazine carrier for colon-targeted drug delivery: A two-fold composition of mesalazine with a clay and alginate. Macromol. Res., 2017, 25(11), 1145-1152.
[http://dx.doi.org/10.1007/s13233-017-5150-5]
[16]
Hua, S.; Yang, H.; Wang, W.; Wang, A. Controlled release of ofloxacin from chitosan–montmorillonite hydrogel. Appl. Clay Sci., 2010, 50(1), 112-117.
[http://dx.doi.org/10.1016/j.clay.2010.07.012]
[17]
Huang, B.; Liu, M.; Zhou, C. Cellulose-halloysite nanotube composite hydrogels for curcumin delivery. Cellulose, 2017, 24(7), 2861-2875.
[http://dx.doi.org/10.1007/s10570-017-1316-8]
[18]
Yang, H.S.H.; Wang, W.; Wang, A. Composite hydrogel beads based on chitosan and laponite: preparation, swelling, and drug release behaviour. Iran. Polym. J., 2011, 20(6), 479-490.
[19]
Ibrahim, S.M.; El-Naggar, A.A. Preparation of poly(vinyl alcohol)/clay hydrogel through freezing and thawing followed by electron beam irradiation for the treatment of wastewater. J. Thermo. Comp. Mat., 2012, 26(10), 1332-1348.
[http://dx.doi.org/10.1177/0892705712439567]
[20]
Haraguchi, K.; Takehisa, T.; Ebato, M. Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules, 2006, 7(11), 3267-3275.
[http://dx.doi.org/10.1021/bm060549b] [PMID: 17096560 ]
[21]
Lin, X.; Ju, X.; Xie, R.; Jiang, M.; Wei, J.; Chu, L. Halloysite nanotube composited thermo-responsive hydrogel system for controlled-release. Chin. J. Chem. Eng., 2013, 21(9), 991-998.
[http://dx.doi.org/10.1016/S1004-9541(13)60572-8]
[22]
Liu, F.; Bai, L.; Zhang, H.; Song, H.; Hu, L.; Wu, Y.; Ba, X. Smart H2O2-responsive drug delivery system made by halloysite nanotubes and carbohydrate polymers. ACS Appl. Mater. Interfaces, 2017, 9(37), 31626-31633.
[http://dx.doi.org/10.1021/acsami.7b10867] [PMID: 28862828 ]
[23]
Liu, G.; Zhang, Y-M.; Xu, X.; Zhang, L.; Liu, Y. Optically switchable luminescent hydrogel by synergistically intercalating photochromic molecular rotor into inorganic clay. Adv. Opt. Mater., 2017, 5(11) 1700149
[http://dx.doi.org/10.1002/adom.201700149]
[24]
Liu, K.H.; Liu, T.Y.; Chen, S.Y.; Liu, D.M. Drug release behavior of chitosan-montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomater., 2008, 4(4), 1038-1045.
[http://dx.doi.org/10.1016/j.actbio.2008.01.012] [PMID: 18337198 ]
[25]
Morariu, S.; Bercea, M.; Sacarescu, L. Tailoring of clay/poly(ethylene oxide) hydrogel properties by chitosan incorporation. Ind. Eng. Chem. Res., 2014, 53(35), 13690-13698.
[http://dx.doi.org/10.1021/ie501891t]
[26]
Oh, S-T.; Kim, W-R.; Kim, S-H.; Chung, Y-C.; Park, J-S. The preparation of polyurethane foam combined with pH-sensitive alginate/bentonite hydrogel for wound dressings. Fibers Polym., 2011, 12(2), 159-165.
[http://dx.doi.org/10.1007/s12221-011-0159-4]
[27]
Ordikhani, F.; Dehghani, M.; Simchi, A. Antibiotic-loaded chitosan-Laponite films for local drug delivery by titanium implants: cell proliferation and drug release studies. J. Mater. Sci. Mater. Med., 2015, 26(12), 269.
[http://dx.doi.org/10.1007/s10856-015-5606-0] [PMID: 26507202]
[28]
Phan, V.H.G.; Lee, E.; Maeng, J.H.; Thambi, T.; Kim, B.S.; Lee, D.; Lee, D.S. Pancreatic cancer therapy using an injectable nanobiohybrid hydrogel. RSC Advances, 2016, 6(47), 41644-41655.
[http://dx.doi.org/10.1039/C6RA07934B]
[29]
Rojas, R.; Palena, M.C.; Jimenez-Kairuz, A.F.; Manzo, R.H.; Giacomelli, C.E. Modeling drug release from a layered double hydroxide-ibuprofen complex. Appl. Clay Sci., 2012, 62-63, 15-20.
[http://dx.doi.org/10.1016/j.clay.2012.04.004]
[30]
Sirousazar, M.; Jahani-Javanmardi, A.; Kheiri, F.; Hassan, Z.M. In vitro and in vivo assays on egg white/polyvinyl alcohol/clay nanocomposite hydrogel wound dressings. J. Biomater. Sci. Polym. Ed., 2016, 27(16), 1569-1583.
[http://dx.doi.org/10.1080/09205063.2016.1218210] [PMID: 27472819 ]
[31]
Tu, J.; Cao, Z.; Jing, Y.; Fan, C.; Zhang, C.; Liao, L.; Liu, L. Halloysite nanotube nanocomposite hydrogels with tunable mechanical properties and drug release behavior. Compos. Sci. Technol., 2013, 85, 126-130.
[http://dx.doi.org/10.1016/j.compscitech.2013.06.011]
[32]
Vicosa, A.L.; Gomes, A.C.O.; Soares, B.G.; Paranhos, C.M. Effect of sepiolite on the physical properties and swelling behavior of rifampicin-loaded nanocomposite hydrogels. Express Polym. Lett., 2009, 3(8), 518-524.
[http://dx.doi.org/10.3144/expresspolymlett.2009.64]
[33]
Wang, Q.; Wang, W.; Wu, J.; Wang, A. Effect of attapulgite contents on release behaviors of a pH sensitive carboxymethyl cellulose-g-poly(acrylic acid)/attapulgite/sodium alginate composite hydrogel bead containing diclofenac. Journal of Applied Polymer Science., 2011, 124(6)
[http://dx.doi.org/10.1016/j.jconrel.2015.05.152]
[34]
Wang, Q.; Xie, X.; Zhang, X.; Zhang, J.; Wang, A. Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release. Int. J. Biol. Macromol., 2010, 46(3), 356-362.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.01.009] [PMID: 20096301 ]
[35]
Su, X.; Mahalingam, S.; Edirisinghe, M.; Chen, B. Highly stretchable and highly resilient polymer-clay nanocomposite hydrogels with low hysteresis. ACS Appl. Mater. Interfaces, 2017, 9(27)
[http://dx.doi.org/10.1021/acsami.7b05261]
[36]
Aalaie, J.; Vasheghani-Farahani, E.; Rahmatpour, A.; Semsarzadeh, M.A. Effect of montmorillonite on gelation and swelling behavior of sulfonated polyacrylamide nanocomposite hydrogels in electrolyte solutions. Eur. Polym. J., 2008, 44(7), 2024-2031.
[http://dx.doi.org/10.1016/j.eurpolymj.2008.04.031]
[37]
Abdeen, R.; Salahuddin, N. Modified chitosan-clay nanocomposite as a drug delivery system intercalation and in vitro release of ibuprofen. J. Chem., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/576370]
[38]
Aguzzi, C.; Capra, P.; Bonferoni, C.; Cerezo, P.; Salcedo, I.; Sánchez, R.; Caramella, C.; Viseras, C. Chitosan-silicate biocomposites to be used in modified drug release of 5-aminosalicylic acid (5-ASA). Appl. Clay Sci., 2010, 50(1), 106-111.
[http://dx.doi.org/10.1016/j.clay.2010.07.011]
[39]
Anirudhan, T.S.; Parvathy, J. Novel pH sensitive composite hydrogel based on functionalized chitosan/clay for the controlled release of a calcium channel blocker. Des. Monomers Polym., 2015, 18(5), 413-423.
[http://dx.doi.org/10.1080/15685551.2015.1012622]
[40]
Asadi, N.; Alizadeh, E.; Salehi, R.; Khalandi, B.; Davaran, S.; Akbarzadeh, A. Nanocomposite hydrogels for cartilage tissue engineering: a review. Artif. Cells Nanomed. Biotechnol., 2017, 1-7.
[PMID: 28743188 ]
[41]
Bai, H.; Zhang, Q.; He, T.; Zheng, G.; Zhang, G.; Zheng, L.; Ma, S. Adsorption dynamics, diffusion and isotherm models of poly(NIPAm/LMSH) nanocomposite hydrogels for the removal of anionic dye Amaranth from an aqueous solution. Appl. Clay Sci., 2016, 124-125, 157-166.
[http://dx.doi.org/10.1016/j.clay.2016.02.007]
[42]
Banerjee, S.L.; Khamrai, M.; Kundu, P.P.; Singha, N.K. Synthesis of a self-healable and pH responsive hydrogel based on an ionic polymer/clay nanocomposite. RSC Advances, 2016, 6(85), 81654-81665.
[http://dx.doi.org/10.1039/C6RA01074A]
[43]
Bao, S.; Wu, D.; Wang, Q.; Su, T. Functional elastic hydrogel as recyclable membrane for the adsorption and degradation of methylene blue. PLoS One, 2014, 9(2) e88802
[http://dx.doi.org/10.1371/journal.pone.0088802] [PMID: 24586396 ]
[44]
Bazmi zeynabad, F.; Salehi, R.; Alizadeh, E.; Kafil, H. S.; Hassanzadeh, A. M.; Mahkam, M., pH-Controlled multiple-drug delivery by a novel antibacterial nanocomposite for combination therapy. RSC Advances, 2015, 5(128), 105678-105691.
[http://dx.doi.org/10.1039/C5RA22784D]
[45]
Bercea, M.; Bibire, E-L.; Morariu, S.; Teodorescu, M.; Carja, G. pH influence on rheological and structural properties of chitosan/poly(vinyl alcohol)/layered double hydroxide composites. Eur. Polym. J., 2015, 70, 147-156.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.07.013]
[46]
Bhatia, M.; Rajulapati, S.B.; Sonawane, S.; Girdhar, A. Synthesis and implication of novel poly(acrylic acid)/nanosorbent embedded hydrogel composite for lead ion removal. Sci. Rep., 2017, 7(1), 16413.
[http://dx.doi.org/10.1038/s41598-017-15642-9] [PMID: 29180764 ]
[47]
Bhattacharyya, R.; Ray, S.K. Micro- and nano-sized bentonite filled composite superabsorbents of chitosan and acrylic copolymer for removal of synthetic dyes from water. Appl. Clay Sci., 2014, 101, 510-520.
[http://dx.doi.org/10.1016/j.clay.2014.09.015]
[48]
Bhattacharyya, R.; Ray, S.K. Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chem. Eng. J., 2015, 260, 269-283.
[http://dx.doi.org/10.1016/j.cej.2014.08.030]
[49]
Bortolin, A.; Aouada, F.A.; Mattoso, L.H.; Ribeiro, C. Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J. Agric. Food Chem., 2013, 61(31), 7431-7439.
[http://dx.doi.org/10.1021/jf401273n] [PMID: 23822729 ]
[50]
Bortolin, A.; Serafim, A.R.; Aouada, F.A.; Mattoso, L.H.; Ribeiro, C. Macro- and micronutrient simultaneous slow release from highly swellable nanocomposite hydrogels. J. Agric. Food Chem., 2016, 64(16), 3133-3140.
[http://dx.doi.org/10.1021/acs.jafc.6b00190] [PMID: 27043128]
[51]
Bounabi, L.; Mokhnachi, N.B.; Haddadine, N.; Ouazib, F.; Barille, R. Development of poly(2-hydroxyethyl methacrylate)/clay composites as drug delivery systems of paracetamol. J. Drug Deliv. Sci. Technol., 2016, 33, 58-65.
[http://dx.doi.org/10.1016/j.jddst.2016.03.010]
[52]
Boyaci, T.; Orakdogen, N. Poly(N,N-dimethylaminoethyl methacrylate-co-2-acrylamido-2-methyl-propanosulfonic acid)/Laponite nanocomposite hydrogels and cryogels with improved mechanical strength and rapid dynamic properties. Appl. Clay Sci., 2016, 121-122, 162-173.
[http://dx.doi.org/10.1016/j.clay.2015.12.018]
[53]
Boyer, C.; Figueiredo, L.; Pace, R.; Lesoeur, J.; Rouillon, T.; Visage, C.L.; Tassin, J.F.; Weiss, P.; Guicheux, J.; Rethore, G. Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomater., 2018, 65, 112-122.
[http://dx.doi.org/10.1016/j.actbio.2017.11.027] [PMID: 29128532 ]
[54]
Can, V.; Abdurrahmanoglu, S.; Okay, O. Unusual swelling behavior of polymer-clay nanocomposite hydrogels. Polymer (Guildf.), 2007, 48(17), 5016-5023.
[http://dx.doi.org/10.1016/j.polymer.2007.06.066]
[55]
Cheaburu-Yilmaz, C.; Dumitriu, R.; Nistor, M-T.; Lupusoru, C.; Popa, M.; Profire, L.; Silvestre, C.; Vasile, C. Biocompatible and biodegradable chitosan / clay nanocomposites as new carriers for theophylline controlled release. Br. J. Pharm. Res., 2015, 6(4), 228-254.
[http://dx.doi.org/10.9734/BJPR/2015/16525]
[56]
Chen, H-B.; Hollinger, E.; Wang, Y-Z.; Schiraldi, D.A. Facile fabrication of poly(vinyl alcohol) gels and derivative aerogels. Polymer (Guildf.), 2014, 55(1), 380-384.
[http://dx.doi.org/10.1016/j.polymer.2013.07.078]
[57]
Chen, P.; Xu, S.; Wu, R.; Wang, J.; Gu, R.; Du, J. A transparent Laponite polymer nanocomposite hydrogel synthesis via in-situ copolymerization of two ionic monomers. Appl. Clay Sci., 2013, 72, 196-200.
[http://dx.doi.org/10.1016/j.clay.2013.01.012]
[58]
Cojocariu, A.; Profire, L.; Aflori, M.; Vasile, C. In vitro drug release from chitosan/Cloisite 15A hydrogels. Appl. Clay Sci., 2012, 57, 1-9.
[http://dx.doi.org/10.1016/j.clay.2011.11.030]
[59]
Cross, L.M.; Shah, K.; Palani, S.; Peak, C.W.; Gaharwar, A.K. Gradient nanocomposite hydrogels for interface tissue engineering. Nanomedicine (Lond.), 2017.
[PMID: 28554596]
[60]
da Costa, M.P.; de Mello Ferreira, I.L.; de Macedo Cruz, M.T. New polyelectrolyte complex from pectin/chitosan and montmorillonite clay. Carbohydr. Polym., 2016, 146, 123-130.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.025] [PMID: 27112858]
[61]
Dalaran, M.; Emik, S.; Güçlü, G.; İyim, T.B.; Özgümüş, S. Study on a novel polyampholyte nanocomposite superabsorbent hydrogels: Synthesis, characterization and investigation of removal of indigo carmine from aqueous solution. Desalination, 2011, 279(1-3), 170-182.
[http://dx.doi.org/10.1016/j.desal.2011.06.004]
[62]
de Kruif, J.K.; Ledergerber, G.; Garofalo, C.; Fasler-Kan, E.; Kuentz, M. On prilled nanotubes-in-microgel oral systems for protein delivery. Eur. J. Pharm. Biopharm., 2016, 101, 90-102.
[http://dx.doi.org/10.1016/j.ejpb.2016.01.014] [PMID: 26851504]
[63]
de Oliveira, M.J.A.; Parra, D.F.; Amato, V.S.; Lugão, A.B. Hydrogel membranes of PVAl/ clay by gamma radiation. Radiat. Phys. Chem., 2013, 84, 111-114.
[http://dx.doi.org/10.1016/j.radphyschem.2012.06.035]
[64]
Del Buffa, S.; Rinaldi, E.; Carretti, E.; Ridi, F.; Bonini, M.; Baglioni, P. Injectable composites via functionalization of 1D nanoclays and biodegradable coupling with a polysaccharide hydrogel. Colloids Surf. B Biointerfaces, 2016, 145, 562-566.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.056] [PMID: 27281242]
[65]
Demirci, S.; Suner, S.S.; Sahiner, M.; Sahiner, N. Superporous hyaluronic acid cryogel composites embedding synthetic polyethyleneimine microgels and halloysite nanotubes as natural clay. Eur. Polym. J., 2017, 93, 775-784.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.04.022]
[66]
Depan, D.; Kumar, A.P.; Singh, R.P. Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite. Acta Biomater., 2009, 5(1), 93-100.
[http://dx.doi.org/10.1016/j.actbio.2008.08.007] [PMID: 18796355 ]
[67]
England, M.W.; Urata, C.; Dunderdale, G.J.; Hozumi, A. Anti-fogging/self-healing properties of clay-containing transparent nanocomposite thin films. ACS Appl. Mater. Interfaces, 2016, 8(7), 4318-4322.
[http://dx.doi.org/10.1021/acsami.5b11961] [PMID: 26845075]
[68]
Etika, K.C.; Liu, L.; Cox, M.A.; Grunlan, J.C. Clay-mediated carbon nanotube dispersion in poly(N -Isopropylacrylamide). Colloids Surf. A Physicochem. Eng. Asp., 2016, 489, 19-26.
[http://dx.doi.org/10.1016/j.colsurfa.2015.09.024]
[69]
Farhadnejad, H.; Mortazavi, S.A.; Erfan, M.; Darbasizadeh, B.; Motasadizadeh, H.; Fatahi, Y. Facile preparation and characterization of pH sensitive Mt/CMC nanocomposite hydrogel beads for propranolol controlled release. Int. J. Biol. Macromol., 2018, 111, 696-705.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.061] [PMID: 29337099]
[70]
Ferrández-Rives, M.; Beltrán-Osuna, A.A.; Gómez-Tejedor, J.A.; Gómez Ribelles, J.L. Electrospun PVA/bentonite nanocomposites mats for drug delivery. Materials (Basel), 2017, 10(12) E1448
[http://dx.doi.org/10.3390/ma10121448] [PMID: 29261123]
[71]
Frindy, S.; Primo, A.; Ennajih, H.; El Kacem Qaiss, A.; Bouhfid, R.; Lahcini, M.; Essassi, E.M.; Garcia, H.; El Kadib, A. Chitosan-graphene oxide films and CO2-dried porous aerogel microspheres: Interfacial interplay and stability. Carbohydr. Polym., 2017, 167, 297-305.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.034] [PMID: 28433166]
[72]
Gelli, R.; Del Buffa, S.; Tempesti, P.; Bonini, M.; Ridi, F.; Baglioni, P. Enhanced formation of hydroxyapatites in gelatin/imogolite macroporous hydrogels. J. Colloid Interface Sci., 2018, 511, 145-154.
[http://dx.doi.org/10.1016/j.jcis.2017.09.094] [PMID: 29017100]
[73]
Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Antibiotic eluting clay mineral (Laponite®) for wound healing application: an in vitro study. J. Mater. Sci. Mater. Med., 2014, 25(11), 2513-2526.
[http://dx.doi.org/10.1007/s10856-014-5272-7] [PMID: 25027303]
[74]
Gonzalez, J.S.; Maiolo, A.S.; Hoppe, C.E.; Alvarez, V.A. Composite gels based on poly (vinyl alcohol) for biomedical uses. Procedia Materials Science, 2012, 1, 483-490.
[http://dx.doi.org/10.1016/j.mspro.2012.06.065]
[75]
Guilherme, M.R.; Fajardo, A.R.; Moia, T.A.; Kunita, M.H.; Gonçalves, M.C.; Rubira, A.F.; Tambourgi, E.B. Porous nanocomposite hydrogel of vinyled montmorillonite-crosslinked maltodextrin-co-dimethylacrylamide as a highly stable polymer carrier for controlled release systems. Eur. Polym. J., 2010, 46(7), 1465-1474.
[http://dx.doi.org/10.1016/j.eurpolymj.2010.04.008]
[76]
Güler, M.A.; Gök, M.K.; Figen, A.K.; Özgümüş, S. Swelling, mechanical and mucoadhesion properties of Mt/starch-g-PMAA nanocomposite hydrogels. Appl. Clay Sci., 2015, 112-113, 44-52.
[http://dx.doi.org/10.1016/j.clay.2015.04.019]
[77]
Gur, E.; Altinisik, A.; Yurdakoc, K. Preparation and characterization of chitosan/sepiolite bionanocomposites for tetracycline release. Polym. Compos., 2017, 38(9), 1810-1818.
[http://dx.doi.org/10.1002/pc.23751]
[78]
Han, L.; Lu, X.; Liu, K.; Wang, K.; Fang, L.; Weng, L.T.; Zhang, H.; Tang, Y.; Ren, F.; Zhao, C.; Sun, G.; Liang, R.; Li, Z. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano, 2017, 11(3), 2561-2574.
[http://dx.doi.org/10.1021/acsnano.6b05318] [PMID: 28245107]
[79]
Haraguchi, K.; Li, H.J.; Song, L. Unusually high hydrophobicity and its changes observed on the newly-created surfaces of PNIPA/clay nanocomposite hydrogels. J. Colloid Interface Sci., 2008, 326(1), 41-50.
[http://dx.doi.org/10.1016/j.jcis.2008.06.060] [PMID: 18672248]
[80]
Haraguchi, K.; Li, H-J.; Xu, Y.; Li, G. Copolymer nanocomposite hydrogels: Unique tensile mechanical properties and network structures. Polymer (Guildf.), 2016, 96, 94-103.
[http://dx.doi.org/10.1016/j.polymer.2016.04.039]
[81]
Haraguchi, K.; Takehisa, T.; Ebato, M. Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules, 2006, 7(11), 3267-3275.
[http://dx.doi.org/10.1021/bm060549b] [PMID: 17096560]
[82]
Haraguchi, K.; Varade, D. Platinum-polymer-clay nanocomposite hydrogels via exfoliated clay-mediated in situ reduction. Polymer (Guildf.), 2014, 55(10), 2496-2500.
[http://dx.doi.org/10.1016/j.polymer.2014.03.040]
[83]
Haudin, F.; Noblin, X.; Bouret, Y.; Argentina, M.; Raufaste, C. Bubble dynamics inside an outgassing hydrogel confined in a Hele-Shaw cell. Phys Rev E, 2016, 94(2-1), 023109 .
[http://dx.doi.org/10.1103/PhysRevE.94.023109]
[84]
Hom, W.L.; Bhatia, S.R. Significant enhancement of elasticity in alginate-clay nanocomposite hydrogels with PEO-PPO-PEO copolymers. Polymer (Guildf.), 2017, 109, 170-175.
[http://dx.doi.org/10.1016/j.polymer.2016.12.058]
[85]
Hu, X.; Wang, T.; Xiong, L.; Wang, C.; Liu, X.; Tong, Z. Preferential adsorption of poly(ethylene glycol) on hectorite clay and effects on poly(N-isopropylacrylamide)/hectorite nanocomposite hydrogels. Langmuir, 2010, 26(6), 4233-4238.
[http://dx.doi.org/10.1021/la903298n] [PMID: 19994842 ]
[86]
Huang, B.; Liu, M.; Zhou, C. Chitosan composite hydrogels reinforced with natural clay nanotubes. Carbohydr. Polym., 2017, 175, 689-698.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.039] [PMID: 28917918]
[87]
Hussien, R.A.; Donia, A.M.; Atia, A.A.; El-Sedfy, O.F.; El-Hamid, A.R.A.; Rashad, R.T. Studying some hydro-physical properties of two soils amended with kaolinite-modified cross-linked poly-acrylamides. Catena, 2012, 92, 172-178.
[http://dx.doi.org/10.1016/j.catena.2011.12.010]
[88]
Ianchis, R.; Ninciuleanu, C.M.; Gifu, I.C.; Alexandrescu, E.; Somoghi, R.; Gabor, A.R.; Preda, S.; Nistor, C.L.; Nitu, S.; Petcu, C.; Icriverzi, M.; Florian, P.E.; Roseanu, A.M. Novel hydrogel-advanced modified clay nanocomposites as possible vehicles for drug delivery and controlled release. Nanomaterials (Basel), 2017, 7(12)E443
[http://dx.doi.org/10.3390/nano7120443] [PMID: 29236090]
[89]
Iliescu, R.I.; Andronescu, E.; Ghitulica, C.D.; Voicu, G.; Ficai, A.; Hoteteu, M. Montmorillonite-alginate nanocomposite as a drug delivery system--incorporation and in vitro release of irinotecan. Int. J. Pharm., 2014, 463(2), 184-192.
[http://dx.doi.org/10.1016/j.ijpharm.2013.08.043] [PMID: 23998956]
[90]
Irani, M.; Ismail, H.; Ahmad, Z. Preparation and properties of linear low-density polyethylene-g-poly (acrylic acid)/organo-montmorillonite superabsorbent hydrogel composites. Polym. Test., 2013, 32(3), 502-512.
[http://dx.doi.org/10.1016/j.polymertesting.2013.01.001]
[91]
Irani, M.; Ismail, H.; Ahmad, Z.; Fan, M. Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(II) from aqueous solutions. J. Environ. Sci. (China), 2015, 27, 9-20.
[http://dx.doi.org/10.1016/j.jes.2014.05.049] [PMID: 25597658]
[92]
Jain, M.; Matsumura, K. Polyampholyte- and nanosilicate-based soft bionanocomposites with tailorable mechanical and cell adhesion properties. J. Biomed. Mater. Res. A, 2016, 104(6), 1379-1386.
[http://dx.doi.org/10.1002/jbm.a.35672] [PMID: 26833827]
[93]
Jain, S.; Datta, M. Montmorillonite-PLGA nanocomposites as an oral extended drug delivery vehicle for venlafaxine hydrochloride. Appl. Clay Sci., 2014, 99, 42-47.
[http://dx.doi.org/10.1016/j.clay.2014.06.006]
[94]
Janovak, L.; Varga, J.; Kemeny, L.; Dekany, I. Swelling properties of copolymer hydrogels in the presence of montmorillonite and alkylammonium montmorillonite. Appl. Clay Sci., 2009, 43(2), 260-270.
[http://dx.doi.org/10.1016/j.clay.2008.08.002]
[95]
Jiang, J.; Li, C.; Lombardi, J.; Colby, R.H.; Rigas, B.; Rafailovich, M.H.; Sokolov, J.C. The effect of physiologically relevant additives on the rheological properties of concentrated Pluronic copolymer gels. Polymer (Guildf.), 2008, 49(16), 3561-3567.
[http://dx.doi.org/10.1016/j.polymer.2008.05.038]
[96]
Joshi, N.; Rawat, K.; Bohidar, H.B. Characterization of microstructure, viscoelasticity, heterogeneity and ergodicity in pectin-laponite-CTAB-calcium nanocomposite hydrogels. Carbohydr. Polym., 2016, 136, 242-249.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.031] [PMID: 26572352]
[97]
Kaygusuz, H.; Erim, F.B. Alginate/BSA/montmorillonite composites with enhanced protein entrapment and controlled release efficiency. React. Funct. Polym., 2013, 73(11), 1420-1425.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2013.07.014]
[98]
Kevadiya, B.D.; Joshi, G.V.; Mody, H.M.; Bajaj, H.C. Biopolymer-clay hydrogel composites as drug carrier: Host-guest intercalation and in vitro release study of lidocaine hydrochloride. Appl. Clay Sci., 2011, 52(4), 364-367.
[http://dx.doi.org/10.1016/j.clay.2011.03.017]
[99]
Kevadiya, B.D.; Rajkumar, S.; Bajaj, H.C. Application and evaluation of layered silicate–chitosan composites for site specific delivery of diclofenac. Biocybern. Biomed. Eng., 2015, 35(2), 120-127.
[http://dx.doi.org/10.1016/j.bbe.2014.08.004]
[100]
Kevadiya, B.D.; Rajkumar, S.; Bajaj, H.C.; Chettiar, S.S.; Gosai, K.; Brahmbhatt, H.; Bhatt, A.S.; Barvaliya, Y.K.; Dave, G.S.; Kothari, R.K. Biodegradable gelatin-ciprofloxacin-montmorillonite composite hydrogels for controlled drug release and wound dressing application. Colloids Surf. B Biointerfaces, 2014, 122, 175-183.
[http://dx.doi.org/10.1016/j.colsurfb.2014.06.051] [PMID: 25033437]
[101]
Kim, D.; Lee, H.; Sohn, D. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation. J. Nanosci. Nanotechnol., 2014, 14(8), 6427-6430.
[http://dx.doi.org/10.1166/jnn.2014.8792] [PMID: 25936130]
[102]
Kitagawa, M.; Maeda, T.; Hotta, A. PEG-based nanocomposite hydrogel: Thermo-responsive sol-gel transition and degradation behavior controlled by the LA/GA ratio of PLGA-PEG-PLGA. Polym. Degrad. Stabil., 2018, 147, 222-228.
[http://dx.doi.org/10.1016/j.polymdegradstab.2017.11.024]
[103]
Kokabi, M.; Sirousazar, M.; Hassan, Z.M. PVA-clay nanocomposite hydrogels for wound dressing. Eur. Polym. J., 2007, 43(3), 773-781.
[http://dx.doi.org/10.1016/j.eurpolymj.2006.11.030]
[104]
Kumar, V.; Singh, A.; Das, T.K.; Sarkar, D.J.; Singh, S.B.; Dhaka, R.; Kumar, A. Release behavior and bioefficacy of imazethapyr formulations based on biopolymeric hydrogels. J. Environ. Sci. Health B, 2017, 52(6), 402-409.
[http://dx.doi.org/10.1080/03601234.2017.1293446] [PMID: 28272993]
[105]
Shi, K.Z.L.; Yang, C.; Li, X-Y.; Sun, Y-M.; Deng, Y.; Wang, W.; Ju, X-J.; Xie, R.; Chu, L-Y. Novel biocompatible thermo-responsive poly(n-vinyl caprolactam)/clay nanocomposite hydrogels with macroporous structure and improved mechanical characteristics. ACS Appl. Mater. Interfaces, 2017, 9(26), 12.
[http://dx.doi.org/10.1021/acsami.7b04552]
[106]
Kundakci, S.; Üzüm, Ö.B.; Karadağ, E. Swelling and dye sorption studies of acrylamide/2-acrylamido-2-methyl-1-propanesulfonic acid/bentonite highly swollen composite hydrogels. React. Funct. Polym., 2008, 68(2), 458-473.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2007.11.008]
[107]
Kurczewska, J.; Pecyna, P.; Ratajczak, M.; Gajęcka, M.; Schroeder, G. Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing. Saudi Pharm. J., 2017, 25(6), 911-920.
[http://dx.doi.org/10.1016/j.jsps.2017.02.007] [PMID: 28951678]
[108]
Lal, S.; Datta, M. In vitro prolonged gastric residence and sustained release of atenolol using novel clay polymer nanocomposite. Appl. Clay Sci., 2015, 114, 412-421.
[http://dx.doi.org/10.1016/j.clay.2015.06.017]
[109]
Lapasin, R.; Abrami, M.; Grassi, M.; Šebenik, U. Rheology of Laponite-scleroglucan hydrogels. Carbohydr. Polym., 2017, 168, 290-300.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.068] [PMID: 28457452]
[110]
Li, H.; Gu, R.; Xu, S.; Abudurman, A.; Wang, J. Surfactant-assisted synthesis of a transparent ionic nanocomposite hydrogel. Appl. Clay Sci., 2014, 101, 335-338.
[http://dx.doi.org/10.1016/j.clay.2014.08.024]
[111]
Li, P.; Kim, N.H.; Hui, D.; Rhee, K.Y.; Lee, J.H. Improved mechanical and swelling behavior of the composite hydrogels prepared by ionic monomer and acid-activated Laponite. Appl. Clay Sci., 2009, 46(4), 414-417.
[http://dx.doi.org/10.1016/j.clay.2009.10.007]
[112]
Li, P.; Kim, N.H. Siddaramaiah; Lee, J. H., Swelling behavior of polyacrylamide/laponite clay nanocomposite hydrogels: pH-sensitive property. Compos., Part B Eng., 2009, 40(4), 275-283.
[http://dx.doi.org/10.1016/j.compositesb.2009.01.001]
[113]
Li, P. Siddaramaiah; Kim, N. H.; Heo, S.-B.; Lee, J.-H., Novel PAAm/Laponite clay nanocomposite hydrogels with improved cationic dye adsorption behavior. Compos., Part B Eng., 2008, 39(5), 756-763.
[http://dx.doi.org/10.1016/j.compositesb.2007.11.003]
[114]
Lian, C.; Zhang, E.; Wang, T.; Sun, W.; Liu, X.; Tong, Z. Binding interaction and gelation in aqueous mixtures of poly(N-isopropylacrylamide) and hectorite clay. J. Phys. Chem. B, 2015, 119(2), 612-619.
[http://dx.doi.org/10.1021/jp510526j] [PMID: 25516283]
[115]
Liao, X-J.; Chen, G-S. A hybrid hydrogel based on clay nanoplatelets and host-guest inclusion complexes. Chin. Chem. Lett., 2016, 27(4), 583-587.
[http://dx.doi.org/10.1016/j.cclet.2016.02.022]
[116]
Liu, D.; Wang, T.; Liu, X.; Tong, Z. Accelerated cell sheet detachment by copolymerizing hydrophilic PEG side chains into PNIPAm nanocomposite hydrogels. Biomed. Mater., 2012, 7(5)055008
[http://dx.doi.org/10.1088/1748-6041/7/5/055008] [PMID: 22945315]
[117]
Liu, M.; Zhang, Y.; Li, J.; Zhou, C. Chitin-natural clay nanotubes hybrid hydrogel. Int. J. Biol. Macromol., 2013, 58, 23-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.042] [PMID: 23535366]
[118]
Liu, Y.; Liu, X.; Wu, Y.; Sun, B.; Zhu, M.; Takafuji, M.; Ihara, H. Peculiar nanocomposite hydrogel with controllable multiple thermosensitivity: double phase transition and ternary stable states. Chem. Commun. (Camb.), 2010, 46(3), 430-432.
[http://dx.doi.org/10.1039/B919759A] [PMID: 20066315]
[119]
Liu, Y.; Zhu, M.; Liu, X.; Zhang, W.; Sun, B.; Chen, Y.; Adler, H-J.P. High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics. Polymer (Guildf.), 2006, 47(1), 1-5.
[http://dx.doi.org/10.1016/j.polymer.2005.11.030]
[120]
Ma, D.; Zhu, B.; Cao, B.; Wang, J.; Zhang, J. Fabrication of the novel hydrogel based on waste corn stalk for removal of methylene blue dye from aqueous solution. Appl. Surf. Sci., 2017, 422, 944-952.
[http://dx.doi.org/10.1016/j.apsusc.2017.06.072]
[121]
Ma, J.; Xu, Y.; Fan, B.; Liang, B. Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. Eur. Polym. J., 2007, 43(6), 2221-2228.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.02.026]
[122]
Madhusudana Rao, K.; Kumar, A.; Han, S.S. Polysaccharide based hydrogels reinforced with halloysite nanotubes via polyelectrolyte complexation. Mater. Lett., 2018, 213, 231-235.
[http://dx.doi.org/10.1016/j.matlet.2017.11.085]
[123]
Mahdavinia, G.R.; Aghaie, H.; Sheykhloie, H.; Vardini, M.T.; Etemadi, H. Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr. Polym., 2013, 98(1), 358-365.
[http://dx.doi.org/10.1016/j.carbpol.2013.05.096] [PMID: 23987355]
[124]
Mahdavinia, G.R.; Ettehadi, S.; Amini, M.; Sabzi, M. Synthesis and characterization of hydroxypropyl methylcellulose-g-poly(acrylamide)/LAPONITE® RD nanocomposites as novel magnetic- and pH-sensitive carriers for controlled drug release. RSC Advances, 2015, 5(55), 44516-44523.
[http://dx.doi.org/10.1039/C5RA03731J]
[125]
Mahdavinia, G.R.; Soleymani, M.; Sabzi, M.; Azimi, H.; Atlasi, Z. Novel magnetic polyvinyl alcohol/laponite RD nanocomposite hydrogels for efficient removal of methylene blue. J. Environ. Chem. Eng., 2017, 5(3), 2617-2630.
[http://dx.doi.org/10.1016/j.jece.2017.05.017]
[126]
Mahkam, M.; Latifpour, A.; Rafi, A.A.; Gheshlaghi, L.M.; Takfallah, A. Preparation of montmorillonite-pH-sensitive positive charges nanocomposites as a drug delivery system. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 64(1), 32-37.
[http://dx.doi.org/10.1080/00914037.2014.886241]
[127]
Maity, J.; Ray, S.K. Enhanced adsorption of Cr(VI) from water by guar gum based composite hydrogels. Int. J. Biol. Macromol., 2016, 89, 246-255.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.036] [PMID: 27086296]
[128]
Albalawi, M.A.; Mohammed, W.S.; Hussein, N. Utilization of MMT clay and MMT-chitosan for platinol drug delivery. Pharma Chem., 2016, 8(23), 27-34.
[129]
Mauroy, H.; Rozynek, Z.; Plivelic, T.S.; Fossum, J.O.; Helgesen, G.; Knudsen, K.D. Oxygen-controlled phase segregation in poly(N-isopropylacrylamide)/laponite nanocomposite hydrogels. Langmuir, 2013, 29(1), 371-379.
[http://dx.doi.org/10.1021/la303889s] [PMID: 23210524]
[130]
Mittal, H.; Jindal, R.; Kaith, B.S.; Maity, A.; Ray, S.S. Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acrylamide-co-methacrylic acid) hydrogels. Carbohydr. Polym., 2015, 115, 617-628.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.026] [PMID: 25439940]
[131]
Mittal, H.; Maity, A.; Ray, S.S. Gum ghatti and poly(acrylamide-co-acrylic acid) based biodegradable hydrogel-evaluation of the flocculation and adsorption properties. Polym. Degrad. Stabil., 2015, 120, 42-52.
[http://dx.doi.org/10.1016/j.polymdegradstab.2015.06.008]
[132]
Miyazaki, M.; Maeda, T.; Hirashima, K.; Kurokawa, N.; Nagahama, K.; Hotta, A. PEG-based nanocomposite hydrogel: Thermoresponsive sol-gel transition controlled by PLGA-PEG-PLGA molecular weight and solute concentration. Polymer (Guildf.), 2017, 115, 246-254.
[http://dx.doi.org/10.1016/j.polymer.2017.03.016]
[133]
Mohamed, W.S.; Mostafa, A.B.; Nasr, H.E. Characterization and application of intercalated montmorillonite with verapamil and its polymethyl methacrylate nanocomposite in drug delivery. Polym. Plast. Technol. Eng., 2014, 53(14), 1425-1433.
[http://dx.doi.org/10.1080/03602559.2014.909462]
[134]
Mourycová, J.; Datta, K.K.R.; Procházková, A.; Plotěná, M.; Enev, V.; Smilek, J.; Másílko, J.; Pekař, M. Facile synthesis and rheological characterization of nanocomposite hyaluronan-organoclay hydrogels. Int. J. Biol. Macromol., 2018, 111, 680-684.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.068] [PMID: 29339285]
[135]
Mousa, M.; Evans, N.D.; Oreffo, R.O.C.; Dawson, J.I. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity. Biomaterials, 2018, 159, 204-214.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.024] [PMID: 29331807]
[136]
Nakamura, T.; Ogawa, M. Adsorption of cationic dyes within spherical particles of poly(N-isopropylacrylamide) hydrogel containing smectite. Appl. Clay Sci., 2013, 83-84, 469-473.
[http://dx.doi.org/10.1016/j.clay.2013.05.005]
[137]
Natkański, P.; Kuśtrowski, P.; Białas, A.; Piwowarska, Z.; Michalik, M. Controlled swelling and adsorption properties of polyacrylate/montmorillonite composites. Mater. Chem. Phys., 2012, 136(2-3), 1109-1115.
[http://dx.doi.org/10.1016/j.matchemphys.2012.08.061]
[138]
Natkański, P.; Kuśtrowski, P.; Białas, A.; Piwowarska, Z.; Michalik, M. Thermal stability of montmorillonite polyacrylamide and polyacrylate nanocomposites and adsorption of Fe(III) ions. Appl. Clay Sci., 2013, 75-76, 153-157.
[http://dx.doi.org/10.1016/j.clay.2013.02.002]
[139]
Natkański, P.; Kuśtrowski, P.; Białas, A.; Wach, A.; Rokicińska, A.; Kozak, M.; Lityńska-Dobrzyńska, L. Hydrogel template-assisted synthesis of nanometric Fe2O3 supported on exfoliated clay. Microporous Mesoporous Mater., 2016, 221, 212-219.
[http://dx.doi.org/10.1016/j.micromeso.2015.09.047]
[140]
Ni, B.; Liu, M.; Lü, S.; Xie, L.; Wang, Y. Environmentally friendly slow-release nitrogen fertilizer. J. Agric. Food Chem., 2011, 59(18), 10169-10175.
[http://dx.doi.org/10.1021/jf202131z] [PMID: 21848295]
[141]
Nigmatullin, R.; Bencsik, M.; Gao, F. Influence of polymerisation conditions on the properties of polymer/clay nanocomposite hydrogels. Soft Matter, 2014, 10(12), 2035-2046.
[http://dx.doi.org/10.1039/c3sm52887a] [PMID: 24652415]
[142]
Oliveira, M.J.A.; Amato, V.S.; Lugão, A.B.; Parra, D.F. Hybrid hydrogels produced by ionizing radiation technique. Radiat. Phys. Chem., 2012, 81(9), 1471-1474.
[http://dx.doi.org/10.1016/j.radphyschem.2012.02.004]
[143]
Oliveira, M.J.A.; Estefânia, O.S.; Lúcia, M.A.B.; Regina, M.; Amato, V.S.; Lugão, A.B.; Parra, D.F. Influence of chitosan/clay in drug delivery of glucantime from PVP membranes. Radiat. Phys. Chem., 2014, 94, 194-198.
[http://dx.doi.org/10.1016/j.radphyschem.2013.05.050]
[144]
Orakdogen, N.; Boyaci, T. pH-stimulus on–off switching behavior and improved response rate of slightly charged poly(N,N-dimethylaminoethyl methacrylate) nano-sized composites with incorporated Laponite as crosslinker. React. Funct. Polym., 2016, 102, 82-92.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2016.03.008]
[145]
Pacelli, S.; Paolicelli, P.; Moretti, G.; Petralito, S.; Di Giacomo, S.; Vitalone, A.; Casadei, M.A. Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications. Eur. Polym. J., 2016, 77, 114-123.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.02.007]
[146]
Paranhos, C.M.; Soares, B.G.; Machado, J.C.; Windmöller, D.; Pessan, L.A. Microstructure and free volume evaluation of poly(vinyl alcohol) nanocomposite hydrogels. Eur. Polym. J., 2007, 43(12), 4882-4890.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.10.001]
[147]
Park, K-L.; Ma, W.; Higaki, Y.; Takahara, A. Design and characterization of hybrid hydrogels composed of imogolite fibrous nanotubular clay and hyaluronic acid. Polymer (Guildf.), 2016, 100, 238-243.
[http://dx.doi.org/10.1016/j.polymer.2016.08.018]
[148]
Paz Zanini, V.I.; Tulli, F.; Martino, D.M.; López de Mishima, B.; Borsarelli, C.D. Improvement of the amperometric response to l-lactate by using a cationic bioinspired thymine polycation in a bioelectrode with immobilized lactate oxidase. Sens. Actuators B Chem., 2013, 181, 251-258.
[http://dx.doi.org/10.1016/j.snb.2013.01.061]
[149]
Pinto, F.C.H.; Silva-Cunha, A.; Pianetti, G.A.; Ayres, E.; Oréfice, R.L.; Da Silva, G.R. Montmorillonite clay-based polyurethane nanocomposite as local triamcinolone acetonide delivery system. J. Nanomater., 2011, 2011, 1-11.
[http://dx.doi.org/10.1155/2011/528628]
[150]
Rao, K.M.; Nagappan, S.; Seo, D.J.; Ha, C-S. pH sensitive halloysite-sodium hyaluronate/poly(hydroxyethyl methacrylate) nanocomposites for colon cancer drug delivery. Appl. Clay Sci., 2014, 97-98, 33-42.
[http://dx.doi.org/10.1016/j.clay.2014.06.002]
[151]
Reddy, A.B.; Manjula, B.; Jayaramudu, T.; Sadiku, E.R.; Anand Babu, P.; Periyar Selvam, S. 5-Fluorouracil loaded chitosan-PVA/Na+MMT nanocomposite films for drug release and antimicrobial activity. Nano-Micro Lett., 2016, 8(3), 260-269.
[http://dx.doi.org/10.1007/s40820-016-0086-4] [PMID: 30460286]
[152]
Reguieg, F.; Sahli, N.; Belbachir, M. Nanocomposite hydrogels based on water soluble polymer and montmorillonite-Na+. Orient. J. Chem., 2015, 31(3), 1645-1657.
[http://dx.doi.org/10.13005/ojc/310343]
[153]
Rhim, J.W.; Wang, L.F. Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohydr. Polym., 2013, 96(1), 71-81.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.083] [PMID: 23688456]
[154]
Rokicińska, A.; Natkański, P.; Dudek, B.; Drozdek, M.; Lityńska-Dobrzyńska, L.; Kuśtrowski, P. Co 3 O 4 -pillared montmorillonite catalysts synthesized by hydrogel-assisted route for total oxidation of toluene. Appl. Catal. B, 2016, 195, 59-68.
[http://dx.doi.org/10.1016/j.apcatb.2016.05.008]
[155]
Sabaa, M.W.; Abdallah, H.M.; Mohamed, N.A.; Mohamed, R.R. Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(vinyl alcohol) clay nanocomposites. Mater. Sci. Eng. C, 2015, 56, 363-373.
[http://dx.doi.org/10.1016/j.msec.2015.06.043] [PMID: 26249602]
[156]
Santiago, F.; Mucientes, A.E.; Osorio, M.; Rivera, C. Preparation of composites and nanocomposites based on bentonite and poly(sodium acrylate). Effect of amount of bentonite on the swelling behaviour. Eur. Polym. J., 2007, 43(1), 1-9.
[http://dx.doi.org/10.1016/j.eurpolymj.2006.07.023]
[157]
Sarkar, D.J.; Singh, A. Base triggered release of insecticide from bentonite reinforced citric acid crosslinked carboxymethyl cellulose hydrogel composites. Carbohydr. Polym., 2017, 156, 303-311.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.045] [PMID: 27842827]
[158]
Seema; Datta, M., Clay-polymer nanocomposites as a novel drug carrier: Synthesis, characterization and controlled release study of Propranolol Hydrochloride. Appl. Clay Sci., 2013, 80-81, 85-92.
[http://dx.doi.org/10.1016/j.clay.2013.06.009]
[159]
Sengel, S.B.; Sahiner, M.; Aktas, N.; Sahiner, N. Halloysite-carboxymethyl cellulose cryogel composite from natural sources. Appl. Clay Sci., 2017, 140, 66-74.
[http://dx.doi.org/10.1016/j.clay.2017.01.031]
[160]
Sharifi, S.; Blanquer, S.B.; van Kooten, T.G.; Grijpma, D.W. Biodegradable nanocomposite hydrogel structures with enhanced mechanical properties prepared by photo-crosslinking solutions of poly(trimethylene carbonate)-poly(ethylene glycol)-poly(trimethylene carbonate) macromonomers and nanoclay particles. Acta Biomater., 2012, 8(12), 4233-4243.
[http://dx.doi.org/10.1016/j.actbio.2012.09.014] [PMID: 22995403 ]
[161]
Shen, J.; Li, N.; Ye, M. Preparation and characterization of dual-sensitive double network hydrogels with clay as a physical crosslinker. Appl. Clay Sci., 2015, 103, 40-45.
[http://dx.doi.org/10.1016/j.clay.2014.11.006]
[162]
Shi, K.; Liu, Z.; Yang, C.; Li, X.Y.; Sun, Y.M.; Deng, Y.; Wang, W.; Ju, X.J.; Xie, R.; Chu, L.Y. Novel biocompatible thermoresponsive poly(n-vinyl caprolactam)/clay nanocomposite hydrogels with macroporous structure and improved mechanical characteristics. ACS Appl. Mater. Interfaces, 2017, 9(26), 21979-21990.
[http://dx.doi.org/10.1021/acsami.7b04552] [PMID: 28603958]
[163]
Shirsath, S.R.; Hage, A.P.; Zhou, M.; Sonawane, S.H.; Ashokkumar, M. Ultrasound assisted preparation of nanoclay Bentonite-FeCo nanocomposite hybrid hydrogel: A potential responsive sorbent for removal of organic pollutant from water. Desalination, 2011, 281, 429-437.
[http://dx.doi.org/10.1016/j.desal.2011.08.031]
[164]
Shirsath, S.R.; Patil, A.P.; Bhanvase, B.A.; Sonawane, S.H. Ultrasonically prepared poly(acrylamide)-kaolin composite hydrogel for removal of crystal violet dye from wastewater. J. Environ. Chem. Eng., 2015, 3(2), 1152-1162.
[http://dx.doi.org/10.1016/j.jece.2015.04.016]
[165]
Shirsath, S.R.; Patil, A.P.; Patil, R.; Naik, J.B.; Gogate, P.R.; Sonawane, S.H. Removal of Brilliant Green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: A comparative study. Ultrason. Sonochem., 2013, 20(3), 914-923.
[http://dx.doi.org/10.1016/j.ultsonch.2012.11.010] [PMID: 23266437]
[166]
Singh, R.; Mahto, V. Synthesis, characterization and evaluation of polyacrylamide graft starch/clay nanocomposite hydrogel system for enhanced oil recovery. Petrol. Sci., 2017, 14(4), 765-779.
[http://dx.doi.org/10.1007/s12182-017-0185-y]
[167]
Sirousazar, M.; Kokabi, M.; Hassan, Z.M. In vivo and cytotoxic assays of a poly(vinyl alcohol)/clay nanocomposite hydrogel wound dressing. J. Biomater. Sci. Polym. Ed., 2011, 22(8), 1023-1033.
[http://dx.doi.org/10.1163/092050610X497881] [PMID: 20566071]
[168]
Song, F.; Zhang, L.M.; Shi, J.F.; Li, N.N. Viscoelastic and fractal characteristics of a supramolecular hydrogel hybridized with clay nanoparticles. Colloids Surf. B Biointerfaces, 2010, 81(2), 486-491.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.044] [PMID: 20709503]
[169]
Song, H.; Yang, M.; Zhu, C.; He, S.; Gao, Y. Synthesis and properties of p(NIPA-co-NVP)/clay hydrogels by radiation polymerization. Nucl. Sci. Tech., 2007, 18(1), 55-58.
[http://dx.doi.org/10.1016/S1001-8042(07)60019-0]
[170]
Stempfle, B.; Große, A.; Ferse, B.; Arndt, K.F.; Wöll, D. Anomalous diffusion in thermoresponsive polymer-clay composite hydrogels probed by wide-field fluorescence microscopy. Langmuir, 2014, 30(46), 14056-14061.
[http://dx.doi.org/10.1021/la503571j] [PMID: 25358126]
[171]
Strachota, B.; Hodan, J.; Matějka, L. Poly(N-isopropylacrylamide)–clay hydrogels: Control of mechanical properties and structure by the initiating conditions of polymerization. Eur. Polym. J., 2016, 77, 1-15.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.02.011]
[172]
Strachota, B.; Matějka, L.; Zhigunov, A.; Konefał, R.; Spěváček, J.; Dybal, J.; Puffr, R. Poly(N-isopropylacrylamide)-clay based hydrogels controlled by the initiating conditions: evolution of structure and gel formation. Soft Matter, 2015, 11(48), 9291-9306.
[http://dx.doi.org/10.1039/C5SM01996F] [PMID: 26428943]
[173]
Su, D.; Jiang, L.; Chen, X.; Dong, J.; Shao, Z. Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with laponite nanoplatelets. ACS Appl. Mater. Interfaces, 2016, 8(15), 9619-9628.
[http://dx.doi.org/10.1021/acsami.6b00891] [PMID: 26989907]
[174]
Su, X.; Mahalingam, S.; Edirisinghe, M.; Chen, B. Highly stretchable and highly resilient polymer-clay nanocomposite hydrogels with low hysteresis. ACS Appl. Mater. Interfaces, 2017, 9(27), 22223-22234.
[http://dx.doi.org/10.1021/acsami.7b05261] [PMID: 28609609]
[175]
Takeno, H.; Sato, C. Effects of molecular mass of polymer and composition on the compressive properties of hydrogels composed of Laponite and sodium polyacrylate. Appl. Clay Sci., 2016, 123, 141-147.
[http://dx.doi.org/10.1016/j.clay.2016.01.030]
[176]
Taki, A.; John, B.; Arakawa, S.; Okamoto, M. Structure and rheology of nanocomposite hydrogels composed of DNA and clay. Eur. Polym. J., 2013, 49(4), 923-931.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.10.013]
[177]
Uzumcu, A.T.; Guney, O.; Okay, O. Nanocomposite DNA hydrogels with temperature sensitivity. Polymer (Guildf.), 2016, 100, 169-178.
[http://dx.doi.org/10.1016/j.polymer.2016.08.041]
[178]
Vivek, B.; Kumar, P.; Prasad, E. Induction and tunability of self-healing property of dendron based hydrogel using clay nanocomposite. J. Phys. Chem. B, 2016, 120(23), 5262-5271.
[http://dx.doi.org/10.1021/acs.jpcb.6b00935] [PMID: 27193239]
[179]
Wang, C.; Duan, Y.; Zacharia, N.S.; Vogt, B.D. A family of mechanically adaptive supramolecular graphene oxide/poly(ethylenimine) hydrogels from aqueous assembly. Soft Matter, 2017, 13(6), 1161-1170.
[http://dx.doi.org/10.1039/C6SM02439D] [PMID: 28098316]
[180]
Wang, J.; Lin, L.; Cheng, Q.; Jiang, L. A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel. Angew. Chem. Int. Ed. Engl., 2012, 51(19), 4676-4680.
[http://dx.doi.org/10.1002/anie.201200267] [PMID: 22396131]
[181]
Wang, Q.; Mynar, J.L.; Yoshida, M.; Lee, E.; Lee, M.; Okuro, K.; Kinbara, K.; Aida, T. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature, 2010, 463(7279), 339-343.
[http://dx.doi.org/10.1038/nature08693] [PMID: 20090750]
[182]
Wang, Q.; Zhang, J.; Wang, A. Preparation and characterization of a novel pH-sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohydr. Polym., 2009, 78(4), 731-737.
[http://dx.doi.org/10.1016/j.carbpol.2009.06.010]
[183]
Wang, T.; Huang, J.; Yang, Y.; Zhang, E.; Sun, W.; Tong, Z. Bioinspired smart actuator based on graphene oxide-polymer hybrid hydrogels. ACS Appl. Mater. Interfaces, 2015, 7(42), 23423-23430.
[http://dx.doi.org/10.1021/acsami.5b08248] [PMID: 26448049]
[184]
Wang, T.; Li, H. A simple and green strategy for preparing luminescent Tb3+ complex-based nanocomposite with stable luminescence in water. Mater. Res. Bull., 2017, 93, 28-34.
[http://dx.doi.org/10.1016/j.materresbull.2017.04.034]
[185]
Wang, T.; Liu, D.; Lian, C.; Zheng, S.; Liu, X.; Wang, C.; Tong, Z. Rapid cell sheet detachment from alginate semi-interpenetrating nanocomposite hydrogels of PNIPAm and hectorite clay. React. Funct. Polym., 2011, 71(4), 447-454.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2011.01.004]
[186]
Wang, T.; Sun, W.; Liu, X.; Wang, C.; Fu, S.; Tong, Z. Promoted cell proliferation and mechanical relaxation of nanocomposite hydrogels prepared in cell culture medium. React. Funct. Polym., 2013, 73(5), 683-689.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2013.02.012]
[187]
Wang, T.; Zheng, S.; Sun, W.; Liu, X.; Fu, S.; Tong, Z. Notch insensitive and self-healing PNIPAm-PAM-clay nanocomposite hydrogels. Soft Matter, 2014, 10(19), 3506-3512.
[http://dx.doi.org/10.1039/c3sm52961d] [PMID: 24652073]
[188]
Wang, Y.; Ma, J.; Yang, S.; Xu, J. PDMAA/Clay nanocomposite hydrogels based on two different initiations. Colloids Surf. A Physicochem. Eng. Asp., 2011, 390(1-3), 20-24.
[http://dx.doi.org/10.1016/j.colsurfa.2011.08.029]
[189]
Wang, Y.; Wang, W.; Wang, A. Efficient adsorption of methylene blue on an alginate-based nanocomposite hydrogel enhanced by organo-illite/smectite clay. Chem. Eng. J., 2013, 228, 132-139.
[http://dx.doi.org/10.1016/j.cej.2013.04.090]
[190]
Weian, Z.; Wei, L.; Yue’e, F. Synthesis and properties of a novel hydrogel nanocomposites. Mater. Lett., 2005, 59(23), 2876-2880.
[http://dx.doi.org/10.1016/j.matlet.2005.04.033]
[191]
Xia, M.; Wu, W.; Liu, F.; Theato, P.; Zhu, M. Swelling behavior of thermosensitive nanocomposite hydrogels composed of oligo(ethylene glycol) methacrylates and clay. Eur. Polym. J., 2015, 69, 472-482.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.03.072]
[192]
Xia, X.; Yih, J.; D’Souza, N.A.; Hu, Z. Swelling and mechanical behavior of poly(N-isopropylacrylamide)/Na-montmorillonite layered silicates composite gels. Polymer (Guildf.), 2003, 44(11), 3389-3393.
[http://dx.doi.org/10.1016/S0032-3861(03)00228-3]
[193]
Xiang, H.; Xia, M.; Cunningham, A.; Chen, W.; Sun, B.; Zhu, M. Mechanical properties of biocompatible clay/P(MEO2MA-co-OEGMA) nanocomposite hydrogels. J. Mech. Behav. Biomed. Mater., 2017, 72, 74-81.
[http://dx.doi.org/10.1016/j.jmbbm.2017.04.026] [PMID: 28463813]
[194]
Xiang, Y.; Peng, Z.; Chen, D. A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties. Eur. Polym. J., 2006, 42(9), 2125-2132.
[http://dx.doi.org/10.1016/j.eurpolymj.2006.04.003]
[195]
Xiong, L.; Hu, X.; Liu, X.; Tong, Z. Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility. Polymer (Guildf.), 2008, 49(23), 5064-5071.
[http://dx.doi.org/10.1016/j.polymer.2008.09.021]
[196]
Xu, K.; Wang, J.; Xiang, S.; Chen, Q.; Yue, Y.; Su, X.; Song, C.; Wang, P. Polyampholytes superabsorbent nanocomposites with excellent gel strength. Compos. Sci. Technol., 2007, 67(15-16), 3480-3486.
[http://dx.doi.org/10.1016/j.compscitech.2007.02.009]
[197]
Yang, H.; Wang, W.; Zhang, J.; Wang, A. Preparation, characterization, and drug-release behaviors of a pH-sensitive composite hydrogel bead based on guar gum, attapulgite, and sodium alginate. Int. J. Polym. Mater., 2013, 62(7), 369-376.
[http://dx.doi.org/10.1080/00914037.2012.706839]
[198]
Yao, C.; Liu, Z.; Yang, C.; Wang, W.; Ju, X.J.; Xie, R.; Chu, L.Y. Smart hydrogels with inhomogeneous structures assembled using nanoclay-cross-linked hydrogel subunits as building blocks. ACS Appl. Mater. Interfaces, 2016, 8(33), 21721-21730.
[http://dx.doi.org/10.1021/acsami.6b07713] [PMID: 27490585]
[199]
Yi, J.Z.; Zhang, L.M. Removal of methylene blue dye from aqueous solution by adsorption onto sodium humate/polyacrylamide/clay hybrid hydrogels. Bioresour. Technol., 2008, 99(7), 2182-2186.
[http://dx.doi.org/10.1016/j.biortech.2007.05.028] [PMID: 17601732]
[200]
Yi, J-Z.; Zhang, L-M. Studies of sodium humate/polyacrylamide/clay hybrid hydrogels. I. Swelling and rheological properties of hydrogels. Eur. Polym. J., 2007, 43(8), 3215-3221.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.05.023]
[201]
Yuan, Q.; Shah, J.; Hein, S.; Misra, R.D. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater., 2010, 6(3), 1140-1148.
[http://dx.doi.org/10.1016/j.actbio.2009.08.027] [PMID: 19699817]
[202]
Zhang, E.; Wang, T.; Lian, C.; Sun, W.; Liu, X.; Tong, Z. Robust and thermo-response graphene–PNIPAm hybrid hydrogels reinforced by hectorite clay. Carbon, 2013, 62, 117-126.
[http://dx.doi.org/10.1016/j.carbon.2013.06.003]
[203]
Zhang, Q.; Li, X.; Zhao, Y.; Chen, L. Preparation and performance of nanocomposite hydrogels based on different clay. Appl. Clay Sci., 2009, 46(4), 346-350.
[http://dx.doi.org/10.1016/j.clay.2009.09.003]
[204]
Zhang, Q.; Zhang, T.; He, T.; Chen, L. Removal of crystal violet by clay/PNIPAm nanocomposite hydrogels with various clay contents. Appl. Clay Sci., 2014, 90, 1-5.
[http://dx.doi.org/10.1016/j.clay.2014.01.003]
[205]
Zhao, L.; Huang, J.; Zhang, Y.; Wang, T.; Sun, W.; Tong, Z. Programmable and bidirectional bending of soft actuators based on janus structure with sticky tough PAA-clay hydrogel. ACS Appl. Mater. Interfaces, 2017, 9(13), 11866-11873.
[http://dx.doi.org/10.1021/acsami.7b00138] [PMID: 28290198]
[206]
Zhao, S.; Li, C.; Zhou, Y.; Wang, S.; Su, F.; Cui, J.; Yan, Y. A multifunctional hydrogel based on heterostructured hybrids of single-walled carbon nanotubes and clay nanoplatelets. Carbon, 2014, 77, 846-856.
[http://dx.doi.org/10.1016/j.carbon.2014.06.001]
[207]
Zheng, X.; Wu, D.; Su, T.; Bao, S.; Liao, C.; Wang, Q. Magnetic nanocomposite hydrogel prepared by ZnO-initiated photopolymerization for La (III) adsorption. ACS Appl. Mater. Interfaces, 2014, 6(22), 19840-19849.
[http://dx.doi.org/10.1021/am505177c] [PMID: 25347800]
[208]
Zhu, M.; Xiong, L.; Wang, T.; Liu, X.; Wang, C.; Tong, Z. High tensibility and pH-responsive swelling of nanocomposite hydrogels containing the positively chargeable 2-(dimethylamino)ethyl methacrylate monomer. React. Funct. Polym., 2010, 70(5), 267-271.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2010.01.003]
[209]
Ianchis, R.; Cinteza, L.O.; Donescu, D.; Petcu, C.; Corobea, M.C.; Somoghi, R.; Ghiurea, M.; Spataru, C. Implications of silylated montmorillonite on montmorillonite–polyacrylate nanocomposites. Appl. Clay Sci., 2011, 52(1-2), 96-103.
[http://dx.doi.org/10.1016/j.clay.2011.02.004]
[210]
Herrera, N.N.; Putaux, J-L.; David, L.; Bourgeat-Lami, E. Aqueous dispersions of silane-functionalized laponite clay platelets. a first step toward the elaboration of water-based polymer/clay nanocomposites. Langmuir, 2004, 20(5), 1564-1571.
[http://dx.doi.org/10.1021/la0349267]
[211]
Anka , Rao. A.; Rao, V.N.; Devi, A.S.; Anil, K.; Naik, V.V.; Rajesh, A. Oral controlled release drug delivery system: an overview. International Journal of Pharma And Chemical Research, 2015, 1(1)
[212]
Siegel, R.A.; Rathbone, M.J. Overview of controlled release mechanisms in: Fundamentals and Applications of Controlled Release Drug Delivery; Siepmann, J.; Siegel, R.; Rathbone, M., Eds.; Springer: Boston, MA, 2012, pp. 19-43.
[213]
Cai, J.; Zhang, L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol. Biosci., 2005, 5(6), 539-548.
[http://dx.doi.org/10.1002/mabi.200400222] [PMID: 15954076]
[214]
BibleGateway. Available at:. https://www.biblegateway.com/quicksearch/?quicksearch=tree+of+life&qs_version=NIV (Accessed Date: 4 April, 2018).