Towards a Dynamic Exploration of Vision, Cognition and Emotion in Alcohol-Use Disorders

Page: [492 - 506] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Visuoperceptive impairments are among the most frequently reported deficits in alcoholuse disorders, but only very few studies have investigated their origin and interactions with other categories of dysfunctions. Besides, these deficits have generally been interpreted in a linear bottom- up perspective, which appears very restrictive with respect to the new models of vision developed in healthy populations. Indeed, new theories highlight the predictive nature of the visual system and demonstrate that it interacts with higher-level cognitive functions to generate top-down predictions. These models notably posit that a fast but coarse visual analysis involving magnocellular pathways helps to compute heuristic guesses regarding the identity and affective value of inputs, which are used to facilitate conscious visual recognition. Building on these new proposals, the present review stresses the need to reconsider visual deficits in alcohol-use disorders as they might have crucial significance for core features of the pathology, such as attentional bias, loss of inhibitory control and emotion decoding impairments. Centrally, we suggest that individuals with severe alcohol-use disorders could present with magnocellular damage and we defend a dynamic explanation of the deficits. Rather than being restricted to high-level processes, deficits could start at early visual stages and then extend and potentially intensify during following steps due to reduced cerebral connectivity and dysfunctional cognitive/emotional regions. A new research agenda is specifically provided to test these hypotheses.

Keywords: Alcohol-use disorders, visuoperceptive deficits, visual prediction, magnocellular pathway, parvocellular pathway, orbitofrontal cortex, bottom-up processes, top-down processes.

Graphical Abstract

[1]
Bernardin, F.; Maheut-Bosser, A.; Paille, F. Cognitive impairments in alcohol-dependent subjects. Front. Psychiatry, 2014, 5, 78.
[http://dx.doi.org/10.3389/fpsyt.2014.00078] [PMID: 25076914]
[2]
Cabé, N.; Laniepce, A.; Ritz, L.; Lannuzel, C.; Boudehent, C.; Vabret, F.; Eustache, F.; Beaunieux, H.; Pitel, A-L. [Cognitive impairments in alcohol dependence: From screening to treatment improvements]. Encephale, 2016, 42(1), 74-81.
[PMID: 26774623]
[3]
Oscar-Berman, M.; Valmas, M.M.; Sawyer, K.S.; Ruiz, S.M.; Luhar, R.B.; Gravitz, Z.R. Profiles of impaired, spared, and recovered neuropsychologic processes in alcoholism. Handbook of Clinical Neurology, Sullivan, Pfefferbaum, Eds.; Alcohol and the Nervous System; Elsevier B. V.: Amsterdam, 2014, 125, pp. 183- 210.
[http://dx.doi.org/10.1016/B978-0-444-62619-6.00012-4]
[4]
Stavro, K.; Pelletier, J.; Potvin, S. Widespread and sustained cognitive deficits in alcoholism: A meta-analysis. Addict. Biol., 2013, 18(2), 203-213.
[http://dx.doi.org/10.1111/j.1369-1600.2011.00418.x] [PMID: 22264351]
[5]
Fein, G.; Bachman, L.; Fisher, S.; Davenport, L. Cognitive impairments in abstinent alcoholics. West. J. Med., 1990, 152(5), 531-537.
[PMID: 2190421]
[6]
Fein, G.; Torres, J.; Price, L.J.; Di Sclafani, V. Cognitive performance in long-term abstinent alcoholic individuals. Alcohol. Clin. Exp. Res., 2006, 30(9), 1538-1544.
[http://dx.doi.org/10.1111/j.1530-0277.2006.00185.x] [PMID: 16930216]
[7]
Bar, M. The proactive brain: Memory for predictions. Philos. Trans. R. Soc. B Biol. Sci., 2009, 364(1521), 1235-1243.
[8]
Newen, A.; Vetter, P. Why cognitive penetration of our perceptual experience is still the most plausible account. Conscious. Cogn., 2017, 47, 26-37.
[http://dx.doi.org/10.1016/j.concog.2016.09.005] [PMID: 27667320]
[9]
O’Callaghan, C.; Kveraga, K.; Shine, J.M.; Adams, R.B., Jr; Bar, M. Predictions penetrate perception: Converging insights from brain, behaviour and disorder. Conscious. Cogn., 2017, 47, 63-74.
[http://dx.doi.org/10.1016/j.concog.2016.05.003] [PMID: 27222169]
[10]
Otten, M.; Seth, A.K.; Pinto, Y. A social Bayesian brain: How social knowledge can shape visual perception. Brain Cogn., 2017, 112, 69-77.
[http://dx.doi.org/10.1016/j.bandc.2016.05.002] [PMID: 27221986]
[11]
Laycock, R.; Crewther, S.G.; Crewther, D.P. A role for the ‘magnocellular advantage’ in visual impairments in neurodevelopmental and psychiatric disorders. Neurosci. Biobehav. Rev., 2007, 31(3), 363-376.
[http://dx.doi.org/10.1016/j.neubiorev.2006.10.003] [PMID: 17141311]
[12]
Ellis, R.J.; Oscar-Berman, M. Alcoholism, aging, and functional cerebral asymmetries. Psychol. Bull., 1989, 106(1), 128-147.
[http://dx.doi.org/10.1037/0033-2909.106.1.128] [PMID: 2667007]
[13]
Fitzhugh, L.C.; Fitzhugh, K.B.; Reitan, R.M. Adaptive abilities and intellectual functioning in hospitalized alcoholics. Q. J. Stud. Alcohol, 1960, 21, 414-423.
[PMID: 13700068]
[14]
Fitzhugh, L.C.; Fitzhugh, K.B.; Reitan, R.M. Adaptive abilities and intellectual functioning of hospitalized alcoholics: Further considerations. Q. J. Stud. Alcohol, 1965, 26(3), 402-411.
[PMID: 5858247]
[15]
Jones, B.M. Verbal and spatial intelligence in short and long term alcoholics. J. Nerv. Ment. Dis., 1971, 153(4), 292-297.
[http://dx.doi.org/10.1097/00005053-197110000-00008] [PMID: 4398857]
[16]
Jones, B.; Parsons, O.A. Specific vs generalized deficits of abstracting ability in chronic alcoholics. Arch. Gen. Psychiatry, 1972, 26(4), 380-384.
[http://dx.doi.org/10.1001/archpsyc.1972.01750220090017] [PMID: 5013522]
[17]
Jones, B.; Parsons, O.A. Impaired abstracting ability in chronic alcoholics. Arch. Gen. Psychiatry, 1971, 24(1), 71-75.
[http://dx.doi.org/10.1001/archpsyc.1971.01750070073010] [PMID: 4395238]
[18]
Miglioli, M.; Buchtel, H.A.; Campanini, T.; De Risio, C. Cerebral hemispheric lateralization of cognitive deficits due to alcoholism. J. Nerv. Ment. Dis., 1979, 167(4), 212-217.
[http://dx.doi.org/10.1097/00005053-197904000-00003] [PMID: 438791]
[19]
Shelton, M.D.; Parsons, O.A.; Leber, W.R. Verbal and visuospatial performance in male alcoholics: A test of the premature-aging hypothesis. J. Consult. Clin. Psychol., 1984, 52(2), 200-206.
[http://dx.doi.org/10.1037/0022-006X.52.2.200] [PMID: 6715647]
[20]
Beatty, W.W.; Hames, K.A.; Blanco, C.R.; Nixon, S.J.; Tivis, L.J. Visuospatial perception, construction and memory in alcoholism. J. Stud. Alcohol, 1996, 57(2), 136-143.
[http://dx.doi.org/10.15288/jsa.1996.57.136] [PMID: 8683962]
[21]
Bertera, J.H.; Parsons, O.A. Impaired visual search in alcoholics. Alcohol. Clin. Exp. Res., 1978, 2(1), 9-14.
[http://dx.doi.org/10.1111/j.1530-0277.1978.tb04685.x] [PMID: 345860]
[22]
Reshchikova, T.N. Interhemispheric relations in patients with chronic alcoholism. Neurosci. Behav. Physiol., 1985, 15(2), 161-164.
[http://dx.doi.org/10.1007/BF01186985] [PMID: 4022321]
[23]
Chambers, J.L.; Wilson, W.T. Perception of apparent motion and degree of mental pathology. Percept. Mot. Skills, 1968, 26(3), 855-861.
[http://dx.doi.org/10.2466/pms.1968.26.3.855] [PMID: 5657736]
[24]
Wegner, A.J.; Günthner, A.; Fahle, M. Visual performance and recovery in recently detoxified alcoholics. Alcohol Alcohol., 2001, 36(2), 171-179.
[http://dx.doi.org/10.1093/alcalc/36.2.171] [PMID: 11259215]
[25]
Pillunat, L.E.; Christ, T.; Luderer, H.J.; Stodtmeister, R. Flicker fusion frequency and organic syndrome in alcoholics. Percept. Mot. Skills, 1985, 60(2), 487-494.
[http://dx.doi.org/10.2466/pms.1985.60.2.487] [PMID: 4000866]
[26]
Williams, D.E. Visual electrophysiology and psychophysics in chronic alcoholics and in patients on tuberculostatic chemotherapy. Am. J. Optom. Physiol. Opt., 1984, 61(9), 576-585.
[http://dx.doi.org/10.1097/00006324-198409000-00007] [PMID: 6507577]
[27]
Beatty, W.W.; Blanco, C.R.; Hames, K.A.; Nixon, S.J. Spatial cognition in alcoholics: Influence of concurrent abuse of other drugs. Drug Alcohol Depend., 1997, 44(2-3), 167-174.
[http://dx.doi.org/10.1016/S0376-8716(97)01334-3] [PMID: 9088789]
[28]
Kramer, J.H.; Blusewicz, M.J.; Robertson, L.C.; Preston, K. Effects of chronic alcoholism on perception of hierarchical visual stimuli. Alcohol. Clin. Exp. Res., 1989, 13(2), 240-245.
[http://dx.doi.org/10.1111/j.1530-0277.1989.tb00320.x] [PMID: 2658664]
[29]
Kramer, J.H.; Kaplan, E.; Blusewicz, M.J.; Preston, K.A. Visual hierarchical analysis of block design configural errors. J. Clin. Exp. Neuropsychol., 1991, 13(4), 455-465.
[http://dx.doi.org/10.1080/01688639108401063] [PMID: 1918279]
[30]
Robertson, L.C.; Stillman, R.; Delis, D.C. The effect of alcohol abuse on perceptual reference frames. Neuropsychologia, 1985, 23(1), 69-76.
[http://dx.doi.org/10.1016/0028-3932(85)90045-4] [PMID: 3974857]
[31]
Daig, I.; Mahlberg, R.; Schroeder, F.; Gudlowski, Y.; Wrase, J.; Wertenauer, F.; Bschor, T.; Esser, G.; Heinz, A.; Kienast, T. Low effective organizational strategies in visual memory performance of unmedicated alcoholics during early abstinence. Psychosoc. Med., 2010, 7, Doc07.
[PMID: 21160546]
[32]
Braun, C.M.; Richer, M. A comparison of functional indexes, derived from screening tests, of chronic alcoholic neurotoxicity in the cerebral cortex, retina and peripheral nervous system. J. Stud. Alcohol, 1993, 54(1), 11-16.
[http://dx.doi.org/10.15288/jsa.1993.54.11] [PMID: 8355495]
[33]
de Oliveira Castro, A.J.; Rodrigues, A.R.; Côrtes, M.I.T.; de Lima Silveira, L.C. Impairment of color spatial vision in chronic alcoholism measured by psychophysical methods. Psychol. Neurosci., 2009, 2(2), 179-187.
[http://dx.doi.org/10.3922/j.psns.2009.2.009]
[34]
Mergler, D.; Blain, L.; Lemaire, J.; Lalande, F. Colour vision impairment and alcohol consumption. Neurotoxicol. Teratol., 1988, 10(3), 255-260.
[http://dx.doi.org/10.1016/0892-0362(88)90025-6] [PMID: 3211104]
[35]
Nelson, T.M.; Sinha, B.K.; Olson, W.M. Short-term memory for hue in chronic alcoholics. Br. J. Addict. Alcohol Other Drugs, 1977, 72(4), 301-307.
[http://dx.doi.org/10.1111/j.1360-0443.1977.tb00695.x] [PMID: 272195]
[36]
Reynolds, D.C. A visual profile of the alcoholic driver. Am. J. Optom. Physiol. Opt., 1979, 56(4), 241-251.
[http://dx.doi.org/10.1097/00006324-197904000-00005] [PMID: 316286]
[37]
Roquelaure, Y.; Le Gargasson, J.F.; Kupper, S.; Girre, C.; Hispard, E.; Dally, S. Alcohol consumption and visual contrast sensitivity. Alcohol Alcohol., 1995, 30(5), 681-685.
[PMID: 8554654]
[38]
Cruz-Coke, R. Defective color vision and alcoholism. Mod. Probl. Ophthalmol., 1972, 11, 174-177.
[PMID: 4544956]
[39]
Orssaud, C.; Roche, O.; Dufier, J.L. Nutritional optic neuropathies. J. Neurol. Sci., 2007, 262(1-2), 158-164.
[http://dx.doi.org/10.1016/j.jns.2007.06.038] [PMID: 17707410]
[40]
Ugarte, G.; Cruz-Coke, R.; Rivera, L.; Altschiller, H.; Mardones, J. Relationship of color blindness to alcoholic liver damage. Pharmacology, 1970, 4(5), 297-308.
[http://dx.doi.org/10.1159/000136150] [PMID: 5312721]
[41]
Yohman, J.R.; Parsons, O.A.; Leber, W.R. Lack of recovery in male alcoholics’ neuropsychological performance one year after treatment. Alcohol. Clin. Exp. Res., 1985, 9(2), 114-117.
[http://dx.doi.org/10.1111/j.1530-0277.1985.tb05530.x] [PMID: 3890589]
[42]
Forsberg, L.K.; Goldman, M.S. Experience-dependent recovery of visuospatial functioning in older alcoholic persons. J. Abnorm. Psychol., 1985, 94(4), 519-529.
[http://dx.doi.org/10.1037/0021-843X.94.4.519] [PMID: 4078155]
[43]
Wilson, J.T.; Wiedmann, K.D.; Phillips, W.A.; Brooks, D.N. Visual event perception in alcoholics. J. Clin. Exp. Neuropsychol., 1988, 10(2), 222-234.
[http://dx.doi.org/10.1080/01688638808408237] [PMID: 3350921]
[44]
Brandt, J.; Butters, N.; Ryan, C.; Bayog, R. Cognitive loss and recovery in long-term alcohol abusers. Arch. Gen. Psychiatry, 1983, 40(4), 435-442.
[http://dx.doi.org/10.1001/archpsyc.1983.01790040089012] [PMID: 6838323]
[45]
Davies, S.J.C.; Pandit, S.A.; Feeney, A.; Stevenson, B.J.; Kerwin, R.W.; Nutt, D.J.; Marshall, E.J.; Boddington, S.; Lingford-Hughes, A. Is there cognitive impairment in clinically ‘healthy’ abstinent alcohol dependence? Alcohol Alcohol., 2005, 40(6), 498-503.
[http://dx.doi.org/10.1093/alcalc/agh203] [PMID: 16186142]
[46]
Mann, K.; Günther, A.; Stetter, F.; Ackermann, K. Rapid recovery from cognitive deficits in abstinent alcoholics: A controlled test-retest study. Alcohol Alcohol., 1999, 34(4), 567-574.
[http://dx.doi.org/10.1093/alcalc/34.4.567] [PMID: 10456585]
[47]
Leber, W.R.; Jenkins, R.L.; Parsons, O.A. Recovery of visual-spatial learning and memory in chronic alcoholics. J. Clin. Psychol., 1981, 37(1), 192-197.
[http://dx.doi.org/10.1002/1097-4679(198101)37:1<192:AID-JCLP2270370140>3.0.CO;2-M] [PMID: 7204599]
[48]
Durazzo, T.C.; Mon, A.; Gazdzinski, S.; Yeh, P-H.; Meyerhoff, D.J. Serial longitudinal magnetic resonance imaging data indicate non-linear regional gray matter volume recovery in abstinent alcohol-dependent individuals. Addict. Biol., 2015, 20(5), 956-967.
[http://dx.doi.org/10.1111/adb.12180] [PMID: 25170881]
[49]
Fein, G.; Shimotsu, R.; Chu, R.; Barakos, J. Parietal gray matter volume loss is related to spatial processing deficits in long-term abstinent alcoholic men. Alcohol. Clin. Exp. Res., 2009, 33(10), 1806-1814.
[http://dx.doi.org/10.1111/j.1530-0277.2009.01019.x] [PMID: 19645730]
[50]
Volkow, N.D.; Hitzemann, R.; Wang, G.J.; Fowler, J.S.; Burr, G.; Pascani, K.; Dewey, S.L.; Wolf, A.P. Decreased brain metabolism in neurologically intact healthy alcoholics. Am. J. Psychiatry, 1992, 149(8), 1016-1022.
[http://dx.doi.org/10.1176/ajp.149.8.1016] [PMID: 1636801]
[51]
Wik, G.; Borg, S.; Sjögren, I.; Wiesel, F.A.; Blomqvist, G.; Borg, J.; Greitz, T.; Nybäck, H.; Sedvall, G.; Stone-Elander, S. PET determination of regional cerebral glucose metabolism in alcohol-dependent men and healthy controls using 11C-glucose. Acta Psychiatr. Scand., 1988, 78(2), 234-241.
[http://dx.doi.org/10.1111/j.1600-0447.1988.tb06330.x] [PMID: 2851920]
[52]
Hermann, D.; Smolka, M.N.; Klein, S.; Heinz, A.; Mann, K.; Braus, D.F. Reduced fMRI activation of an occipital area in recently detoxified alcohol-dependent patients in a visual and acoustic stimulation paradigm. Addict. Biol., 2007, 12(1), 117-121.
[http://dx.doi.org/10.1111/j.1369-1600.2006.00039.x] [PMID: 17407505]
[53]
Bagga, D.; Khushu, S.; Modi, S.; Kaur, P.; Bhattacharya, D.; Garg, M.L.; Singh, N. Impaired visual information processing in alcohol-dependent subjects: A proton magnetic resonance spectroscopy study of the primary visual cortex. J. Stud. Alcohol Drugs, 2014, 75(5), 817-826.
[http://dx.doi.org/10.15288/jsad.2014.75.817] [PMID: 25208200]
[54]
Bagga, D.; Sharma, A.; Kumari, A.; Kaur, P.; Bhattacharya, D.; Garg, M.L.; Khushu, S.; Singh, N. Decreased white matter integrity in fronto-occipital fasciculus bundles: Relation to visual information processing in alcohol-dependent subjects. Alcohol, 2014, 48(1), 43-53.
[http://dx.doi.org/10.1016/j.alcohol.2013.10.009] [PMID: 24388377]
[55]
Yeh, P-H.; Simpson, K.; Durazzo, T.C.; Gazdzinski, S.; Meyerhoff, D.J. Tract-Based Spatial Statistics (TBSS) of diffusion tensor imaging data in alcohol dependence: Abnormalities of the motivational neurocircuitry. Psychiatry Res., 2009, 173(1), 22-30.
[http://dx.doi.org/10.1016/j.pscychresns.2008.07.012] [PMID: 19442492]
[56]
Schmahmann, J.D.; Pandya, D.N. The complex history of the fronto-occipital fasciculus. J. Hist. Neurosci., 2007, 16(4), 362-377.
[http://dx.doi.org/10.1080/09647040600620468] [PMID: 17966054]
[57]
Nicolás, J.M.; Catafau, A.M.; Estruch, R.; Lomeña, F.J.; Salamero, M.; Herranz, R.; Monforte, R.; Cardenal, C.; Urbano-Marquez, A. Regional cerebral blood flow-SPECT in chronic alcoholism: relation to neuropsychological testing. J. Nucl. Med., 1993, 34(9), 1452-1459.
[PMID: 8355063]
[58]
Kamarajan, C.; Porjesz, B. Advances in electrophysiological research. Alcohol Res., 2015, 37(1), 53-87.
[PMID: 26259089]
[59]
Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol., 2007, 118(10), 2128-2148.
[http://dx.doi.org/10.1016/j.clinph.2007.04.019] [PMID: 17573239]
[60]
Campanella, S.; Petit, G.; Maurage, P.; Kornreich, C.; Verbanck, P.; Noël, X. Chronic alcoholism: insights from neurophysiology. Neurophysiol. Clin., 2009, 39(4-5), 191-207.
[http://dx.doi.org/10.1016/j.neucli.2009.08.002] [PMID: 19853791]
[61]
Campanella, S.; Noël, X.; Tomberg, C. Cognitive event-related potentials and alcoholism. J. Psychophysiol., 2010, 24(4), 231-239.
[http://dx.doi.org/10.1027/0269-8803/a000036]
[62]
Porjesz, B.; Rangaswamy, M.; Kamarajan, C.; Jones, K.A.; Padmanabhapillai, A.; Begleiter, H. The utility of neurophysiological markers in the study of alcoholism. Clin. Neurophysiol., 2005, 116(5), 993-1018.
[http://dx.doi.org/10.1016/j.clinph.2004.12.016] [PMID: 15826840]
[63]
Luck, S.J. An introduction to the event-related potential technique, 2nd ed; The MIT Press: Cambridge, 2014.
[64]
Taylor, M.J. Non-spatial attentional effects on P1. Clin. Neurophysiol., 2002, 113(12), 1903-1908.
[http://dx.doi.org/10.1016/S1388-2457(02)00309-7] [PMID: 12464327]
[65]
Nazliel, B.; Arikan, Z.; Irkec, C. Visual evoked potentials in chronic alcoholism. Addict. Behav., 2007, 32(7), 1470-1473.
[http://dx.doi.org/10.1016/j.addbeh.2006.09.006] [PMID: 17081702]
[66]
Chan, Y.W.; McLeod, J.G.; Tuck, R.R.; Walsh, J.C.; Feary, P.A. Visual evoked responses in chronic alcoholics. J. Neurol. Neurosurg. Psychiatry, 1986, 49(8), 945-950.
[http://dx.doi.org/10.1136/jnnp.49.8.945] [PMID: 3746328]
[67]
Maurage, P.; Philippot, P.; Verbanck, P.; Noel, X.; Kornreich, C.; Hanak, C.; Campanella, S. Is the P300 deficit in alcoholism associated with early visual impairments (P100, N170)? An oddball paradigm. Clin. Neurophysiol., 2007, 118(3), 633-644.
[http://dx.doi.org/10.1016/j.clinph.2006.11.007] [PMID: 17208045]
[68]
Nicolás, J.M.; Estruch, R.; Salamero, M.; Orteu, N.; Fernandez-Solà, J.; Sacanella, E.; Urbano-Márquez, A. Brain impairment in well-nourished chronic alcoholics is related to ethanol intake. Ann. Neurol., 1997, 41(5), 590-598.
[http://dx.doi.org/10.1002/ana.410410507] [PMID: 9153520]
[69]
Rossion, B. Understanding face perception by means of human electrophysiology. Trends Cogn. Sci. (Regul. Ed.),, 2014, 18(6), 310-318.
[http://dx.doi.org/10.1016/j.tics.2014.02.013] [PMID: 24703600]
[70]
Maurage, P.; Campanella, S.; Philippot, P.; de Timary, P.; Constant, E.; Gauthier, S.; Miccichè, M-L.; Kornreich, C.; Hanak, C.; Noel, X.; Verbanck, P. Alcoholism leads to early perceptive alterations, independently of comorbid depressed state: An ERP study. Neurophysiol. Clin., 2008, 38(2), 83-97.
[http://dx.doi.org/10.1016/j.neucli.2008.02.001] [PMID: 18423329]
[71]
Hubel, D.H.; Wiesel, T.N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol., 1968, 195(1), 215-243.
[http://dx.doi.org/10.1113/jphysiol.1968.sp008455] [PMID: 4966457]
[72]
Serre, T.; Oliva, A.; Poggio, T. A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. USA, 2007, 104(15), 6424-6429.
[http://dx.doi.org/10.1073/pnas.0700622104] [PMID: 17404214]
[73]
Yantis, S.; Jonides, J. Abrupt visual onsets and selective attention: voluntary versus automatic allocation. J. Exp. Psychol. Hum. Percept. Perform., 1990, 16(1), 121-134.
[http://dx.doi.org/10.1037/0096-1523.16.1.121] [PMID: 2137514]
[74]
McDonald, J.J.; Green, J.J.; Jannati, A.; Di Lollo, V. On the electrophysiological evidence for the capture of visual attention. J. Exp. Psychol. Hum. Percept. Perform., 2013, 39(3), 849-860.
[http://dx.doi.org/10.1037/a0030510] [PMID: 23163789]
[75]
Mulckhuyse, M.; Theeuwes, J. Unconscious attentional orienting to exogenous cues: A review of the literature. Acta Psychol. (Amst.), 2010, 134(3), 299-309.
[http://dx.doi.org/10.1016/j.actpsy.2010.03.002] [PMID: 20378092]
[76]
Bankó, É.M.; Körtvélyes, J.; Weiss, B.; Vidnyánszky, Z. How the visual cortex handles stimulus noise: Insights from amblyopia. PLoS One, 2013, 8(6), e66583.
[http://dx.doi.org/10.1371/journal.pone.0066583] [PMID: 23818947]
[77]
Yu, K.; Prasad, I.; Mir, H.; Thakor, N.; Al-Nashash, H. Cognitive workload modulation through degraded visual stimuli: A single-trial EEG study. J. Neural Eng., 2015, 12(4), 046020.
[http://dx.doi.org/10.1088/1741-2560/12/4/046020] [PMID: 26065874]
[78]
Wenger, M.J.; Townsend, J.T. Spatial frequencies in short-term memory for faces: A test of three frequency-dependent hypotheses. Mem. Cognit., 2000, 28(1), 125-142.
[http://dx.doi.org/10.3758/BF03211581] [PMID: 10714144]
[79]
Jahfari, S.; Ridderinkhof, K.R.; Scholte, H.S. Spatial frequency information modulates response inhibition and decision-making processes. PLoS One, 2013, 8(10), e76467.
[http://dx.doi.org/10.1371/journal.pone.0076467] [PMID: 24204630]
[80]
Smith, F.W.; Schyns, P.G. Smile through your fear and sadness: transmitting and identifying facial expression signals over a range of viewing distances. Psychol. Sci., 2009, 20(10), 1202-1208.
[http://dx.doi.org/10.1111/j.1467-9280.2009.02427.x] [PMID: 19694983]
[81]
Boucart, M.; Dinon, J-F.; Despretz, P.; Desmettre, T.; Hladiuk, K.; Oliva, A. Recognition of facial emotion in low vision: A flexible usage of facial features. Vis. Neurosci., 2008, 25(4), 603-609.
[http://dx.doi.org/10.1017/S0952523808080656] [PMID: 18631411]
[82]
Mermillod, M.; Vuilleumier, P.; Peyrin, C.; Alleysson, D.; Marendaz, C. The importance of low spatial frequency information for recognizing fearful facial expressions. Connect. Sci., 2009, 21(1), 75-83.
[http://dx.doi.org/10.1080/09540090802213974]
[83]
Smith, M.L.; Cottrell, G.W.; Gosselin, F.; Schyns, P.G. Transmitting and decoding facial expressions. Psychol. Sci., 2005, 16(3), 184-189.
[http://dx.doi.org/10.1111/j.0956-7976.2005.00801.x] [PMID: 15733197]
[84]
Kornreich, C.; Petit, G.; Rolin, H.; Ermer, E.; Campanella, S.; Verbanck, P.; Maurage, P. Decoding of nonverbal language in alcoholism: A perception or a labeling problem? Psychol. Addict. Behav., 2016, 30(2), 175-183.
[http://dx.doi.org/10.1037/adb0000147] [PMID: 26820495]
[85]
Maurage, P.; Campanella, S.; Philippot, P.; Martin, S.; de Timary, P. Face processing in chronic alcoholism: A specific deficit for emotional features. Alcohol. Clin. Exp. Res., 2008, 32(4), 600-606.
[http://dx.doi.org/10.1111/j.1530-0277.2007.00611.x] [PMID: 18241315]
[86]
Pfefferbaum, A.; Desmond, J.E.; Galloway, C.; Menon, V.; Glover, G.H.; Sullivan, E.V. Reorganization of frontal systems used by alcoholics for spatial working memory: An fMRI study. Neuroimage, 2001, 14(1 Pt 1), 7-20.
[http://dx.doi.org/10.1006/nimg.2001.0785] [PMID: 11525339]
[87]
Foisy, M-L.; Kornreich, C.; Petiau, C.; Parez, A.; Hanak, C.; Verbanck, P.; Pelc, I.; Philippot, P. Impaired emotional facial expression recognition in alcoholics: Are these deficits specific to emotional cues? Psychiatry Res., 2007, 150(1), 33-41.
[http://dx.doi.org/10.1016/j.psychres.2005.12.008] [PMID: 17267048]
[88]
Firestone, C.; Scholl, B.J. Cognition does not affect perception: Evaluating the evidence for “top-down” effects. Behav. Brain Sci., 2016, 39, e229.
[http://dx.doi.org/10.1017/S0140525X15000965] [PMID: 26189677]
[89]
Pylyshyn, Z. Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behav. Brain Sci., 1999, 22(3), 341-365.
[http://dx.doi.org/10.1017/S0140525X99002022] [PMID: 11301517]
[90]
Bar, M. A cortical mechanism for triggering top-down facilitation in visual object recognition. J. Cogn. Neurosci., 2003, 15(4), 600-609.
[http://dx.doi.org/10.1162/089892903321662976] [PMID: 12803970]
[91]
Bar, M. The proactive brain: Using analogies and associations to generate predictions. Trends Cogn. Sci. (Regul. Ed.),, 2007, 11(7), 280-289.
[http://dx.doi.org/10.1016/j.tics.2007.05.005] [PMID: 17548232]
[92]
Kveraga, K.; Ghuman, A.S.; Bar, M. Top-down predictions in the cognitive brain. Brain Cogn., 2007, 65(2), 145-168.
[http://dx.doi.org/10.1016/j.bandc.2007.06.007] [PMID: 17923222]
[93]
Hohwy, J. Priors in perception: Top-down modulation, Bayesian perceptual learning rate, and prediction error minimization. Conscious. Cogn., 2017, 47, 75-85.
[http://dx.doi.org/10.1016/j.concog.2016.09.004] [PMID: 27663763]
[94]
Macpherson, F. The relationship between cognitive penetration and predictive coding. Conscious. Cogn., 2017, 47, 6-16.
[http://dx.doi.org/10.1016/j.concog.2016.04.001] [PMID: 27114093]
[95]
Teufel, C.; Nanay, B. How to (and how not to) think about top-down influences on visual perception. Conscious. Cogn., 2017, 47, 17-25.
[http://dx.doi.org/10.1016/j.concog.2016.05.008] [PMID: 27238628]
[96]
Panichello, M.F.; Cheung, O.S.; Bar, M. Predictive feedback and conscious visual experience. Front. Psychol., 2013, 3, 620.
[http://dx.doi.org/10.3389/fpsyg.2012.00620] [PMID: 23346068]
[97]
Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci., 2010, 11(2), 127-138.
[http://dx.doi.org/10.1038/nrn2787] [PMID: 20068583]
[98]
Merigan, W.H.; Maunsell, J.H. How parallel are the primate visual pathways? Annu. Rev. Neurosci., 1993, 16(1), 369-402.
[http://dx.doi.org/10.1146/annurev.ne.16.030193.002101] [PMID: 8460898]
[99]
Livingstone, M.; Hubel, D. Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 1988, 240(4853), 740-749.
[http://dx.doi.org/10.1126/science.3283936] [PMID: 3283936]
[100]
Bredfeldt, C.E.; Ringach, D.L. Dynamics of spatial frequency tuning in macaque V1. J. Neurosci., 2002, 22(5), 1976-1984.
[http://dx.doi.org/10.1523/JNEUROSCI.22-05-01976.2002] [PMID: 11880528]
[101]
Frazor, R.A.; Albrecht, D.G.; Geisler, W.S.; Crane, A.M. Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function. J. Neurophysiol., 2004, 91(6), 2607-2627.
[http://dx.doi.org/10.1152/jn.00858.2003] [PMID: 14960559]
[102]
Bullier, J. Integrated model of visual processing. Brain Res. Brain Res. Rev., 2001, 36(2-3), 96-107.
[http://dx.doi.org/10.1016/S0165-0173(01)00085-6] [PMID: 11690606]
[103]
Neri, P. Coarse to fine dynamics of monocular and binocular processing in human pattern vision. Proc. Natl. Acad. Sci. USA, 2011, 108(26), 10726-10731.
[http://dx.doi.org/10.1073/pnas.1101246108] [PMID: 21670301]
[104]
Chaumon, M.; Kveraga, K.; Barrett, L.F.; Bar, M. Visual predictions in the orbitofrontal cortex rely on associative content. Cereb. Cortex, 2014, 24(11), 2899-2907.
[http://dx.doi.org/10.1093/cercor/bht146] [PMID: 23771980]
[105]
Bar, M. Visual objects in context. Nat. Rev. Neurosci., 2004, 5(8), 617-629.
[http://dx.doi.org/10.1038/nrn1476] [PMID: 15263892]
[106]
Barrett, L.F.; Bar, M. See it with feeling: affective predictions during object perception. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1521), 1325-1334.
[http://dx.doi.org/10.1098/rstb.2008.0312] [PMID: 19528014]
[107]
Kringelbach, M.L.; Rolls, E.T. The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Prog. Neurobiol., 2004, 72(5), 341-372.
[http://dx.doi.org/10.1016/j.pneurobio.2004.03.006] [PMID: 15157726]
[108]
Vuilleumier, P.; Richardson, M.P.; Armony, J.L.; Driver, J.; Dolan, R.J. Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nat. Neurosci., 2004, 7(11), 1271-1278.
[http://dx.doi.org/10.1038/nn1341] [PMID: 15494727]
[109]
Willenbockel, V.; Lepore, F.; Nguyen, D.K.; Bouthillier, A.; Gosselin, F. Spatial frequency tuning during the conscious and non-conscious perception of emotional facial expressions – an intracranial ERP study. Front. Psychol., 2012, 3, 237.
[http://dx.doi.org/10.3389/fpsyg.2012.00237] [PMID: 23055988]
[110]
Tamietto, M.; de Gelder, B. Neural bases of the non-conscious perception of emotional signals. Nat. Rev. Neurosci., 2010, 11(10), 697-709.
[http://dx.doi.org/10.1038/nrn2889] [PMID: 20811475]
[111]
Méndez-Bértolo, C.; Moratti, S.; Toledano, R.; Lopez-Sosa, F.; Martínez-Alvarez, R.; Mah, Y.H.; Vuilleumier, P.; Gil-Nagel, A.; Strange, B.A. A fast pathway for fear in human amygdala. Nat. Neurosci., 2016, 19(8), 1041-1049.
[http://dx.doi.org/10.1038/nn.4324] [PMID: 27294508]
[112]
Bar, M.; Kassam, K.S.; Ghuman, A.S.; Boshyan, J.; Schmid, A.M.; Dale, A.M.; Hämäläinen, M.S.; Marinkovic, K.; Schacter, D.L.; Rosen, B.R.; Halgren, E. Top-down facilitation of visual recognition. Proc. Natl. Acad. Sci. USA, 2006, 103(2), 449-454.
[http://dx.doi.org/10.1073/pnas.0507062103] [PMID: 16407167]
[113]
Kveraga, K.; Boshyan, J.; Bar, M. Magnocellular projections as the trigger of top-down facilitation in recognition. J. Neurosci., 2007, 27(48), 13232-13240.
[http://dx.doi.org/10.1523/JNEUROSCI.3481-07.2007] [PMID: 18045917]
[114]
Bognár, A.; Csete, G.; Németh, M.; Csibri, P.; Kincses, T.Z.; Sáry, G. Transcranial stimulation of the orbitofrontal cortex affects decisions about magnocellular optimized stimuli. Front. Neurosci., 2017, 11, 234.
[http://dx.doi.org/10.3389/fnins.2017.00234] [PMID: 28491018]
[115]
Engel, A.K.; Fries, P.; Singer, W. Dynamic predictions: Oscillations and synchrony in top-down processing. Nat. Rev. Neurosci., 2001, 2(10), 704-716.
[http://dx.doi.org/10.1038/35094565] [PMID: 11584308]
[116]
Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci., 2013, 36(3), 181-204.
[http://dx.doi.org/10.1017/S0140525X12000477] [PMID: 23663408]
[117]
Chica, A.B.; Bartolomeo, P.; Lupiáñez, J. Two cognitive and neural systems for endogenous and exogenous spatial attention. Behav. Brain Res., 2013, 237, 107-123.
[http://dx.doi.org/10.1016/j.bbr.2012.09.027] [PMID: 23000534]
[118]
Abrams, J.; Barbot, A.; Carrasco, M. Voluntary attention increases perceived spatial frequency. Atten. Percept. Psychophys., 2010, 72(6), 1510-1521.
[http://dx.doi.org/10.3758/APP.72.6.1510] [PMID: 20675797]
[119]
Anton-Erxleben, K.; Carrasco, M. Attentional enhancement of spatial resolution: Linking behavioural and neurophysiological evidence. Nat. Rev. Neurosci., 2013, 14(3), 188-200.
[http://dx.doi.org/10.1038/nrn3443] [PMID: 23422910]
[120]
Carrasco, M.; Barbot, A. How attention affects spatial resolution. Cold Spring Harb. Symp. Quant. Biol., 2014, 79, 149-160.
[http://dx.doi.org/10.1101/sqb.2014.79.024687] [PMID: 25948640]
[121]
Tse, P.U. Voluntary attention modulates the brightness of overlapping transparent surfaces. Vision Res., 2005, 45(9), 1095-1098.
[http://dx.doi.org/10.1016/j.visres.2004.11.001] [PMID: 15707917]
[122]
Barbot, A.; Landy, M.S.; Carrasco, M. Differential effects of exogenous and endogenous attention on second-order texture contrast sensitivity. J. Vis., 2012, 12(8), 6.
[http://dx.doi.org/10.1167/12/8/6] [PMID: 22895879]
[123]
Liu, T.; Abrams, J.; Carrasco, M. Voluntary attention enhances contrast appearance. Psychol. Sci., 2009, 20(3), 354-362.
[http://dx.doi.org/10.1111/j.1467-9280.2009.02300.x] [PMID: 19254239]
[124]
Carrasco, M.; Ling, S.; Read, S. Attention alters appearance. Nat. Neurosci., 2004, 7(3), 308-313.
[http://dx.doi.org/10.1038/nn1194] [PMID: 14966522]
[125]
Montagna, B.; Pestilli, F.; Carrasco, M. Attention trades off spatial acuity. Vision Res., 2009, 49(7), 735-745.
[http://dx.doi.org/10.1016/j.visres.2009.02.001] [PMID: 19385088]
[126]
Offen, S.; Schluppeck, D.; Heeger, D.J. The role of early visual cortex in visual short-term memory and visual attention. Vision Res., 2009, 49(10), 1352-1362.
[http://dx.doi.org/10.1016/j.visres.2007.12.022] [PMID: 18329065]
[127]
Carbon, C-C. Understanding human perception by human-made illusions. Front. Hum. Neurosci., 2014, 8, 566.
[http://dx.doi.org/10.3389/fnhum.2014.00566] [PMID: 25132816]
[128]
Gregory, R.L. Seeing Through Illusions; Oxford University Press: New York, 2009.
[129]
Stokes, M.G.; Atherton, K.; Patai, E.Z.; Nobre, A.C. Long-term memory prepares neural activity for perception. Proc. Natl. Acad. Sci. USA, 2012, 109(6), E360-E367.
[http://dx.doi.org/10.1073/pnas.1108555108] [PMID: 22109554]
[130]
Alink, A.; Schwiedrzik, C.M.; Kohler, A.; Singer, W.; Muckli, L. Stimulus predictability reduces responses in primary visual cortex. J. Neurosci., 2010, 30(8), 2960-2966.
[http://dx.doi.org/10.1523/JNEUROSCI.3730-10.2010] [PMID: 20181593]
[131]
Kok, P.; Jehee, J.F.M.; de Lange, F.P. Less is more: expectation sharpens representations in the primary visual cortex. Neuron, 2012, 75(2), 265-270.
[http://dx.doi.org/10.1016/j.neuron.2012.04.034] [PMID: 22841311]
[132]
Rauss, K.; Schwartz, S.; Pourtois, G. Top-down effects on early visual processing in humans: A predictive coding framework. Neurosci. Biobehav. Rev., 2011, 35(5), 1237-1253.
[http://dx.doi.org/10.1016/j.neubiorev.2010.12.011] [PMID: 21185860]
[133]
Clark, V.P.; Fan, S.; Hillyard, S.A. Identification of early visual evoked potential generators by retinotopic and topographic analyses. Hum. Brain Mapp., 1994, 2(3), 170-187.
[http://dx.doi.org/10.1002/hbm.460020306]
[134]
Di Russo, F.; Martínez, A.; Sereno, M.I.; Pitzalis, S.; Hillyard, S.A. Cortical sources of the early components of the visual evoked potential. Hum. Brain Mapp., 2002, 15(2), 95-111.
[http://dx.doi.org/10.1002/hbm.10010] [PMID: 11835601]
[135]
Summerfield, C.; Egner, T. Expectation (and attention) in visual cognition. Trends Cogn. Sci. (Regul. Ed.),, 2009, 13(9), 403-409.
[http://dx.doi.org/10.1016/j.tics.2009.06.003] [PMID: 19716752]
[136]
Jahfari, S.; Waldorp, L.; Ridderinkhof, K.R.; Scholte, H.S. Visual information shapes the dynamics of corticobasal ganglia pathways during response selection and inhibition. J. Cogn. Neurosci., 2015, 27(7), 1344-1359.
[http://dx.doi.org/10.1162/jocn_a_00792] [PMID: 25647338]
[137]
Verbruggen, F.; Stevens, T.; Chambers, C.D. Proactive and reactive stopping when distracted: An attentional account. J. Exp. Psychol. Hum. Percept. Perform., 2014, 40(4), 1295-1300.
[http://dx.doi.org/10.1037/a0036542] [PMID: 24842070]
[138]
Bocanegra, B.R.; Zeelenberg, R. Emotion-induced trade-offs in spatiotemporal vision. J. Exp. Psychol. Gen., 2011, 140(2), 272-282.
[http://dx.doi.org/10.1037/a0023188] [PMID: 21443382]
[139]
Bocanegra, B.R.; Zeelenberg, R. Emotion improves and impairs early vision. Psychol. Sci., 2009, 20(6), 707-713.
[http://dx.doi.org/10.1111/j.1467-9280.2009.02354.x] [PMID: 19422624]
[140]
Bocanegra, B.R. Affecting speed and accuracy in perception. Cogn. Affect. Behav. Neurosci., 2014, 14(4), 1454-1466.
[http://dx.doi.org/10.3758/s13415-014-0296-5] [PMID: 24853268]
[141]
Galli, G.; Feurra, M.; Viggiano, M.P. “Did you see him in the newspaper?” Electrophysiological correlates of context and valence in face processing. Brain Res., 2006, 1119(1), 190-202.
[http://dx.doi.org/10.1016/j.brainres.2006.08.076] [PMID: 17005161]
[142]
Rudrauf, D.; David, O.; Lachaux, J-P.; Kovach, C.K.; Martinerie, J.; Renault, B.; Damasio, A. Rapid interactions between the ventral visual stream and emotion-related structures rely on a two-pathway architecture. J. Neurosci., 2008, 28(11), 2793-2803.
[http://dx.doi.org/10.1523/JNEUROSCI.3476-07.2008] [PMID: 18337409]
[143]
Holmes, A.; Winston, J.S.; Eimer, M. The role of spatial frequency information for ERP components sensitive to faces and emotional facial expression. Brain Res. Cogn. Brain Res., 2005, 25(2), 508-520.
[http://dx.doi.org/10.1016/j.cogbrainres.2005.08.003] [PMID: 16168629]
[144]
Vlamings, P.H.J.M.; Goffaux, V.; Kemner, C. Is the early modulation of brain activity by fearful facial expressions primarily mediated by coarse low spatial frequency information? J. Vis., 2009, 9(5), 1-13.
[http://dx.doi.org/10.1167/9.5.12] [PMID: 19757890]
[145]
D’Hondt, F.; Lassonde, M.; Collignon, O.; Lepore, F.; Honoré, J.; Sequeira, H. “Emotions guide us”: Behavioral and MEG correlates. Cortex, 2013, 49(9), 2473-2483.
[http://dx.doi.org/10.1016/j.cortex.2012.12.013] [PMID: 23332317]
[146]
Tapert, S.F.; Brown, G.G.; Kindermann, S.S.; Cheung, E.H.; Frank, L.R.; Brown, S.A. fMRI measurement of brain dysfunction in alcohol-dependent young women. Alcohol. Clin. Exp. Res., 2001, 25(2), 236-245.
[http://dx.doi.org/10.1111/j.1530-0277.2001.tb02204.x] [PMID: 11236838]
[147]
Catafau, A.M.; Etcheberrigaray, A.; Perez de los Cobos, J.; Estorch, M.; Guardia, J.; Flotats, A.; Bernà, L.; Marí, C.; Casas, M.; Carrió, I. Regional cerebral blood flow changes in chronic alcoholic patients induced by naltrexone challenge during detoxification. J. Nucl. Med., 1999, 40(1), 19-24.
[PMID: 9935051]
[148]
O’Daly, O.G.; Trick, L.; Scaife, J.; Marshall, J.; Ball, D.; Phillips, M.L.; Williams, S.S.; Stephens, D.N.; Duka, T. Withdrawal-associated increases and decreases in functional neural connectivity associated with altered emotional regulation in alcoholism. Neuropsychopharmacology, 2012, 37(10), 2267-2276.
[http://dx.doi.org/10.1038/npp.2012.77] [PMID: 22617355]
[149]
Miguel-Hidalgo, J.J.; Overholser, J.C.; Meltzer, H.Y.; Stockmeier, C.A.; Rajkowska, G. Reduced glial and neuronal packing density in the orbitofrontal cortex in alcohol dependence and its relationship with suicide and duration of alcohol dependence. Alcohol. Clin. Exp. Res., 2006, 30(11), 1845-1855.
[http://dx.doi.org/10.1111/j.1530-0277.2006.00221.x] [PMID: 17067348]
[150]
D’Hondt, F.; Lepore, F.; Maurage, P. Are visual impairments responsible for emotion decoding deficits in alcohol-dependence? Front. Hum. Neurosci., 2014, 8, 128.
[PMID: 24653688]
[151]
Field, M.; Cox, W.M. Attentional bias in addictive behaviors: A review of its development, causes, and consequences. Drug Alcohol Depend., 2008, 97(1-2), 1-20.
[http://dx.doi.org/10.1016/j.drugalcdep.2008.03.030] [PMID: 18479844]
[152]
Field, M.; Munafò, M.R.; Franken, I.H.A. A meta-analytic investigation of the relationship between attentional bias and subjective craving in substance abuse. Psychol. Bull., 2009, 135(4), 589-607.
[http://dx.doi.org/10.1037/a0015843] [PMID: 19586163]
[153]
Kreusch, F.; Billieux, J.; Quertemont, E. Alcohol-cue exposure decreases response inhibition towards alcohol-related stimuli in detoxified alcohol-dependent patients. Psychiatry Res., 2017, 249, 232-239.
[http://dx.doi.org/10.1016/j.psychres.2017.01.019] [PMID: 28126578]
[154]
Kornreich, C.; Philippot, P.; Foisy, M-L.; Blairy, S.; Raynaud, E.; Dan, B.; Hess, U.; Noël, X.; Pelc, I.; Verbanck, P. Impaired emotional facial expression recognition is associated with interpersonal problems in alcoholism. Alcohol Alcohol., 2002, 37(4), 394-400.
[http://dx.doi.org/10.1093/alcalc/37.4.394] [PMID: 12107044]
[155]
Kornreich, C.; Blairy, S.; Philippot, P.; Dan, B.; Foisy, M.; Hess, U.; Le Bon, O.; Pelc, I.; Verbanck, P. Impaired emotional facial expression recognition in alcoholism compared with obsessive-compulsive disorder and normal controls. Psychiatry Res., 2001, 102(3), 235-248.
[http://dx.doi.org/10.1016/S0165-1781(01)00261-X] [PMID: 11440774]
[156]
Baker, T.B.; Piper, M.E.; McCarthy, D.E.; Majeskie, M.R.; Fiore, M.C. Addiction motivation reformulated: An affective processing model of negative reinforcement. Psychol. Rev., 2004, 111(1), 33-51.
[http://dx.doi.org/10.1037/0033-295X.111.1.33] [PMID: 14756584]
[157]
Kober, H. Emotion regulation in substance use disorders., 2014.
[158]
Lovejoy, L.P.; Krauzlis, R.J. Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments. Nat. Neurosci., 2010, 13(2), 261-266.
[http://dx.doi.org/10.1038/nn.2470] [PMID: 20023651]
[159]
Moschovakis, A.K. The superior colliculus and eye movement control. Curr. Opin. Neurobiol., 1996, 6(6), 811-816.
[http://dx.doi.org/10.1016/S0959-4388(96)80032-8] [PMID: 9000018]
[160]
Petit, G.; Kornreich, C.; Maurage, P.; Noël, X.; Letesson, C.; Verbanck, P.; Campanella, S. Early attentional modulation by alcohol-related cues in young binge drinkers: An event-related potentials study. Clin. Neurophysiol., 2012, 123(5), 925-936.
[http://dx.doi.org/10.1016/j.clinph.2011.10.042] [PMID: 22119177]
[161]
Matheus-Roth, C.; Schenk, I.; Wiltfang, J.; Scherbaum, N.; Müller, B.W. Occipital event-related potentials to addiction-related stimuli in detoxified patients with alcohol dependence, and their association with three-month relapse. BMC Psychiatry, 2016, 16, 74.
[http://dx.doi.org/10.1186/s12888-016-0782-0] [PMID: 27000120]
[162]
Verbruggen, F.; McLaren, I.P.L.; Chambers, C.D. Banishing the control homunculi in studies of action control and behavior change. Perspect. Psychol. Sci., 2014, 9(5), 497-524.
[http://dx.doi.org/10.1177/1745691614526414] [PMID: 25419227]
[163]
Czapla, M.; Baeuchl, C.; Simon, J.J.; Richter, B.; Kluge, M.; Friederich, H-C.; Mann, K.; Herpertz, S.C.; Loeber, S. Do alcohol-dependent patients show different neural activation during response inhibition than healthy controls in an alcohol-related fMRI go/no-go-task? Psychopharmacology (Berl.), 2017, 234(6), 1001-1015.
[http://dx.doi.org/10.1007/s00213-017-4541-9] [PMID: 28161772]
[164]
Pourtois, G.; Dan, E.S.; Grandjean, D.; Sander, D.; Vuilleumier, P. Enhanced extrastriate visual response to bandpass spatial frequency filtered fearful faces: Time course and topographic evoked-potentials mapping. Hum. Brain Mapp., 2005, 26(1), 65-79.
[http://dx.doi.org/10.1002/hbm.20130] [PMID: 15954123]
[165]
Maratos, F.A.; Mogg, K.; Bradley, B.P.; Rippon, G.; Senior, C. Coarse threat images reveal theta oscillations in the amygdala: A magnetoencephalography study. Cogn. Affect. Behav. Neurosci., 2009, 9(2), 133-143.
[http://dx.doi.org/10.3758/CABN.9.2.133] [PMID: 19403890]
[166]
Vuilleumier, P.; Armony, J.L.; Driver, J.; Dolan, R.J. Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci., 2003, 6(6), 624-631.
[http://dx.doi.org/10.1038/nn1057] [PMID: 12740580]
[167]
Durazzo, T.C.; Tosun, D.; Buckley, S.; Gazdzinski, S.; Mon, A.; Fryer, S.L.; Meyerhoff, D.J. Cortical thickness, surface area, and volume of the brain reward system in alcohol dependence: Relationships to relapse and extended abstinence. Alcohol. Clin. Exp. Res., 2011, 35(6), 1187-1200.
[http://dx.doi.org/10.1111/j.1530-0277.2011.01452.x] [PMID: 21410483]
[168]
Gilman, J.M.; Hommer, D.W. Modulation of brain response to emotional images by alcohol cues in alcohol-dependent patients. Addict. Biol., 2008, 13(3-4), 423-434.
[http://dx.doi.org/10.1111/j.1369-1600.2008.00111.x] [PMID: 18507736]
[169]
Marinkovic, K.; Oscar-Berman, M.; Urban, T.; O’Reilly, C.E.; Howard, J.A.; Sawyer, K.; Harris, G.J. Alcoholism and dampened temporal limbic activation to emotional faces. Alcohol. Clin. Exp. Res., 2009, 33(11), 1880-1892.
[http://dx.doi.org/10.1111/j.1530-0277.2009.01026.x] [PMID: 19673745]
[170]
Schulte, T.; Mũller-Oehring, E.M.; Pfefferbaum, A.; Sullivan, E.V. Neurocircuitry of emotion and cognition in alcoholism: Contributions from white matter fiber tractography. Dialogues Clin. Neurosci., 2010, 12(4), 554-560.
[PMID: 21319499]
[171]
Pfefferbaum, A.; Rosenbloom, M.; Rohlfing, T.; Sullivan, E.V. Degradation of association and projection white matter systems in alcoholism detected with quantitative fiber tracking. Biol. Psychiatry, 2009, 65(8), 680-690.
[http://dx.doi.org/10.1016/j.biopsych.2008.10.039] [PMID: 19103436]
[172]
Maurage, P.; Joassin, F.; Pesenti, M.; Grandin, C.; Heeren, A.; Philippot, P.; de Timary, P. The neural network sustaining crossmodal integration is impaired in alcohol-dependence: An fMRI study. Cortex, 2013, 49(6), 1610-1626.
[http://dx.doi.org/10.1016/j.cortex.2012.04.012] [PMID: 22658706]
[173]
Pokorny, J. Review: Steady and pulsed pedestals, the how and why of post-receptoral pathway separation. J. Vis., 2011, 11(5), 1-23.
[http://dx.doi.org/10.1167/11.5.7] [PMID: 21737512]
[174]
Pokorny, J.; Smith, V.C. Psychophysical signatures associated with magnocellular and parvocellular pathway contrast gain. J. Opt. Soc. Am. A Opt. Image Sci. Vis., 1997, 14(9), 2477-2486.
[http://dx.doi.org/10.1364/JOSAA.14.002477] [PMID: 9291615]
[175]
Zhuang, X.; King, A.; McNamara, P.; Pokorny, J.; Cao, D. Differential effects of alcohol on contrast processing mediated by the magnocellular and parvocellular pathways. J. Vis., 2012, 12(11), 16.
[http://dx.doi.org/10.1167/12.11.16] [PMID: 23090614]
[176]
De Cesarei, A.; Codispoti, M. Spatial frequencies and emotional perception. Rev. Neurosci., 2013, 24(1), 89-104.
[http://dx.doi.org/10.1515/revneuro-2012-0053] [PMID: 23183741]
[177]
Breitmeyer, B.G.; Williams, M.C. Effects of isoluminant-background color on metacontrast and stroboscopic motion: Interactions between sustained (P) and transient (M) channels. Vision Res., 1990, 30(7), 1069-1075.
[http://dx.doi.org/10.1016/0042-6989(90)90115-2] [PMID: 2392835]
[178]
Breitmeyer, B.G.; Breier, J.I. Effects of background color on reaction time to stimuli varying in size and contrast: Inferences about human M channels. Vision Res., 1994, 34(8), 1039-1045.
[http://dx.doi.org/10.1016/0042-6989(94)90008-6] [PMID: 8160413]
[179]
West, G.L.; Anderson, A.K.; Bedwell, J.S.; Pratt, J. Red diffuse light suppresses the accelerated perception of fear. Psychol. Sci., 2010, 21(7), 992-999.
[http://dx.doi.org/10.1177/0956797610371966] [PMID: 20489219]
[180]
Carretié, L.; Kessel, D.; García-Rubio, M.J.; Giménez-Fernández, T.; Hoyos, S.; Hernández-Lorca, M. Magnocellular bias in exogenous attention to biologically salient stimuli as revealed by manipulating their luminosity and color. J. Cogn. Neurosci., 2017, 29(10), 1699-1711.
[http://dx.doi.org/10.1162/jocn_a_01148] [PMID: 28557693]
[181]
Peyrin, C.; Michel, C.M.; Schwartz, S.; Thut, G.; Seghier, M.; Landis, T.; Marendaz, C.; Vuilleumier, P. The neural substrates and timing of top-down processes during coarse-to-fine categorization of visual scenes: a combined fMRI and ERP study. J. Cogn. Neurosci., 2010, 22(12), 2768-2780.
[http://dx.doi.org/10.1162/jocn.2010.21424] [PMID: 20044901]
[182]
Gronau, N.; Neta, M.; Bar, M. Integrated contextual representation for objects’ identities and their locations. J. Cogn. Neurosci., 2008, 20(3), 371-388.
[http://dx.doi.org/10.1162/jocn.2008.20027] [PMID: 18004950]
[183]
Witkiewitz, K. Predictors of heavy drinking during and following treatment. Psychol. Addict. Behav., 2011, 25(3), 426-438.
[http://dx.doi.org/10.1037/a0022889] [PMID: 21480681]
[184]
Peters, J.C.; van den Boomen, C.; Kemner, C. Spatial frequency training modulates neural face processing: Learning transfers from low- to high-level visual features. Front. Hum. Neurosci., 2017, 11, 1.
[http://dx.doi.org/10.3389/fnhum.2017.00001] [PMID: 28149275]